

II A Bit of Theory

Largest storage ring: The Solar System

astronomical unit: average distance earth-sun
 $1 \mathrm{AE} \approx 150 * 10^{6} \mathrm{~km}$
 Distance Pluto-Sun ≈ 40 AE

Luminosity Run of a typical storage ring:

LHC Storage Ring: Protons accelerated and stored for 12 hours
distance of particles travelling at about $v \approx c$
$L=10^{10}-10^{11} \mathrm{~km}$
... several times Sun - Pluto and back \&
intensity (1011)

\rightarrow guide the particles on a well defined orbit (,,design orbit")
\rightarrow focus the particles to keep each single particle trajectory within the vacuum chamber of the storage ring, i.e. close to the design orbit.

1.) Introduction and Basic Ideas

"... in the end and after all it should be a kind of circular machine"
\rightarrow need transverse deflecting force

Lorentz force

$$
\vec{F}=q *\left(\overrightarrow{B^{\prime}}+v \times \vec{B}\right)
$$

typical velocity in high energy machines:

$$
v \simeq c \simeq 3 * 10^{8} \mathrm{~m} / \mathrm{s}
$$

Example:s

$$
\begin{gathered}
B=1 T \rightarrow F=q * 3 * 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}} * 1 \frac{\mathrm{Vs}}{\mathrm{~m}^{2}} \\
F=q * \underbrace{300 \frac{M V}{\mathrm{~m}}} \\
\text { equivalent el. field ...> } E
\end{gathered}
$$

technical limit for el. field: /

$$
E \leq 1 \frac{M V}{m}
$$

Pearl of wisdom:
 if you are clever, you use magnetic fields in an accelerator wherever it is possible.

The ideal circular orbit

circular coordinate system
condition for circular orbit:

$$
\begin{array}{ll}
\text { Lorentz force } & F_{L}=\boldsymbol{e v} B \\
\text { centrifugal force } & F_{\text {centr }}=\frac{\gamma m_{0} v^{2}}{\rho} \\
& \frac{\gamma m_{0} v^{\dagger}}{\rho}=e \lesseqgtr B
\end{array}
$$

2.) The Magnetic Guide Field

Dipole Magnets:

define the ideal orbit

homogeneous field created by two flat pole shoes

$$
B=\frac{\mu_{0} n I}{h}
$$

malise magnetic field to momentum:
convenient units:

$$
\frac{p}{e}=B \rho \quad \longrightarrow \quad \frac{1}{\rho}=\frac{e B}{p} \quad B=[T]=\left[\frac{V s}{m^{2}}\right] \quad p=\left[\frac{G e V}{c}\right]
$$

Example LHC:

$$
\left.\begin{array}{l}
\boldsymbol{B}=8.3 \boldsymbol{T} \\
\boldsymbol{p}=7000 \frac{\boldsymbol{G e V}}{\boldsymbol{c}}
\end{array}\right\}
$$

$$
\begin{aligned}
\frac{1}{\rho} & =e \frac{8.3 \mathrm{Vs} / \boldsymbol{m}^{2}}{7000 * 10^{9} \boldsymbol{e V} / \mathrm{c}}=\frac{8.3 \boldsymbol{s} * 3 * 10^{8} \mathrm{~m} / \mathrm{s}}{7000 * 10^{9} \boldsymbol{m}^{2}} \\
\frac{1}{\rho} & =0.333 \frac{8.3}{7000} 1 / \mathrm{m}
\end{aligned}
$$

The Magnetic Guide Field

$$
\begin{aligned}
\rho=2.82 \mathrm{~km} \longrightarrow \quad 2 \pi \rho & =\mathbf{1 7 . 6} \mathbf{~ k m} \\
& \approx \mathbf{6 6 \%}
\end{aligned}
$$

rule of thumb: $\quad \frac{1}{\rho} \approx 0.3 \frac{B[T]}{p[G e V / c]}$

field map of a storage ring dipole magnet

$$
B \approx 1 \ldots 8 T
$$

„normalised bending strength"

The Problem:

LHC Design Magnet current: I=11850 A
and the machine is 27 km long !!!
Ohm's law: $\quad U=R^{*} I, \quad P=R^{*} I^{2}$
Problem:
reduce ohmic losses to the absolute minimum

17 March 1789 Erlangen, Germany

The Solution: super conductivity

Super Conductivity

discovery of sc. by H. Kammerling Onnes, Leiden 1911

LHC 1.9 K cryo plant

Superfluid helium:
 1.9 K cryo system

thermal conductivity of fl. Helium in supra fluid state

LHC: The -1232- Main Dipole Magnets

$6 \mu \mathrm{~m} \mathrm{Ni}$-Ti filament

2.) Focusing Properties - Transverse Beam Optics

classical mechanics: pendulum

there is a restoring force, proportional
to the elongation x : to the elongation x :

$$
\begin{aligned}
& m * \frac{d^{2} x}{d t^{2}}=-c^{*} x \\
& x(t)=A^{*} \cos (\omega t+\varphi)
\end{aligned}
$$

Storage Ring: we need a Lorentz force that rises as a function of the distance to \qquad ?

