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Outline (4 lectures)

1st lecture:
• Introduction 
• Probability

2nd lecture:
• Probability axioms and hypothesis testing
• Parameter estimation
• Confidence levels

3rd lecture:
• Maximum likelihood fits
• Monte Carlo methods
• Data unfolding

4th lecture:
• Multivariate techniques and machine learning



Maximum likelihood fits
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Likelihood functions (reminder)

4

The likelihood function for a simple counting experiment is given by the Poisson PDFs:

𝐿 data(𝑁'())|𝜇 =
𝜇𝑆+ 𝐵 1234

𝑁'()!
6 𝑒8(9:;<)	, where:

In an unbinned case, the relevant likelihood function for 𝑁?@?AB) events reads:

𝐿 data|𝜇 = 𝑒8(9:;<) 6 C 𝜇𝑆 6 𝑝E 𝑥G + 𝐵 6 𝑝H 𝑥G

1IJIKL4

GMN

where 𝑝E 𝑥G and 𝑝H 𝑥G are the values of the signal and background PDFs for the variable 𝑥G

𝑁'() observed number of events
𝑆 expected number of signal events
𝐵 expected number of background events
𝜇 “signal strength” modifier



Likelihood functions with nuisance parameters
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In realistic use cases, 𝐿 𝑁'(),𝜇, 𝜃 can be more complex:

• Both signal and background predictions are subject to multiple uncertainties parametrised by a 
set of 𝑚 nuisance parameters 𝜃 = 𝜃N,… , 𝜃R

• There are several distinct signal and background contributions

• Several signal and background control regions are simultaneously fit

• The parameter of interests may not only be event abundances, but also signal properties

• Likelihood may be split into categories with different subpopulations of events with common and 
non-common parameters

If the background prediction is subject to an uncertainty, one adds a nuisance parameter 𝜽:

𝐿 𝑁'(),𝜇, 𝜃 =
𝜇𝑆+ 𝜃𝐵 1234

𝑁'()!
𝑒8(9:;T<) 6 Gauss(𝜃 − 1, 𝜎T)

which is (in this example) constrained to 𝜽 = 𝟏 within 𝝈𝜽 by a Gaussian PDF

The profile likelihood function is maximised with respect to both 𝜇 and 𝜃



One-sided test statistics
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To compare the compatibility of the data with the background-only and signal+background
hypotheses, where the signal is allowed to be scaled by some factor 𝜇, we construct the 
following test statistic based on the profile likelihood ratio:

�̂�9 = −2 6 ln
𝐿 data|𝜇, 𝜃b9
𝐿 data|�̂�, 𝜃b

, 0 < �̂� < 𝜇	

Remarks:

• Large �̂�9 values correspond to disagreement between data and hypothesis 𝜇.                   

• �̂�9 behaves as χg for large data samples and Gaussian 𝜃 parameters

• Note that the denominator in �̂�9 is independent of 𝜇 and only a normalisation term

where nominator and denominator are independently maximised. 
𝜃b9 is the conditional maximum given the signal strength modifier value 𝜇
�̂�, 𝜃b are the values corresponding to the global maximum of the likelihood 

(Condition enforces one-sided confidence 
intervals for discovery and upper limit tests)



Frequentist limit setting procedure
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1. Construct likelihood function 𝐿 𝜇, 𝜃

2. Construct test statistics �̂�9

3. Perform fits on data and determine observed �̂�9,'() for hypothesis 𝜇

4. Generate pseudo Monte Carlo events to construct the PDF 𝑝9 �̂�9|𝜇,	𝜃b9,'() of �̂�9
(for hypothesis 𝜇, and where 𝜃b9,'() is the set of conditional nuisance parameters found in fit to data). 
The nuisance parameters are fixed to 𝜃b9,'() for the MC generation, but allowed to float in the fits.         
In the asymptotic limit, 𝑝9 𝑞9|𝜇,	𝜃 is independent of 𝜃. 

