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Outline (4 lectures)

1st lecture:
• Introduction 
• Probability

2nd lecture:
• Probability axioms and hypothesis testing
• Parameter estimation
• Confidence levels

3rd lecture:
• Maximum likelihood fits
• Monte Carlo methods
• Data unfolding

4th lecture:
• Multivariate techniques and machine learning



Multivariate techniques and machine learning
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Event classification

Suppose data sample with two types of events: 𝑯𝟎, 𝑯𝟏

• We have found discriminating input variables 𝒙𝟏, 𝒙𝟐, …  

• What decision boundary should we use to select events of type 𝑯𝟏?
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Linear boundary? A nonlinear one?Rectangular cuts?

𝑯𝟏

𝑯𝟎

𝒙𝟏

𝒙𝟐 𝑯𝟏

𝑯𝟎

𝒙𝟏

𝒙𝟐 𝑯𝟏

𝑯𝟎

𝒙𝟏

𝒙𝟐

Low variance (stable), high bias methods High variance, small bias methods



Parameter regression

How to estimate a functional behaviour from a set of measurements? HEP examples:

• Energy deposit in a the calorimeter, distance between overlapping photons, …

• Entry location of a particle in the calorimeter or on a silicon pad, …
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𝒙 𝒙

𝒇(𝒙)

𝒙

𝒇(𝒙)

Linear function ? A non-linear one ?Constant ?

Looks trivial? What if we have many input variables?
Note: the goal is not to fit given data, but to learn 𝒇(𝒙) vs. 𝒙 to predict target 𝒇(𝒙) for new measurements 𝒙

𝒇(𝒙)
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These are the simplest applications of statistical machine learning (ML).                   
Most particle physics utilisations so far fall into this category 

However, there is no limit of use cases for complex machine learning…

Image from: https://gogameguru.com/alphago-
shows-true-strength-3rd-victory-lee-sedol

…as long as the ML algorithms are smart and efficient enough, there is sufficient 
computing power, and a complete set of training data

Also in particle physics we can apply ML to more complex problems. Among 
these: track reconstruction, calibration, tuning
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Not so long ago, real-life artificial intelligence used to be like this:

Such things still happen, but the improvements have nevertheless been astounding



𝑅* → 𝑅 classification

𝑅*
feature  
space

Most general form:
𝑦 = 𝑦 𝑥 ; 𝑥 ∈ 𝑅*

𝑥 = 𝑥1,… , 𝑥* : input	variables
𝑦 𝑥

Plotting the resulting 
𝑦 𝑥 is test statistic:

Each event, Signal or Background, has 𝑫 measured variables

→ Find function that maximises the separation of the two classes 
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𝑦 𝑥

PDF:	𝑦F 𝑥
PDF:	𝑦G 𝑥

𝑆I =
1
2
L

𝑦G − 𝑦F I

𝑦G + 𝑦F
𝑑𝑦

Separation power:

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3 Signal
Background

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

U/
O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

Input variables (training sample): var1+var2

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

Input variables (training sample): var1-var2

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0
0.05

0.1

0.15
0.2

0.25

0.3
0.35

0.4
0.45

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0
0.05

0.1

0.15
0.2

0.25

0.3
0.35

0.4
0.45

U/
O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

Input variables (training sample): var3

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

Input variables (training sample): var4

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3 Signal
Background

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

U/
O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

Input variables (training sample): var1+var2

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

Input variables (training sample): var1-var2

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0
0.05

0.1

0.15
0.2

0.25

0.3
0.35

0.4
0.45

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0
0.05

0.1

0.15
0.2

0.25

0.3
0.35

0.4
0.45

U/
O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

Input variables (training sample): var3

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

Input variables (training sample): var4

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3 Signal
Background

var1+var2
-6 -4 -2 0 2 4 6

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

U/
O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

Input variables (training sample): var1+var2

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var1-var2
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

