## IV) ... let's talk about acceleration


crab nebula,
burst of charged
particles $E=10{ }^{20} \mathrm{eV}$

## Energy Gain

... we have to start again from the basics

Lorentzforce

$$
\begin{aligned}
& \vec{F}=q^{*}(\vec{E}+\vec{v} \times \vec{B}) \\
& v \| \boldsymbol{B} \\
& \vec{F}=\frac{d \vec{p}}{d t}=e \vec{E} \quad \text { acc. force is long. direction the } \\
& \text { B-field creates no force }
\end{aligned}
$$

In relativistic dynamics, energy and momentum satisfy the relation:

$$
E^{2}=E_{0}^{2}+p^{2} c^{2} \quad\left(E=E_{0}+W\right)
$$

Hence:

$$
d E=\int F d s=v d p
$$

and the kinetic energy gained from the field along the z path is:

$$
d W=d E=e E_{z} d s \quad \Rightarrow \quad W=e \int E_{z} d s=e V
$$

## 11.) Electrostatic Machines

## (Tandem -) van de Graaff Accelerator

creating high voltages by mechanical transport of charges


Problems: * Particle energy limited by high voltage discharges

* high voltage can only be applied once per particle ...
... or twice?

The „,Tandem principle ": Apply the accelerating voltage twice ...
... by working with negative ions (e.g. H-) and stripping the electrons in the centre of the
structure


## 12.) Linear Accelerator 1928, Wideroe

Energy Gain per „Gap":

$$
W=q U_{0} \sin \omega_{R F} t
$$



## The Synchrotron (Mac Millan, Veksler, 1945)



The synchrotron: Ring Accelerator of const. $R$ where the increase in momentum (i.e. B-field) is automatically synchronised with the correct synchronous phase of the particle in the rf cavities

$$
\begin{aligned}
& \text { ev "ssynclhronisation mersy as basin per turn } \\
& \omega_{R F}=h \omega_{r} \quad \rightarrow \text { RF synchronism } \\
& \rho=\text { cte } \quad R=\text { cte } \rightarrow \text { Constant orbit } \\
& B \rho=P / e \Rightarrow B \quad \longrightarrow \text { Variable magnetic field }
\end{aligned}
$$



## 13.) The Acceleration

Where is the acceleration?
Install an RF accelerating structure in the ring and adjust the phase (the timing) between particle and RFVoltage in the right way: "Synchronisation"

N. Bianca

## 14.) The Acceleration for $\Delta p / p \neq 0$ <br> "Phase Focusing" below transition

ideal particle •
particle with $\Delta p / p>0$ - faster
particle with $\Delta p / p<0$ • slower



Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"
oscillation frequency: $f_{s}=f_{\text {ree }} \sqrt{-\frac{h \alpha_{s}}{2 \pi} * \frac{q U_{0} \cos \phi_{s}}{E_{s}}} \quad \approx$ some $\mathbf{H z}$

## ... so sorry, here we need help from Albert:

$$
\gamma=\frac{E_{\text {total }}}{m c^{2}}=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \longrightarrow \frac{v}{c}=\sqrt{1-\frac{m c^{2}}{E^{2}}}
$$

$v / c$

... some when the particles do not get faster anymore
.... but heavier !

## 15.) The Acceleration for $\Delta p / p \neq 0$ "Phase Focusing" above transition

ideal particle
particle with $\Delta p / p>0$ - heavier
particle with $\Delta p / p<0 \bullet \quad$ lighter


Focussing effect in the longitudinal direction
keeping the particles close together ... forming a "bunch"
... and how do we accelerate now ???
with the dipole magnets !

## The RF system: IR4



Nb on Cu cavities@4.5K (=LEP2)
Beam pipe diam. $=300 \mathrm{~mm}$

| Bunch length (4б) | ns | 1.06 |
| :--- | :--- | :---: |
| Energy spread (2б) | $10^{-3}$ | 0.22 |
| Synchr. rad. loss/turn | keV | 7 |
| Synchr. rad. power | kW | 3.6 |
| RF frequency | M | 400 |
|  | Hz |  |
| Harmonic number |  | 35640 |
| RF voltage/beam | MV | 16 |
| Energy gain/turn | keV | 485 |
| Synchrotron <br> frequency | Hz | 23.0 |



## Liouville during Acceleration

$$
\varepsilon=\gamma(s) x^{2}(s)+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime 2}(s)
$$

Beam Emittance corresponds to the area covered in the x, $x^{\prime}$ Phase Space Ellipse

Liouville: Area in phase space is constant.