5. Determine the observed p-value for hypothesis 𝜇:                        

6. Perform “discovery” test by computing 𝑃 𝜇 = 0

7. Find the 95% upper bound 𝜇 = 𝜇ij,'() for which: 𝑃 𝜇 = 0.05

See: ATLAS & CMS https://cds.cern.ch/record/1375842

	𝑃 𝜇 = m 𝑝9 �̂�9|𝜇,	𝜃b9,'() 	𝑑�̂�9
o

p̂q,234

In case of complex fits the pseudo-MC procedure can be very CPU intensive. 
Fortunately, asymptotic formulas exist that quite accurately reproduce the exact results.  
Cowan, Cranmer, Gross, Vitells: https://arxiv.org/abs/1007.1727



Frequentist limit setting procedure (continued)
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To be more conservative (to avoid that upward fluctuations of background contribute to the 
p-value), the LHC experiments compute upper limits using: 𝑃rst(𝜇) = 𝑃 𝜇 /𝑃 0 = 0.05

• CLE usually over-covers, ie, less than 5% of repeated experiments would lie outside the given bound

• A property of CLE is that in case of 𝑁'() = 0, the resulting 95% CL upper limit is 𝜇ij,'()𝑆 ≅ 3, 
independent of the background expectation and the nuisance parameters
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Let’s get back to our earlier discovery and limit plots:
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A. Read, https://cds.cern.ch/record/451614

ATLAS, 1207.7214

CMS, CMS-PAS-HIG-16-006



6.4. STATISTICAL MODELING 49

Figure 6.1: Graph representation of the model used in the H ! �� discovery analysis. Each
node represents either a numerical value, an expression or a PDF. The black box is the top-
level PDF, the green boxes are the signal PDFs for each category, and the pink boxes are the
background PDFs. The bottom part of the graph describes the background: the brown ellipses
are the background normalization parameters, while the orange ellipses are the shape parameters.
The dark red ellipses are the signal normalization expressions, and the blue ellipse in the center
represents the µ parameter. The left part of the graph is devoted to the parameterization of
SM signal yields: the gold ellipses are the coefficients of the parameterization, while the blue
ellipses are per-mode µ parameters. The right side of the plot describes the signal shape: the
dark gray boxes are the signal shape parameters, the blue ellipse represents mH , and the cyan
ellipse is m�� . Finally, the purple ellipses represent the nuisance parameters associated with
systematic uncertainties, and the white boxes with blue outlines are the parameters describing
the uncertainties. The red-lined boxes are the expressions that bind the model together.

Frequentist limit setting procedure (continued)
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The underlying fits are really 
complex. On the right a graph of 
only the 𝐻 → 𝛾𝛾 likelihood model:

Figure caption: Each node represents either a numerical value, an expression or a PDF. The black box is the top- level PDF, the green boxes are the signal PDFs for 
each category, the pink boxes are the background PDFs. The bottom part of the graph describes the background: the brown ellipses are the background normali-
zation parameters, while the orange ellipses are the shape parameters. The dark red ellipses are the signal normalization expressions, and the blue ellipse in the 
center represents the μ parameter. The left part of the graph is devoted to the parameterization of SM signal yields: the gold ellipses are the coefficients of the 
parameterization, while the blue ellipses are per-mode μ parameters. The right side of the plot describes the signal shape: the dark gray boxes are the signal shape 
parameters, the blue ellipse represents mH, and the cyan ellipse is mγγ. Finally, the purple ellipses represent the nuisance parameters associated with systematic 
uncertainties, the white boxes with blue outlines are the parameters describing the uncertainties. The red-lined boxes are expressions that bind the model together. 

Nicolas Berger, Habilitation thesis, 2016

The ATLAS & CMS Run-1 
Higgs coupling combination 
analysis comprises a total of 
4200 nuisance parameters !    
(Of which a large fraction is of 
statistical nature)
ATLAS & CMS http://arxiv.org/abs/1606.02266

The tool of choice to perform 
such complex likelihood fits is 
RooFit (contained in ROOT)
http://roofit.sourceforge.net



Why 5σ for a discovery ?
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See also G. Cowan, https://arxiv.org/abs/1307.2487

As we have discussed yesterday, it is common practice in particle physics to regard an 
observed signal a “discovery” when its significance exceeds Z = 5, corresponding to a 
one-sided p-value of the background-only hypothesis of 2.9	610−7

This is in contrast to many other fields (e.g., medicine, psychology) where a p-value of 5% 
(Z = 1.64) may be considered significant 

Discoveries of new particles have been relatively frequent during the last ~20 years in the 
low-energy hadron spectra, but are very rare at high energy 

Certainly, from Bayesian reasoning: “extraordinary claims require extraordinary evidence”

A discovery (beyond the SM) will be a game changer that we do not want to have to unsay

Another reason for the high Z is the influence of non-statistical systematic uncertainties in 
some of our particle searches, which alter the properties of the p-value found

Finally, and importantly, the large look-elsewhere-effect (LEE) is a source of fluctuations. 
While it can be accounted for in a given analysis, the LEE is a global phenomenon that 
affects the entirety of the searches: the probability of seeing a fluctuation with local Z = 5 
anywhere is much larger than 2.9	610−7 !