Input variables (training sample): var1-var2

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0
0.05

0.1

0.15
0.2

0.25

0.3
0.35

0.4
0.45

var3
-4 -3 -2 -1 0 1 2 3 4

No
rm

al
is

ed

0
0.05

0.1

0.15
0.2

0.25

0.3
0.35

0.4
0.45

U/
O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

Input variables (training sample): var3

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

var4
-4 -3 -2 -1 0 1 2 3 4 5

No
rm

al
is

ed

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U/
O

-fl
ow

 (S
,B

): 
(0

.0
, 0

.0
)%

 / 
(0

.0
, 0

.0
)%

Input variables (training sample): var4

…



𝑅* → 𝑅 classification

Most general form:
𝑦 = 𝑦 𝑥 ; 𝑥 ∈ 𝑅*

𝑥 = 𝑥1,… , 𝑥* : input	variables
𝑦 𝑥

Each event, Signal or Background, has 𝑫 measured variables

→ Find function that maximises the separation of the two classes 
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𝑦 𝑥

PDF:	𝑦F 𝑥
PDF:	𝑦G 𝑥

accept events
Plotting the resulting 
𝑦 𝑥 is test statistic:

𝑆I =
1
2
L

𝑦G − 𝑦F I

𝑦G + 𝑦F
𝑑𝑦

Separation power:

𝑦PQR

𝑅*
feature  
space
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𝑅* → 𝑅 classification
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𝑦 𝑥

PDF:	𝑦F 𝑥
PDF:	𝑦G 𝑥

accept events

0 1
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Best ROC curve
given by likelihood ratio

Type-1 error small
Type-2 error large

Type-1 error large 
Type-2 error small

Remember the ROC curve ?

• Varying cut value 𝒚𝐜𝐮𝐭 moves working point (efficiency and purity) along the ROC curve

• Best ROC curve given by likelihood ratio (Neyman-Pearson lemma)

𝑦PQR1 − 𝜀F

𝜀G

[ *Receiver Operation Characteristic ] *



𝑅* → 𝑅 classification
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𝑦 𝑥
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Remember the ROC curve ?

• Varying cut value 𝒚𝐜𝐮𝐭 moves working point (efficiency and purity) along the ROC curve

• Best ROC curve given by likelihood ratio (Neyman-Pearson lemma)

𝑦PQR1 − 𝜀F

𝜀G

Best ROC curve
given by likelihood ratio



𝑅* → 𝑅 classification
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𝑦 𝑥

PDF:	𝑦F 𝑥
PDF:	𝑦G 𝑥

accept events

Remember the ROC curve ?

• Varying cut value 𝒚𝐜𝐮𝐭 moves working point (efficiency and purity) along the ROC curve

• Best ROC curve given by likelihood ratio (Neyman-Pearson lemma)

𝑦PQR

Once the ROC curve is known, how to choose 
the optimal 𝒚𝐜𝐮𝐭 value? This depends on 
expected abundance of 𝑺 and 𝑩

• For measurement of signal cross section: 
maximise 𝑺/ 𝑺 +𝑩

• Discovery of a signal: maximum of 𝑺/ 𝑩

• Precision measurement: high signal purity 

• Trigger selection: high efficiency (𝜀G) 
(sometimes high background rejection)

Note that in realistic cases systematic uncertainties 
also need to be considered in optimisation procedure!



𝑅* → 𝑅[ multi-class classification

13

Signal Background

Binary classification: two classes, 
signal versus background



𝑅* → 𝑅[ multi-class classification
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Multi-class classification: natural extension 
for many classifiers (similar for multi-target 
regression)

Class 1

Class 2
Class 3

Class 5

Class 6

Class 4



Realistic event classification / parameter regression
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Unfortunately, the true probability densities functions are typically unknown: Neyman-
Pearson’s lemma doesn’t really help us…

Use MC simulation, or more generally a set of known “events” as a training sample                    
for the classification / regression problem

• Try to estimate the functional form of the PDFs from which the classification likelihood 
ratio or regression target can be obtained 

– e.g. D-dimensional histogram, Kernel densitiy estimators, MC-based matrix-element methods, …