$$
\text { But so sorry ... } \varepsilon \neq \text { const ! }
$$

Classical Mechanics:
phase space $=$ diagram of the two canonical variables position \& momentum
$\boldsymbol{x}$
$\boldsymbol{p}_{\boldsymbol{x}}$

$$
p_{j}=\frac{\partial L}{\partial \dot{q}_{j}} \quad ; \quad L=T-V=\text { kin. Energy }- \text { pot. Energy }
$$

According to Hamiltonian mechanics:
phase space diagram relates the variables $q$ and $p$

$$
\begin{aligned}
& \boldsymbol{q}=\boldsymbol{p o s i t i o n}=\boldsymbol{x} \\
& \boldsymbol{p}=\boldsymbol{m o m e n t u m}=\gamma \boldsymbol{m} \boldsymbol{v}=\boldsymbol{m} \boldsymbol{c} \boldsymbol{\gamma} \boldsymbol{\beta}_{\boldsymbol{x}}
\end{aligned} \quad \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \quad ; \quad \beta_{x}=\frac{\dot{x}}{c}
$$

Liouvilles Theorem: $\quad \int p d q=$ const
for convenience (i.e. because we are lazy bones) we use in accelerator theory:

$$
\begin{aligned}
& x^{\prime}=\frac{d x}{d s}=\frac{d x}{d t} \frac{d t}{d s}=\frac{\beta_{x}}{\beta} \quad \text { where } \quad \beta_{x}=\frac{\dot{x}}{c} \quad \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \\
& \int p d q=m c \int \gamma \beta_{x} d x \\
& \int p d q=m c \gamma \beta \underbrace{\int x^{\prime} d x}_{\varepsilon} \quad \Rightarrow \varepsilon=\int x^{\prime} d x \propto \frac{1}{\beta \gamma} \quad \begin{array}{l}
\text { the beam emittance } \\
\text { shrinks during } \\
\text { acceleration } \varepsilon \sim 1 / \gamma
\end{array}
\end{aligned}
$$

## Nota bene:

1.) A proton machine ... or an electron linac ... needs the highest aperture at injection energy !!! as soon as we start to accelerate the beam size shrinks as $\gamma^{-1 / 2}$ in both planes.

$$
\sigma=\sqrt{\varepsilon \beta}
$$

2.) At lowest energy the machine will have the major aperture problems, $\rightarrow$ here we have to minimise $\hat{\beta}$
3.) we need different beam optics adopted to the energy: A Mini Beta concept will only be adequate at flat top.



LHC mini beta optics at 7000 GeV

## Example: HERA proton ring

injection energy: 40 GeV
flat top energy: 920 GeV

$$
\gamma=43
$$

$$
\gamma=980
$$

emittance $\varepsilon(40 \mathrm{GeV})=1.2 * 10^{-7}$

$$
\varepsilon(920 G e V)=5.1 * 10^{-9}
$$



$7 \sigma$ beam envelope at $E=40 \mathrm{GeV}$

RF Acceleration-Problem: panta rhei !!!
(Heraklit: 540-480 v. Chr.)
just a stupid (and nearly wrong) example)


$$
\begin{array}{ll}
\sin \left(90^{\circ}\right)=1 \\
\sin \left(84^{\circ}\right)=0.994 & \frac{\Delta \boldsymbol{U}}{\boldsymbol{U}}=6.010^{-3}
\end{array}
$$



Bunch length of Electrons $\approx 1 \mathrm{~cm}$

$$
\left.\begin{array}{l}
v=400 \mathrm{MHz} \\
c=\lambda v
\end{array}\right\} \lambda=75 \mathrm{~cm}
$$

typical momentum spread of an electron bunch:

$$
\frac{\Delta p}{p} \approx 1.0 \quad 10^{-3}
$$

## Dispersive and Chromatic Effects: $\Delta p / p \neq 0$



Are there any Problem ???
font colors due to
Sure there are !!! pedagogical reasons

## 17.) Dispersion and Chromaticity: <br> Magnet Errors for $\Delta p / p \neq 0$

Influence of external fields on the beam: prop. to magn. field \& prop. zu 1/p
dipole magnet

$$
\alpha=\frac{\int B d l}{p / e}
$$


$x_{D}(s)=D(s) \frac{\Delta p}{p}$
focusing lens

$$
k=\frac{g}{p / e}
$$


to high energy to low energy
ideal energy

## Dispersion



Matrix formalism:

$$
\left.\begin{array}{l}
x(s)=x_{\beta}(s)+D(s) \cdot \frac{\Delta p}{p} \\
x(s)=C(s) \cdot x_{0}+S(s) \cdot x_{0}^{\prime}+D(s) \cdot \frac{\Delta p}{p}
\end{array}\right\} \quad\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{s}=\left(\begin{array}{ll}
\boldsymbol{C} & \boldsymbol{S} \\
\boldsymbol{C}^{\prime} & \boldsymbol{S}^{\prime}
\end{array}\right)\binom{\boldsymbol{x}}{\boldsymbol{x}^{\prime}}_{0}+\frac{\Delta \boldsymbol{p}}{\boldsymbol{p}}\binom{\boldsymbol{D}}{\boldsymbol{D}^{\prime}}_{0}
$$

or expressed as 3x3 matrix

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{s}=\left(\begin{array}{ccc}
C & S & D \\
C^{\prime} & S^{\prime} & D^{\prime} \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{c}
x \\
x^{\prime} \\
\Delta p / p
\end{array}\right)_{0}
$$