Why 5σ for a discovery ?
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See also G. Cowan, https://arxiv.org/abs/1307.2487

As we have discussed yesterday, it is common practice in particle physics to regard an 
observed signal a “discovery” when its significance exceeds Z = 5, corresponding to a 
one-sided p-value of the background-only hypothesis of 2.9	610−7

This is in contrast to many other fields (e.g., medicine, psychology) where a p-value of 5% 
(Z = 1.64) may be considered significant 

Discoveries of new particles have been relatively frequent during the last ~20 years in the 
low-energy hadron spectra, but are very rare at high energy 

Certainly, from Bayesian reasoning: “extraordinary claims require extraordinary evidence”

A discovery (beyond the SM) will be a game changer that we do not want to have to unsay

Another reason for the high Z is the influence of non-statistical systematic uncertainties in 
some of our particle searches, which alter the properties of the p-value found

Finally, and importantly, the large look-elsewhere-effect (LEE) is a source of fluctuations. 
While it can be accounted for in a given analysis, the LEE is a global phenomenon that 
affects the entirety of the searches: the probability of seeing a fluctuation with local Z = 5 
anywhere is much larger than 2.9	610−7 !

Note: a discovery requires more than a “5σ” value. It needs the judgement 
of the scientist that the question asked and the experimental setup used 
are meaningful, that systematic uncertainties are under control, and that 
the analysis and interpretation were performed in an unbiased manner.



Monte Carlo techniques
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Why “Monte Carlo” techniques ?

Monte Carlo (MC) techniques are computational algorithms that rely on repeated random 
sampling to obtain numerical results

They are used when analytical solutions are too complex or not even known

Examples:

13

• Numerical integration of complex, multidimensional 
integrals (eg phase-space integration of matrix 
elements describing particle physics processes )

• Simulation of LHC particle collisions (“events”) as 
measured by the particle detectors. This involves:

– Matrix element generation of collision
– Decay of produced particles and propagation 

of stable particles through detector material
– Electronic response of active detector layers, 

and reconstructions of signals
– Physics analysis

• Simpler: estimation of error on a measured quantity 
with unknown property (→ next slide)
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Bootstrap method

Consider the following problem: a quantity 𝒙 was measured 𝑵 times: 𝒙𝒊	 𝒊 = 𝟏…𝑵

One wants to determined a derived quantity 𝒚(𝒙𝟏,… , 𝒙𝑵), and needs an error for it.

→ Error propagation (remember: 𝜎� =
��(�)
��

�
�M�̅

6 𝜎�), but it requires to know the PDF of 𝒙
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Assume the distribution of the measured 𝒙𝒊 looks like this:

• This is a PDF, and the best available information

• One can obtain a new set to “simulate” the 
measurements by applying resampling with 
replacement

• That is: one draws 𝑵 events from the ensemble 
allowing to re-draw the same event multiple times

• One does this many times

→ Bootstrapping



Bootstrap method

Consider the following problem: a quantity 𝒙 was measured 𝑵 times: 𝒙𝒊	 𝒊 = 𝟏…𝑵

One wants to determined a derived quantity 𝒚(𝒙𝟏,… , 𝒙𝑵), and needs an error for it.

→ Error propagation (remember: 𝜎� =
��(�)
��

�
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6 𝜎�), but it requires to know the PDF of 𝒙
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Assume the distribution of the measured 𝒙𝒊 looks like this:

Boostrapping doesn’t require 
large data statistics, but the 
accuracy of the PDF estimates 
will be affected if too few events

𝒙 𝒙



Bootstrap method — does it really work ?