• Find a discrimination function 𝑦 𝑥 and corresponding decision boundary (i.e. a hyperplane 
in the feature space: 𝑦 𝑥 = const) for optimal separation or optimal target fitting

– e.g. Linear Discriminator, Neural Networks, Boosted Decision, …

→ Supervised machine learning 

No magic here, still need to: choose the discriminating variables, choose the class of models (linear, 
non-linear, flexible or less flexible), tune the “learning parameters” (bias vs. variance trade off), check 
generalization properties (avoid overtraining), consider trade off between statistical and systematic 
uncertainties



Machine learning categories
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Supervised learning: training with “events” for which outcome (“signal”, “background”, 
“regression target”, …) is known, eg, from Monte Carlo simulation

Unsupervised learning: no prior knowledge about specific event classes or targets.               
One could then try, for example, in the given dataset to perform a

• cluster analysis: if different “groups” are found → class labels

• principal component analysis (PCA): find basis in observable space with biggest 
hierarchical differences in the variance → infer underlying data structure

• Example: correlation analysis for medical survey: group people and perhaps find     
common causes for certain diseases (similar for market surveys)   

Reinforcement-learning: learn from “success” or “failure” of some “action policy” 
(example: a robot achieves falls / does not fall, or wins / looses a game, …)

So far, most applications in particle physics (HEP) use supervised learning owing to the 
good theoretical understanding and power of Monte Carlo simulation → only form of 
machine learning discussed in this lecture 



Classification techniques
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Discuss also regression 
where applies



Projective likelihood estimator 
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Much liked in HEP: normalised one-dimensional probability density estimators for each 
input variable combined by multiplying the marginal PDFs of all input variables

PDE introduces fuzziness    
in feature space separation

Ignores correlations between input variables

• Optimal approach if correlations are zero                                  
(or can be eliminated by variable redefinition) 

• Otherwise (most realistic cases): significant performance loss  

where the products are over all 𝑘 = 1…𝑁^_` input variables

𝑦a`bcdef =
∏ 𝑝i

jfkl_m	(𝑥i)i

∏ 𝑝i
jfkl_m	(𝑥i)i + ∏ 𝑝i

n_Pok`bQlp	(𝑥i)i



Projective likelihood estimator 
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May use:

• parametric fitting by function                                  
→ Difficult to automate for arbitrary PDFs

• nonparametric fitting 
→ Easy to automate, can create artefacts

• event counting / histogram
→ Automatic, unbiased, but sub-optimal (fluctuations)

Technical challenge: how to estimate the PDF shapes of the input variables to build the 
projective likelihood estimator  ?



Multidimensional likelihood estimator
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Overcome limitations of projective method by mapping full feature space: single PDF per 
event class (eg, signal, background) which spans 𝐷 dimensions

H1

H0

x1

x2

test 
event

Estimate density of signal / background events using training data sample in “vicinity” of 
to be classified (“test”) event



Multidimensional likelihood estimator
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Overcome limitations of projective method by mapping full feature space: single PDF per 
event class (eg, signal, background) which spans 𝐷 dimensions

Estimate density of signal / background events using training data sample in “vicinity” of 
to be classified (“test”) event

For example: count number of 
signal and background events in 
rectangular volume (V ) around 
test event

Volume size can be adaptive to allow 
for varying training point density 

H1

H0

x1

x2

test 
event

• Improved estimate within V by using 𝐷-dimensional kernel estimators (eg, Gauss)
• Enhance speed of event counting in volume with use of sorted binary tree search
• Regression is similar: take average training target values in vicinity of test event

V



• Improved estimate within V by using 𝐷-dimensional kernel estimators (eg, Gauss)
• Enhance speed of event counting in volume with use of sorted binary tree search
• Regression is similar: take average training target values in vicinity of test event

Multidimensional likelihood estimator

22

Overcome limitations of projective method by mapping full feature space: single PDF per 
event class (eg, signal, background), which spans 𝐷 dimensions

Estimate density of signal / background events using training data sample in “vicinity” of 
to be classified (“test”) event

For example: count number of 
signal and background events in 
rectangular volume (V ) around 
test event