Example


$$
\left.\begin{array}{l}
x_{\beta}=1 \ldots 2 \mathrm{~mm} \\
D(s) \approx 1 \ldots 2 \mathrm{~m} \\
\Delta p / p \approx 1 \cdot 10^{-3}
\end{array}\right\}
$$

Amplitude of Orbit oscillation

$$
\begin{aligned}
& \text { contribution due to Dispersion } \approx \text { beam size } \\
& \rightarrow \text { Dispersion must vanish at the collision point }
\end{aligned}
$$

Calculate D, D': ... takes a couple of sunny Sunday evenings !

Dispersion is visible


HERA Standard Orbit
dedicated energy change of the stored beam
HERA Dispersion Orbit
$\rightarrow$ closed orbit is moved to a dispersions trajectory

$$
x_{b}=D(s) * \frac{\Delta p}{p}
$$

Attention: at the Interaction Points we require $D=D^{\prime}=0$


Periodic Dispersion:
,"Sawtooth Effect" at LEP (CERN)
 cavities so much that they „overshoot" and reach nearly the outer side of the vacuum chamber.

In the arc the electron beam loses so much energy in each octant that the particle are running more and more on a dispersion trajectory.

## 26.) Chromaticity:

A Quadrupole Error for $\Delta p / p \neq 0$

Influence of external fields on the beam: prop. to magn. field \& prop. zu 1/p
focusing lens

$$
k=\frac{g}{p / e}
$$


to high energy to low energy to low energy
ideal energy
... which acts like a quadrupole error in the machine and leads to a tune spread:

$$
\Delta Q=-\frac{1}{4 \pi} \frac{\Delta p}{p_{0}} k_{0} \beta(s) d s
$$

definition of chromaticity:

$$
\Delta \boldsymbol{Q}=\boldsymbol{Q}^{\prime} \frac{\Delta \boldsymbol{p}}{\boldsymbol{p}} \quad ; \quad Q^{\prime}=-\frac{1}{4 \pi} \oint k(s) \beta(s) d s
$$

... what is wrong about Chromaticity:

## Problem: chromaticity is generated by the lattice itself !!

$Q^{\prime}$ is a number indicating the size of the tune spot in the working diagram, $Q^{\prime}$ is always created if the beam is focussed
$\rightarrow$ it is determined by the focusing strength $k$ of all quadrupoles

$$
Q^{\prime}=-\frac{1}{4 \pi} \oint k(s) \beta(s) d s
$$

$k=$ quadrupole strength
$\beta=$ betafunction indicates the beam size ... and even more the sensitivity of the beam to external fields

Example: LHC

$$
\begin{aligned}
& Q^{\prime}=250 \\
& \Delta p / p=+/-0.2 * 10^{-3} \\
& \Delta Q=0.256 \ldots 0.36
\end{aligned}
$$

$\rightarrow$ Some particles get very close to resonances and are lost
in other words: the tune is not a point it is a pancake


Tune signal for a nearly uncompensated cromaticity ( $Q^{\prime} \approx 20$ )

Ideal situation: cromaticity well corrected, ( $Q^{\prime} \approx 1$ )


## Correction of $Q^{\prime}$ :

Need: additional quadrupole strength for each momentum deviation $\Delta p / p$
1.) sort the particles acording to their momentum

$$
x_{D}(s)=D(s) \frac{\Delta p}{p}
$$


... using the dispersion function

2.) apply a magnetic field that rises quadratically with $x$ (sextupole field)

$$
\left.\begin{array}{ll}
B_{x}=\tilde{g} x z \\
B_{z}=\frac{1}{2} \tilde{g}\left(x^{2}-z^{2}\right)
\end{array}\right\} \quad \frac{\partial B_{x}}{\partial z}=\frac{\partial B_{z}}{\partial x}=\tilde{g} x \quad \begin{aligned}
& \text { linear rising } \\
& \text { "gradient": }
\end{aligned}
$$