Let’s try with our toy example: simulate 100000 experiments with 1000 events each 
sampled from some analytic PDF (Nature’s unknown truth) that we want to approximate

16

Distribution of 
mean values 
among all 
experiments 

One example 
experiment 𝒌

Now, use this experiment
to sample 100000 bootstrap 
experiments

𝒙𝒌 𝒙

Satisfying result: 
RMS reproduced 
within 1.7%



Bootstrap method — does it really work ?

Let’s try with our toy example: simulate 100000 experiments with  100 events each 
sampled from some analytic PDF (Nature’s unknown truth) that we want to approximate
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Distribution of 
mean values 
among all 
experiments 

One example 
experiment 𝒌

Now, use this experiment
to sample 100000 bootstrap 
experiments

𝒙𝒌 𝒙

Smaller 
statistics 
sample)

Mediocre result: 
RMS reproduced 
within 30%

See: http://projecteuclid.org/download/pdf_1/euclid.ss/1177013815 
for more information on bootstrap method



Jackknife resampling method (also called: leave-one-out cross validation)

Old method (~1950), basically replaced by bootstrap. Nevertheless instructive to know

Let’s again consider: a quantity 𝒙 was measured 𝑵 times: 𝒙𝒊	 𝒊 = 𝟏…𝑵

One wants to determined a derived quantity 𝒚 = 𝒚(𝒙𝟏,… , 𝒙𝑵), and needs an error for it:

• Study how the 𝒚 changes when leaving out one measurement at the time

let:  𝑦G = 𝑦G 𝑥N,…𝑥G8N,𝑥G;N,…𝑥1 ,

and compute pseudo-value:  𝑦G
���� = 𝑁𝑦	 − 𝑁− 1 𝑦G 		 = 		𝑦 + (𝑁 − 1)(𝑦	 − 𝑦G)

• Plot 𝑦G
���� for all 𝑖 = 1 …𝑁 and treat them as if they were independent samples of the 

measured quantity. 

• Compute mean or variance from 𝑦G
���� ensemble

18



Monte Carlo (MC) integration

Want to numerically compute an expectation value: 𝑬 𝒚 = ∫ 𝒚(𝒙)𝒑𝒙(𝒙)𝒅𝒙		

19

• Simplest solution: 𝑛-equidistant 
stepwise summation

• Works in 1, possibly few dimensions 𝐷

• Bad course of dimensionality: 
exponential growth of 𝑛 with 𝐷

• Random MC phase-space sampling 
converges faster for large 𝐷

𝑦(𝑥)

𝑥

MC integration to compute 𝐸 𝑦 requires MC sampling according to PDF 𝑝�(𝑥)

That given, one finds: ∫ 𝒚 𝒙 𝒑𝒙 𝒙 𝒅𝒙 ≈ 𝟏
𝑵𝐬𝐚𝐦𝐩𝐥𝐞𝐬

∑ 𝒚(𝒙𝒊)
𝑵𝐬𝐚𝐦𝐩𝐥𝐞𝐬
𝒊M𝟏

𝑝�(𝑥)



“Hit-or-miss” rejection sampling

Simplest way to generate random numbers (to “sample”) according to PDF 𝑝�(𝑥)

20

𝑦(𝑥)𝑝���

𝑥N 𝑥g𝑥G

𝑝�(𝑥G)

1. Generate uniform random number 
in interval [𝑥N,𝑥g]→ 𝒙𝒊 and 𝒑𝒙(𝒙𝒊)

2. Generate another uniform random 
number in interval [0,𝑝���]→ 𝒑𝒊

3. If 𝒑𝒊 < 𝒑𝒙 𝒙𝒊 :𝐚𝐜𝐜𝐞𝐩𝐭	𝒙𝒊; 𝐞𝐥𝐬𝐞:𝐫𝐞𝐣𝐞𝐜𝐭

𝒒𝒙(𝒙), the (here uniform) PDF of generated 𝒙 values defines proposal distribution

→ one could be smarter to have a larger “accept” rate (efficiency)

𝑝�(𝑥)



Rejection sampling

One can choose a (known) proposal distribution 𝑞�(𝑥) closer to 𝑝�(𝑥)

21

𝑦(𝑥)

