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Introduction to Accelerator Physics 
 Beam Dynamics for „Summer Students“  

The Ideal World  
II.) Magnetic Fields and Particle Trajectories 



II A Bit of Theory 



Largest storage ring: The Solar System 

astronomical unit: average distance earth-sun 
    1AE ≈ 150 *106  km  
    Distance Pluto-Sun ≈ 40 AE 

AE 



LHC Storage Ring: Protons accelerated and stored for 12 hours 
                     distance of particles travelling at about v ≈ c 
      L = 1010-1011 km  
                                       ... several times Sun - Pluto and back  

Luminosity Run of a typical storage ring: 

à     guide the particles on a well defined orbit („design orbit“) 
à     focus the particles to keep each single particle trajectory  
        within the vacuum chamber of the storage ring, i.e. close to the design orbit.   

intensity (1011) 
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 Lorentz force 

„  ... in the end and after all it should be a kind of circular machine“ 
 ! need transverse deflecting force  

typical velocity in high energy machines: 

1.) Introduction and Basic Ideas 

Example:
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circular  coordinate system 
condition for circular orbit:   

Lorentz force 

centrifugal force 

The ideal circular orbit 
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B ρ =  "beam rigidity" 

Pearl of wisdom: 
if you are clever,  you use magnetic fields in an accelerator wherever  
it is possible. 



2.) The Magnetic Guide Field 

Normalise magnetic field to momentum: 

Dipole Magnets: 
 

define the ideal orbit  
homogeneous field created  
by two flat pole shoes 

convenient units:  

[ ] ⎥⎦

⎤
⎢⎣

⎡== 2m
VsTB ⎥⎦

⎤
⎢⎣

⎡=
c
GeVp

h
InB 0µ=

29

8

9

2

10*7000

10*3*3.8

10*7000

3.81
m
s

ms

c
eV
m

Vs
e ==

ρ
TB 3.8=

c
GeVp 7000=

Example LHC: 

m
1

7000
3.8333.01

=
ρ

ρB
e
p
=

p
Be

=
ρ
1



field map of a storage ring dipole magnet 
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α 

ds 

  „normalised bending strength“ 

2πρ = 17.6 km  
        ≈ 66%   

The Magnetic Guide Field 
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The Problem: 

LHC Design Magnet current: I=11850 A 
 
and the machine is 27 km long !!! 
 

Ohm’s law:  
 
Problem:  
   reduce ohmic losses to the absolute minimum 

The Solution: 
 

     super conductivity 

€ 

U = R* I, P = R* I2



discovery of sc. by  
H. Kammerling Onnes,  
Leiden 1911 

Super Conductivity 

LHC 1.9 K cryo plant 



Superfluid helium: 
            1.9 K cryo system 
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Phase diagramm of Helium 



Heat  
exchanger 

Superconducting 
coils Beam pipe 

(1015 H2/m3) 

Vacuum 
vessel (10-6 

mbar) 

Beam 
screen 

Collars 

Iron 
yoke 

Dipole 
bus-bars 

Quadrupole 
bus-bars 

L ~ 15 m 
8.3 T, 11.87 kA 
T = 1.9 K, ~27.5 ton 

Thermal 
shield 

LHC: The -1232- Main Dipole Magnets 

required field quality: 
ΔB/B=10 -4 

6 µm Ni-Ti filament 

1 mm 



classical mechanics: 
pendulum 

there is a restoring force, proportional  
to the elongation x:  
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general solution: free harmonic oszillation ( ) *cos( )x t A tω ϕ= +

Storage Ring: we need a Lorentz force that rises as a function of 
the distance to ........ ? 
                                                   ................... the design orbit 

( ) * * ( )F x q v B x=

2.) Focusing Properties – Transverse Beam Optics 



required:     focusing forces to keep trajectories in vicinity of the ideal orbit  
 

    linear increasing Lorentz force 
 

    linear increasing magnetic field  

                 

                 

           

 Quadrupole Magnets: 

normalised quadrupole field: 

ygBxgB xy ==

LHC main quadrupole magnet 
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Focusing forces and particle trajectories: 
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      normalise magnet fields to momentum  
      (remember: B*ρ = p / q ) 

Dipole Magnet Quadrupole Magnet 
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Example: 
 heavy ion storage ring TSR 

Separate Function Machines: 
 
Split the magnets and optimise  
them according to their job:  
 
bending, focusing etc  
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 3.) The Equation of Motion: 

 only terms linear in x, y taken into account   dipole fields    
                                                                           quadrupole fields 

* man sieht nur  
dipole und quads ! linear 
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Equation for the vertical motion: * 
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no dipoles … in general …  

quadrupole field changes sign 
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 The Equation of Motion: 

Equation for the horizontal motion: * 

x =   particle amplitude 
x’ = angle of particle trajectory (wrt ideal path line) 



Differential Equation of harmonic oscillator   …  with spring  constant K 
 

Ansatz: 

4.) Solution of Trajectory Equations 

Define …  hor. plane:  K= 1/ρ2  + k 
 

            … vert. Plane:  K = - k 0=+ʹ′ʹ′ xKx

Hor. Focusing Quadrupole  K > 0: 
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For convenience expressed in matrix formalism: 
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hor. defocusing quadrupole:  

drift space:   
                       K = 0  
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!     with the assumptions made, the motion in the horizontal and vertical planes are  
       independent  „ ... the particle motion in x & y is uncoupled“   

s = s1 s = 0 

0=−ʹ′ʹ′ xKx

)sinh()cosh()( 21 sasasx ωω ⋅+⋅=

Ansatz:  Remember from school 
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x(s) = " x 0 * s



The last weak focusing high energy machine … 
BEVATRON 

Problem: the higher the energy,  
the larger the machine 
 

ρB
e
p
=

The larger the machine 2πρ  
     ! the weaker the focusing  

 1/ ρ2 
 
 

 The weaker the focusing 1/ ρ2 

      ! the larger the beam size 
 
The larger the beam size  
      ! the more expensive the  
           vacuum chamber and  
           the magnets 

  Weak Focusing / Strong Focusing 
 

Ok … ok  ... it’s a bit complicated and cosh and sinh and all that is a pain. 
BUT ... compare ...  



focusing lens  

dipole magnet 

defocusing lens  

Transformation through a system of lattice elements 

combine the single element solutions by multiplication of the matrices 

*.....* * * *= etotal QF D QD B nd DM M M M M M
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court. K. Wille 

                          0 
 
typical values  
in a strong  
foc. machine: 
x ≈ mm, x´  ≤ mrad 
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in each accelerator element the particle trajectory corresponds to the movement of a  
harmonic oscillator „ 



Tune: number of oscillations per turn 
 
            64.31 

 59.32 
 
 

Relevant for beam stability:  
                               non integer part 

5.) Orbit & Tune: 

LHC revolution frequency:  11.3 kHz kHz5.33.11*31.0 =



 
 
Once more unto the breach, dear friends, once more 
 (W. Shakespeare, Henry 5) 
 

 “Fallen die Dinger eigentlich runter ?” 
    “do they actually drop ?” 

 
Antwort: No. 