## Correction of Q':

$k_{1}$ normalised quadrupole strength $k_{2}$ normalised sextupole strength

## Sextupole Magnets:



$$
\begin{aligned}
& k_{\text {sext }}=\frac{\tilde{g} x}{p / e}=m_{\text {sext. }} x \\
& k_{\text {sext }}=m_{\text {sext. }} D \frac{\Delta p}{p}
\end{aligned}
$$


corrected chromaticity
considering a single cell:

$$
\begin{aligned}
& Q_{\text {cell_x }}^{\prime}=\frac{-1}{4 \pi}\left\{k_{q f} \hat{\beta}_{x} l_{q f}-k_{q d} \breve{\beta}_{x} l_{q d}\right\}+\frac{1}{4 \pi} \sum_{F \text { sext }} k_{2}^{F} l_{\text {sext }} D_{x}^{F} \beta_{x}^{F}-\frac{1}{4 \pi} \sum_{D \text { sext }} k_{2}^{D} l_{\text {sext }} D_{x}^{D} \beta_{x}^{D} \\
& Q_{\text {cell_y }}^{\prime}=\frac{-1}{4 \pi}\left\{-k_{q f} \breve{\beta}_{y} l_{q f}+k_{q d} \hat{\beta}_{y} l_{q d}\right\}-\frac{1}{4 \pi} \sum_{F \text { sext }} k_{2}^{F} l_{\text {sext }} D_{x}^{F} \beta_{y}^{F}+\frac{1}{4 \pi} \sum_{D \text { sext }} k_{2}^{D} l_{\text {sext }} D_{x}^{D} \beta_{y}^{D}
\end{aligned}
$$

Some Golden Rules to Avoid Trouble

## I.) Golden Rule number one:

 do not focus the beam!Problem: Resonances
Assume: Tune = integer

$$
\begin{aligned}
& x_{c o}(s)=\frac{\sqrt{\beta(s)} * \int \frac{1}{\rho_{s 1}} \sqrt{\beta_{s 1}} * \cos \left(\psi_{s 1}-\psi_{s}-\pi Q\right) d s}{2 \sin \pi Q} \\
& n \boldsymbol{e}=\text { integer } \quad Q=1 \rightarrow 0
\end{aligned}
$$

Integer tunes lead to a resonant increase
Qualitatively spoken: of the closed orbit amplitude in presence of the smallest dipole field error.


$$
m * Q_{x}+n * Q_{y}+l * Q_{s}=\text { integer }
$$

Tune diagram up to 3rd order

... and up to 7th order

Homework for the operateurs: find a nice place for the tune where against all probability the beam will survive

## II.) Golden Rule number two: Never accelerate charged particles !



Transport line with quadrupoles
$x^{\prime \prime}+K(s) x=0$

Transport line with quadrupoles and space charge

$$
\begin{aligned}
& x^{\prime \prime}+\left(K(s)+K_{S C}(s)\right) x=0 \\
& x^{\prime \prime}+(K(s)-\underbrace{\frac{2 r_{0} I}{2 \beta^{3} \gamma^{3} c}}_{K_{S C}}) x=0
\end{aligned}
$$

## Golden Rule number two:

Tune Shift due to Space Charge Effect Problem at low energies
$v / c$
... at low speed the particles repel each other

Never accelerate charged particles !

$$
\Delta Q_{x, y}=-\frac{r_{0} N}{2 \pi \delta_{\mathrm{x}, \mathrm{y}} \beta \gamma^{2}}
$$



## III.) Golden Rule number three:

## Never Collide the Beams !

the colliding bunches influence each other
$\rightarrow$ change the focusing properties of the ring !!


most simple case:
linear beam beam tune shift

$$
\Delta Q_{x}=\frac{\beta_{x}^{*} * r_{p} * N_{p}}{2 \pi \gamma_{p}\left(\sigma_{x}+\sigma_{y}\right)^{*} \sigma_{x}}
$$

and again the resonances !!!


## LHC logbook: Sat 9-June "Late-Shift"

18:18h injection for physics clean injection!


## IV.) Golden Rule Number 4: Never use Magnets



Clearly there is another problem ...
... if it were easy everybody could do it

Again: the phase space ellipse for each turn write down - at a given position "s" in the ring - the single partilce amplitude $x$ and the angle $x^{\prime} \ldots$ and plot it. $\binom{x}{x^{\prime}}_{s 1}=M_{\text {turn }} *\binom{x}{x^{\prime}}_{s 0}$



A beam of 4 particles

- each having a slightly different emittance:


## Installation of a weak (!!!) sextupole magnet

The good news: sextupole fields in accelerators cannot be treated analytically anymore. $\rightarrow$ no equatiuons; instead: Computer simulation "particle tracking"



## Effect of a strong (!!!) Sextupole ...

$\rightarrow$ Catastrophy!



## Golden Rule XXL: COURAGE

and with a lot of effort from Bachelor / Master / Diploma / PhD and Summer-Students the machine is running !!!

thank'x for your help and have a lot of fun