𝑥N 𝑥g𝑥G

1. Generate random number according to 
𝑞�(𝑥) in interval [𝑥N,𝑥g]→ 𝒙𝒊 and 𝒑𝒙(𝒙𝒊)

2. Generate another uniform random 
number in interval [0,𝑞�(𝒙𝒊)]→ 𝒑𝒊

3. If 𝒑𝒊 < 𝒑𝒙 𝒙𝒊 :𝐚𝐜𝐜𝐞𝐩𝐭	𝒙𝒊; 𝐞𝐥𝐬𝐞:𝐫𝐞𝐣𝐞𝐜𝐭

Fraction of accepted events now larger than before (there are techniques to adapt 
automatically the proposal distribution during the generation)

→ can be even more clever if only integration needed, no random event generation

𝑝���

𝑝�(𝑥G)

𝑞�(𝒙𝒊) 𝑝�(𝑥)



Markov chain Monte Carlo (MCMC) method

So far, the accuracy of the sampling depended on how closely 𝒒𝒙(𝒙) follows 𝒑𝒙(𝒙)

This is a problem for sparsely known 𝒑𝒙(𝒙) in case of complex multi-D structure. Every 
random point is chosen independently of every other one. 

Markov chain: (eg, ”random walk”)

• Consecutive random steps depend on previous ones in random variable space

• Allows to favor stepping into regions where 𝒑𝒙(𝒙) is large

Several algorithms: Metropolis, Gibbs, … → next pages

22



Metropolis sampling algorithm (1953)

Autocorrelation sampling of PDF 𝒑𝒙(𝒙)

1. Start anywhere in (multidimensional) 𝒙 space and sample this point: 𝒑𝟏 = 𝒑𝒙(𝒙𝟏)

2. Provide proposal distribution 𝒒𝒙(𝒙𝟐|𝒙𝟏) to move from 𝒙𝟏 → 𝒙𝟐
• 𝒒𝒙(𝒙𝟐|𝒙𝟏) could be Gaussian with appropriate metric in 𝒙 space to cover full space

• Accept 𝒙𝟐 if: 𝒑𝟐 > 𝒑𝟏 else: with probability 𝒑𝟐/𝒑𝟏

• Sample either new point 𝒙𝟐 (if accepted), or otherwise 𝒙𝟏 again

3. Iterate step 2. for 𝒙𝟑 vs. 𝒙𝟐, etc.

23

Sample points 𝒙 will wander closer and closer to 
the peak of the PDF, still jumping  enough from 
time to time to sample the whole space                        
(Algorithm requires sufficient iterations. Test by checking stability 
of derived result, or by comparing several sampling ensembles 
obtained with different start values)

Accepted moves
Rejected moves



Gibbs sampling algorithm (1984)

A method with no rejection:

1. Instead of moving along all dimensional 
components (and reject low-probability moves), 
the Gibbs sampler moves along 1 component 
according to the PDF conditioned on all other 
components. 

2. Cycle through all components

24

Markov chain Monte Carlo usually converge fast 
and, if metric well chosen, cover the full space 

However: care needs to be taken as the sample 
points 𝒙 are correlated (with either sampling 
method): it depends on the application whether 
or not this is an issue

Accepted moves
Rejected moves



Data unfolding
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Data unfolding — introduction 

“Unfolding” means correcting measured data for any effects related to the measurement 
device. The unfolded data can be directly compared to theory or among experiments

Consider a measured histogram 𝒚ª�B� = 𝑦Nª�B�,… , 𝑦Rª�B� , a corresponding Monte Carlo 
histogram 𝒚«r of the same process as the data that underwent full detector simulation, its 
truth distribution (ie, before detector simulation) 𝒙«r = 𝑥N«r,… , 𝑥¬«r , and the 𝑚×𝑛 matrix 𝑨«r
obtained from MC that describes the ”smearing” process due to the measurement:

26

𝑨«r 6 𝒙«r = 𝒚«r

Hence, to obtain the truth information 𝒙ª�B�, one just needs to invert 𝑨:   

𝒙ª�B� = 𝑨«r 8N 6 𝒚ª�B�

Note that in general 𝒚ª�B� ≠ 𝒚«r (the physics leading to 𝒚ª�B� is what we want to measure), 
but we assume 𝑨«r = 𝑨ª�B� (we know the detector response).