Volume size can be adaptive to allow 
for varying training point density 

H1

H0

x1

x2

test 
event

V

k-Nearest Neighbor Method

Better than searching within a volume (fixed or floating), count adjacent reference 
events till statistically significant number reached

• Method intrinsically adaptive

• Very fast search with kd-tree event sorting



Curse of dimensionality
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Filling a 𝐷-dimensional histogram to get a mapping of the 
PDF is typically unfeasible due to lack of training events

Shortcoming of nearest-neighbour methods:

In higher dimensional cases the idea of looking at “training events” in a reasonably local 
“vicinity” of the space point to be tested becomes difficult
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𝐷 = 1

1% of 𝑉
Consider total phase space volume 𝑉 = 1* :

• For a cube of a particular fraction of the 
volume: Edge	length = (Fraction	of	volume)1/*

• In 10 dimensions: to capture 1% of the 
volume, 63% of range in each variable needed  
→ that’s not “local” anymore !

→ Need techniques with better curse of 
dimensionality



Fisher’s linear discriminant analysis (LDA)
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Simple and elegant classifier

• Determine axis in the feature space such that a projection of events 
onto this axis pushes signal and background as far away from each 
other as possible, while confining events of same class in close 
vicinity to each other

H1

H0

x1

x2 H1

H0

x1

x2

Projection 
axis

𝐹i = Fisher coefficients

• Fisher coefficients are computed using the signal and background 
covariance matrices

• Distinct sample means between signal and background are required

• Optimal classifier for linearly correlated Gaussian-distributed variables

𝑦~f���` = 𝐹� + � 𝑥i �
i�^_ f̀_�m��

𝐹i
Fisher projection



Fisher’s linear discriminant analysis 
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By definition, a linear discriminant can only solve linear problems. Most real-life problems 
have however some degree of non-linearity

Consider the following two-variable toy examples:

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)



Fisher’s linear discriminant analysis 
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By definition, a linear discriminant can only solve linear problems. Most real-life problems 
have however some degree of non-linearity

The events are weighted by the signal-likeness of the classifier output (red = most signal-line)

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)

Optimal performance 
(in Neyman-Pearson sense)

Almost zero separation Poor performance



Non-linear analysis: Artificial Neural Network (NN) 
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Modification of Fisher discriminant to form arbitrary non-linear decision boundaries

𝑦 𝑥 = sigmoid �𝑤�ℎ�(𝑥)
�

��1

	 𝑦 𝑥 built from set of “basis” functions ℎ� 𝑥
ℎ� 𝑥 is sufficiently general (i.e. non linear)
→ can model any function (mathematically proven)

Now we form the following:

𝑦 𝑥 = 𝐴 �𝑤�	𝐴 𝑤�� +�𝑤��𝑥�

*

��1

�

��1

ℎ�

𝐴 =
1

1− 𝑒d�

sigmoid ”activation” 
function (other options: 
tanh, …)

𝒚 𝒙 is:
a non linear (sigmoid) function of

a linear combination of
non linear function(s) of

linear combination(s) of
the input data

Ready is the Neural Network. We “only” 
need to find the appropriate “weights” 𝑤��



Non-linear analysis: Artificial Neural Network 
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Architecture of feed-forward multilayer perceptron (MLP):

50!Rare B-decays WS, 14 Apr 2011! Andreas Hoecker   –   Limits setting with c & c and multivariate analysis!

Nonlinear Analysis: Artificial Neural Networks!

•  Achieve nonlinear classifier response by “activating” 
output nodes using nonlinear weights !

1 

i 

...
N 

 1 input layer k hidden layers 1 ouput layer 

1 

j 

M1 

...

. . . 1 

...
Mk 

2 output classes       
(signal and background) 

Nvar discriminating 
input variables  

...
...

(“Activation” function) 

with: 
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Weight adjustment using 
analytical back-propagation  !

Use MLP:  TMVA’s own MLP implementation for increased performance and flexibility!