\qquad
the design orbit

$$
F(x)=q^{*} v^{*} B(x)
$$

Quadrupole Magnets:

required: focusing forces to keep trajectories in vicinity of the ideal orbit
linear increasing Lorentz force
linear increasing magnetic field

$$
B_{y}=g \boldsymbol{x} \quad B_{x}=\boldsymbol{g} \boldsymbol{y}
$$

normalised quadrupole field:
\qquad

$$
k=\frac{g}{p / e}
$$

simple rule:

$$
k=0.3 \frac{g(T / m)}{p(\boldsymbol{G e} V / c)}
$$

LHC main quadrupole magnet

$$
g \approx 25 \ldots 220 \mathrm{~T} / \mathrm{m}
$$

what about the vertical plane:
... Maxwell

$$
\vec{\nabla} \times \vec{B}=\bar{j}+\frac{\partial \vec{E}}{\partial A}
$$

$$
\Rightarrow \quad \frac{\partial \boldsymbol{B}_{y}}{\partial \boldsymbol{x}}=\frac{\partial \boldsymbol{B}_{x}}{\partial \boldsymbol{y}}
$$

Focusing forces and particle trajectories:

normalise magnet fields to momentum
(remember: $\boldsymbol{B} \boldsymbol{*} \boldsymbol{\rho}=\boldsymbol{p} / \boldsymbol{q}$)

Dipole Magnet

$$
\frac{B}{p / q}=\frac{B}{B \rho}=\frac{1}{\rho}
$$

Quadrupole Magnet

$$
k:=\frac{g}{p / q}
$$

3.) The Equation of Motion:

$$
\frac{B(x)}{p / e}=\frac{1}{\rho}+k x+\frac{1}{2!} m\left(x^{2}+\frac{1}{3!} n / x^{3}+\ldots\right.
$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:
bending, focusing etc

Example:
heavy ion storage ring TSR
*

The Equation of Motion:

* Equation for the horizontal motion:

$$
x^{\prime \prime}+x\left(\frac{1}{\rho^{2}}+k\right)=0
$$

$x=$ particle amplitude
$x^{\prime}=$ angle of particle trajectory (wrt ideal path line)
*
Equation for the vertical motion:

$$
\begin{gathered}
\frac{1}{\rho^{2}}=0 \quad \text { no dipoles ... in general ... } \\
k \quad-k \quad \text { quadrupole field changes sign } \\
y^{\prime \prime}-k \quad y=0
\end{gathered}
$$

4.) Solution of Trajectory Equations

Define ... hor. plane: $K=1 / \rho^{2}+k$
... vert. Plane: $K=-k$

$$
x^{\prime \prime}+\boldsymbol{K} x=0
$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole $K>0$:

$$
\begin{aligned}
& x(s)=x_{0} \cdot \cos (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \frac{1}{\sqrt{|K|}} \sin (\sqrt{|K|} s) \\
& x^{\prime}(s)=-x_{0} \cdot \sqrt{|K|} \cdot \sin (\sqrt{|K|} s)+x_{0}^{\prime} \cdot \cos (\sqrt{|K|} s)
\end{aligned}
$$

For convenience expressed in matrix formalism:

$$
\binom{x}{x^{\prime}}_{s 1}=M_{f o c} *\binom{x}{x^{\prime}}_{s 0}
$$

$$
\boldsymbol{M}_{f o c}=\left(\begin{array}{cc}
\cos (\sqrt{|\boldsymbol{K}| \boldsymbol{l}}) & \frac{1}{\sqrt{|\boldsymbol{K}|}} \sin (\sqrt{|\boldsymbol{K}| \boldsymbol{l}}) \\
-\sqrt{|\boldsymbol{K}|} \sin (\sqrt{|\boldsymbol{K}|} \boldsymbol{l}) & \cos (\sqrt{|\boldsymbol{K}|} \boldsymbol{l})
\end{array}\right)
$$

hor. defocusing quadrupole:

$$
x^{\prime \prime}-\boldsymbol{K} x=0
$$

Ansatz: Remember from school

$$
x(s)=a_{1} \cdot \cosh (\omega s)+a_{2} \cdot \sinh (\omega s)
$$

$$
M_{\text {defoc }}=\left(\begin{array}{cc}
\cosh \sqrt{|K|} l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|} l \\
\sqrt{|K|} \sinh \sqrt{|K|} l & \cosh \sqrt{|K|} l
\end{array}\right)
$$

drift space:

$$
K=0
$$

$$
x(s)=x_{0}^{\prime} * s
$$

$$
M_{d r i f t}=\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)
$$

! with the assumptions made, the motion in the horizontal and vertical planes are independent ,,.. the particle motion in $x \& y$ is uncoupled"

Ok ... ok ... it's a bit complicated and cosh and sinh and all that is a pain. BUT ... compare ...

Weak Focusing / Strong Focusing

Problem: the higher the energy, the larger the machine

$$
\frac{p}{e}=B \rho
$$

The larger the machine $2 \pi \rho$ \rightarrow the weaker the focusing $1 / \rho^{2}$

The weaker the focusing $1 / \rho^{2}$
\rightarrow the larger the beam size
The larger the beam size
\rightarrow the more expensive the vacuum chamber and the magnets

The last weak focusing high energy machine ... BEVATRON

Transformation through a system of lattice elements
combine the single element solutions by multiplication of the matrices

$$
\begin{gathered}
M_{\text {total }}=M_{Q F} * M_{D} * M_{Q D} * M_{B e n d} * M_{D^{*} .} \\
\binom{x}{x^{\prime}}_{s 2}=M\left(s_{2}, s_{1}\right) *\binom{x}{x^{\prime}}_{s 1}
\end{gathered}
$$

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator, ,
typical values in a strong foc. machine:

5.) Orbit \& Tune:

Tune: number of oscillations per turn
64.31
59.32

Relevant for beam stability:

non integer part

LHC revolution frequency: 11.3 kHz
$0.31 * 11.3=3.5 \mathbf{k H z}$

Once more unto the breach, dear friends, once more (W. Shakespeare, Henry 5)
"Fallen die Dinger eigentlich runter ?"
"do they actually drop ?"

Antwort: No.