This is where the trouble begins …



Data unfolding — introduction 

The distribution 𝒚ª�B� and the matrix 𝑨«r have finite statistics. An attempt to solve the 
problem directly and “exactly” will end up looking like this: 

27

V. Kartvelishvili at https://indico.cern.ch/event/107747

The problem

The problem is twofold:

✦ b is known with some precision

In many cases covariance matrix B = diag{b}
✦ Our knowledge of Â is not perfect either, due to finite MC statistics, as well as

imperfections in detector simulation. Even worse, Â is almost always very close to
being highly degenerate, so solving the system exactly does not make any sense.

An attempt to solve the problem directly and “exactly” will end up looking like this:
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𝒙𝐮𝐧𝐟𝑨«r

The poor solution, bin-by-bin corrections, 𝑥Gª�B� =
�³
´µ

�³
´µ 6 𝑦Gª�B�, only works if 𝑨«r is square and 

~diagonal so that the ratio 𝑥G«r/𝑦G«r corrects for mainly efficiency effects, or if 𝑦Gª�B� ≅ 𝑦G«r.

Large bin-to-bin 
oscillations (“Gibbs 
phenomenon”) in 
unfolded spectrum

A better solution is to regularise the matrix inversion problem …



Data unfolding — regularisation

Regularisation damps the oscillations, by suppressing statistically insignificant bins in the 
data distribution and response matrix. 

In simplified form, one can write the unfolding problem as a minimisation of 

28

𝜒g(𝒙ª�B�) = 𝑨«r 6 𝒙ª�B� − 𝒚ª�B�
·
𝑨«r 6 𝒙ª�B� − 𝒚ª�B� + 𝜏 6 𝐶𝒙ª�B�

·
𝐶𝒙ª�B�

where 𝐶 is a matrix and 𝐶𝒙ª�B� is the sum of squares of the 2nd derivative of 𝒙ª�B�

Minimising 𝜒g wrt. the first term only corresponds to the (bad) exact inversion solution. 
The second term regularises the inversion by damping the oscillations.

The parameter 𝜏 regulates the strength of the damping:

• If 𝜏 too small → oscillations

• If 𝜏 too large → information in 𝒙ª�B� is suppressed
(𝒙ª�B� becomes too “smooth” and will be biased towards 𝒙«r)

• The right choice captures all significant information and discards the rest
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Data unfolding — example

29

x variable
8− 6− 4− 2− 0 2 4 6 8

Ev
en

ts

0

200

400

600

800

1000

1200

Unfolding toy example with TSVDUnfold

Unfolded data
True data
Measured data
True MC

Unfolding toy example with TSVDUnfold

𝑁(ºA
)º» = 31

𝐶𝑥 g = 0.078
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TSVUnfold @ ROOT

Best regularisation choice Under-regularisedOver-regularised

The parameter 𝜏 regulates the strength of the damping:

• If 𝜏 too small → oscillations

• If 𝜏 too large → information in 𝒙ª�B� is suppressed
(𝒙ª�B� becomes too “smooth” and will be biased towards 𝒙«r)

• The right choice captures all significant information and discards the rest



Folding versus unfolding

Unfolding is an ill-defined problem which necessarily leads to some obstruction of 
information in the data and transfer of statistical uncertainty into a systematic one after 
regularisation (this is similar to a non-parametric fit to data)

Technically simpler and mathematically well defined is the folding of a theoretical 
prediction 𝒙B¾?'(𝜽), depending on a set of parameters 𝜽, through the detector response 
and direct comparison with the measured data. It allows the statistical test:
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𝜒g(𝒙B¾?'(𝜃)) = 𝑨«r 6 𝒙B¾?'(𝜃) − 𝒚ª�B�
·
𝑨«r 6 𝒙B¾?'(𝜃) − 𝒚ª�B�

Folding requires that the experiments either perform the test, or publish 𝑨«r and 𝒚ª�B�

Folding does not allow a model-independent combination or comparison among 
experiments. In most case, unfolding is the only viable solution for easy and long-term 
use of the experimental results. 
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Summary 
for today

Maximum likelihood fits are powerful optimisation tools that allow for any required 
complexity

Bootstrapping methods allow to straightforwardly re-sample measured data for the 
purpose of error propagation

Brief introduction to Monte Carlo integration and the sampling of random data 
according to any arbitrary PDF

Markov-Chain Monte Carlo integration is a very effective method that “automatically” 
samples the important regions (where the PDF is large) more often than tails. Try 
yourself!

Unfolding is a delicate mathematical operation that requires careful regularisation. 
Folding can help in some cases. 