•  Three different implementations in TMVA (all are Multilayer Perceptrons) !
• Nodes in hidden layer represent the “activation functions” whose arguments are linear 

combinations of input variables → non-linear response to the input

• Output is a linear combination of outputs from the activation functions at the internal nodes

• Input to the layers from preceding nodes only → feed forward network (no backward loops)

• It is straightforward to extend this to several input layers



Neural network training
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NN training (= fit of weights 𝑤i�) → minimisation of loss function 𝑳 𝒘 :

Regression :  

𝐿 𝑤 = � 𝐿i(𝑥i;𝑤)
�������

i�1

=
1
2
� 𝑦iR`_fl− 𝑦 𝑥i;𝑤

I
�������

i�1

true value (training data)
predicted value (NN output)

Classification: (here binomial loss due to 1 vs 0 problem)

𝐿 𝑤 = � 𝐿i(𝑥i;𝑤)
�������

i�1

= − � 𝑦iR`_fl� ln 𝑦 𝑥i;𝑤 + 1 − 𝑦iR`_fl � ln	(1 − 𝑦 𝑥i;𝑤 )
�������

i�1

𝑦iR`_fl = �1, 	if	𝑘	signal												
	0, if	𝑘	backgroundwhere:

Weight fitting, eg, via steepest gradient descent: 	𝑤�� → 		𝑤�� − 𝜂 �
𝜕𝐿i(𝑥i;𝑤)

𝜕𝑤��

�������

i�1



Neural network training
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Weight fitting is the art of NN: 𝑦 𝑥 and 𝐿i 𝑥i;𝑤 are highly non-parabolic functions, 
with narrow valleys and numerous local minima

• Methods to accelerate descent when gradient direction 
unchanged

• Local minima are mostly not a problem in large networks 
(finding global minimum represents overtraining) 

• Bad critical points are often saddle points
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NNs with many hidden layers used to be impossible to train due to vanishing gradient 
problem 𝜕𝐿i(𝑥i;𝑤)/𝜕𝑤�� ≈ 0 for all but last layers. Enormous recent progress:

• Layer-wise pre-training using auto-encoders (pre-training) or restricted-Boltzman machines (RBM)

• Activation functions whose gradient do not vanish

• Smarter random weight initialisation

• Stochastic gradient decent with ‘momentum’

• Weight regularisation to reduce network complexity (eg, weight decay, dropout)



Deep neural networks 
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Deep neural network = Artificial neural network with many hidden layers

That’s all it means, but it has important consequences



Deep & convolutional neural networks 
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Many hidden layers (& usage of convolution kernels) allows NN to learn hierarchy of features  

https://developer.nvidia.com/deep-learning-course

Raw data Low-level features Mid-level features High-level features

Getting rid of “hand-crafted features”, revolutionised:

• Image recognition, speech recognition, natural language processing

• Complex automation (eg, self-driving car)

And particle physics ?

• Track fitting (helix pattern recognition)? Event reconstruction from 4-vectors?

• While most high-level MVAs applications are yet simple, there surely are interesting 
applications for deep NNs



Non-linear analysis: Artificial Neural Network 
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Let’s see how well a simple NN deals with the previous two-variable toy examples:

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)

Optimal performance 
(in Neyman-Pearson sense)

Optimal performance Optimal performance

Recall, linear Fisher 
discriminant case:



Boosted decision trees (BDT) 
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Decision tree: sequential application of cuts splits the data into nodes, where 
the final nodes (leafs) classify an event as signal or background by majority vote

Growing a tree:

• Start with Root node

• Split training sample according to cut 
on best variable at this node

• Splitting criterion: e.g., maximum “Gini-
index”: purity � (1 − purity)

• Continue splitting until min. number of 
events or max. purity reached 

• Classify leaf node according to majority 
of events, or give weight; unknown test 
events are classified accordingly

Boosted decision trees (1996): combine many decision trees in forest, with differently 
weighted events in each tree (trees themselves can also be weighted)

Shortcoming: instability, sensitivity to overtraining



(Adaptive) Boosting
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Idea: emphasise different features in data sample (eg, hard to classify events)

• AdaBoost re-weights events mis-
classified by previous classifier by: 

𝑤�f�
(�) =

1 − 𝑓�f�
(�)

𝑓�f�
(�)

Training sample 𝑇 � (𝑥)

Weighted sample

re-weight by 𝑤�f�
(�) 	

Weighted sample

re-weight by 𝑤�f�
(1) 	

re-weight by 𝑤�f�
(I) 	

Weighted sample

…

𝑇 1 (𝑥)

𝑇 I (𝑥)

𝑇   (𝑥)

Decision trees:

𝑓�f� =
No. of	misclassified	events

No. of	all	eventswith 

• Final BDT obtained from (weighted) 
sum over all decision trees:

𝑦 𝑥 = �ln 𝑤�f� � 𝑇 � (𝑥) 
 

��1

re-weight by 𝑤�f�
( d1) 	 • Different boosting algorithms: 

bagging (bootstrap), randomised
trees, gradient boost, …. mostly 
similar performance



Boosted decision trees (BDT) 

Let’s see how well a BDT deals with the previous two-variable toy examples:

Linear correlations
(same for signal and background)

Cross-linear correlations
(opposite for signal and background)

Circular correlations
(same for signal and background)

Good performance Good performance Good performance
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Training cycles

Overtraining
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Algorithms with many tuning parameters (large flexibility) can be subject to overtraining, 
ie, they tune to statistically insignificant information in the training sample  

Remedies against overtraining 

• Regularisation (pruning, smearing (eg, bagging), weight decay, …)

• Cross-validation (resample training data, see next slide)

S

B

x1

x2S

B

x1

x2

or ?
True performance 
(independent sample)

Training performance

Classifier too flexible
→ overtraining

Overtraining produces bias if performance is estimated from training sample (which is not 
allowed!). If independent performance evaluation is guaranteed, “some” overtraining is 
not a problem as usually little performance loss

large ←	Regularisation → small



Cross validation
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Overtraining can be reduced (and algorithm performance improved) by increasing size 
of training data sample

Also: division of dataset into independent “training”, “test” and “validation” sample? 
→ Not optimal!

Cross validation: divide full data sample into 𝒏 independent subsamples, eg, 𝑛 = 3

• Train algorithm by using all but the 𝒊-th sample

• Use 𝒊-th sample as “test”

• Iterate 𝒊 through all 𝒏 samples

→ Allows to use fraction of (𝑛 − 1)/𝑛 of available events for training, and all 𝑛 for testing 

Train-A

Train-A

Test-A

Example 
for 𝑛 = 3:

Training A

Train-B

Test-B

Train-B

Training B

Test-C

Train-C

Train-C

Training C
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To “test” the performance, iterate over 
all events and use corresponding 
trainings and test samples 
→ all data used for testing! 



Categories
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Multivariate training samples often have distinct sub-populations of data

• A detector element may only exist in the barrel, but not in the endcaps

• A variable may have different properties in barrel, overlap, endcap regions

Ignoring this dependence generates correlations between variables that must be learned

• Algorithms such as the projective likelihood, which do not account for correlations, 
significantly loose performance if the sub-populations are not separated

Categorisation means splitting the data sample into categories 
defining disjoint ensembles with the (idealised) properties:

• Events belonging to the same category are statistically 
indistinguishable

• Events belonging to different categories have different 
properties 

• A machine learning algorithm is trained in each category
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Multivariate classification has a long tradition in particle physics to improve the detector 
performance and to increase the statistical sensitivity of data analyses

The use of multivariate regression in particle physics is relatively new, mainly for 
calibration purposes, and can certainly be further developed

Multivariate multi-class classification & regression have a large field of application in LHC 
analyses due to the widely used simultaneous control-region / signal-region fit approach

Boosted decision trees are a particularly popular multivariate method in particle physics 
due to their overall good performance, simple optimisation and robustness

Machine learning with deep neural networks are the future of the field due to their 
capability of hierarchical feature organisation allowing to attack complex problems

Summary


