Developments of an optical readout for imaging MPGDs

Filippo Resnati (EP-DT-DD) on behalf of the GDD team

Overview

Relevant mechanisms for the operation of gaseous detectors

Imaging applications of MPGDs outside high energy physics

Developments of the optical readout for MPGDs at CERN

Possible other applications

Overview

Relevant mechanisms for the operation of gaseous detectors

Imaging applications of MPGDs outside high energy physics

Developments of the optical readout for MPGDs at CERN

Possible other applications

Why gaseous detectors

Large dimensions (several m²)

Not expensive (< 5 kCHF/m²)

Good position resolution (<100 um)

Excellent time resolution (<5 ns and even 100 ps)

Radiation hard (10s year of LHC)

Low material budget (<0.01 X₀)

Compatible with magnetic field

Gas as active medium

Gas at RTP is not dense

Small amount of energy released

Few primary electron-ion pairs

Amplification is needed

Two possibilities: charge and light

Townsend mechanism

Externally applied electric field acts on electrons and ions (free to move) separating them.

On top of the random motion (diffusion) charges acquire energy and move *following* the field lines (drift).

If the field is high enough, the energy gained by the electrons is sufficient to **further ionise** the gas.

Townsend avalanche

a: average number of electron ion pairs created by a single electron per unit path

$$\frac{dn_e}{dx} = \alpha(E) \times n_e$$

Avalanche increases ~exponentially in time, field and space

For a linear response od the detector, the amplification must be confined in a small region.

MWPC

The field is shaped by the **curvature** of the wire. Several wires to allow the position resolution.

The field is sensitive to wire imperfections. **Slowly** moving ions affect the rate capabilities.

Change of paradigm (I)

In order to evacuate the ionic charge fast, the cathode electrodes are placed in the **vicinity** of the anode electrodes:

Micro Pattern Gaseous Detectors.

MSGC

Ions are evacuated fast: better **rate capability**. Finer anode pitch is possible: better **position resolution**.

The dielectric substrate charges up, changing the field. Close anode and cathode occasionally result in sparks.

Change of paradigm (II)

In order to reduce the effects of the discharges and the ageing, the electric field responsible for the amplification is shaped by **extended** electrodes.

Non-exhaustive list

MPGDs: a rich variety

extended	MicroMeGas CAT InGrid GridPix	Micro-bulk MM Micro-RWell MicroGroove MicroWell RPWell	TH-GEM LEM GEMpix GEM	
electrode		MHSP		
micro	MSGC MicroWire MicroGap		MicroPic MicroDot MicroPin	
	mesh	type	hole	
EP Detector Seminar - CERN - Friday 29th of April				

Sauli, 1997

GEM

Amplified electrons available for **further** amplification

Sauli, 1997

GEMs

Push further the discharge limit: larger gain

Scintillation

Electrons in pure argon

Excitation happens at lower fields. It results in scintillation. Electron and ion recombination may result in scintillation too.

Scintillation

Valid for all the rare gases

Simplified, but effective picture

 $R^* \rightarrow R + h\nu$ Unlikely because of what follows

$$R_2^{**} + R \to R_2^* + R$$
$$R_2^* \to 2R + h\nu$$

Second continuum:

relevant at pressure >100mbar

Gas now transparent (no rare gas molecules around)

Scintillation

Valid for all the rare gases

Often wavelength shifter are needed solid and/or gaseous

Quencher and shifter

With the addition of molecules

Concurrent mechanism somewhere in the chain: *quencher* without and *shifter* with radiative emission.

 $R^* \to R + h\nu$

E.g., adding a small amount of xenon into argon results in xenon scintillation. Energy transfer (favoured) from argon to xenon. Then the xenon chain is followed.

Another form of quenching: absorption (not transparent admixtures).

CF₄

Admixtures which provide useful scintillation (enough and near the visible range) are rare.

EP Detector Seminar - CERN - Friday 29th of April

Where to get the light from

Almost the same spectra

Primary	Electroluminescence	Avalanche
Excitation and ionisation produced by the particle	Scintillation without charge amplification.	Exponential scaling with the field.
interacting with the gas.	Increase linearly with the field	Proportional to the charge gain.
Some dependance with the electric field.	Easy in pure noble gases.	The extreme is the visible spark.

If only CF_{3}^{+*} and CF_{4}^{+*} are the responsible of the scintillation, electroluminescence does not take place. Certainly CF_{3}^{+*} and CF_{4}^{+*} are produced in avalanches, in fact avalanche scintillation present in CF_{4} mixtures.

Overview

Relevant mechanisms for the operation of gaseous detectors

Imaging applications of MPGDs outside high energy physics

Developments of the optical readout for MPGDs at CERN

Possible other applications

Imaging

Visual representation of an object (often, but not necessarily in spatial coordinates) using any of a variety of techniques.

When using a camera it's called photography.

Why imaging?

EP Detector Seminar - CERN - Friday 29th of April

Sight

Our dominant sense:

- Intuitive handling of the data
- Immediately available information
- Visual learning fast and effective

Radiography with GEMs

https://gdd.web.cern.ch/GDD/gemreadout.htm

6 cm

Demonstration application:

first radiography with GEMs of a small mammal.

Cu X-ray and triple-GEM with X-Y readout.

C-RAD GEMINI

Imaging applications in the radiotherapy treatment process

Increasing demand for better accuracy in monitoring the tumour position and movements. Online verification of the actually delivered dose distribution.

Detectors exposed to high dose: radiation hard and ageing matters.

C-RAD GEMINI

6 MV linac, 1.5 MeV average gamma energy, 3 MU dose

QA object (resolution and contrast measure)

Pelvic phantom

X-ray fluorescence

XRF imaging system for fast mapping of pigment distributions in cultural heritage paintings

Scanning XRF revealed a painting under Rembrandt's "An old man in military costume". It took 19 days with an X-ray tube and 24 h with synchrotron radiation.

Scanning is detailed, but long and expensive.

A. Zielińska, 2013 JINST 8 P10011

29

X-ray fluorescence

Overview

Relevant mechanisms for the operation of gaseous detectors

Imaging applications of MPGDs outside high energy physics

Developments of the optical readout for MPGDs at CERN

Possible other applications

Optical readout

Record the light emitted during the Townsend avalanche with a camera: use the detector as a scintillating plate.

Only techniques are new

Parallel mesh chamber filled with Ar/CH₄/TEA 80%/8%/2% seen by an image intensifier and a camera

Muons and delta rays

G. Charpak at al., NIM A258 (1987) 177

Advantages

Simplicity: like taking a picture Robustness: as a device off-the-shelf Versatility: several uses and environments

The setup

M = sensor size / image size M ~ 0.1, Ω ~ 5x10^{-4}

This implies:

- large sensor
- low noise
- fast lens
- a lot of light

Camera and lens

QImaging Retiga R6 CCD: 2688x2200 4.54x4.54 um² pixels ADC: 14 bit rate: 6.9 fps (20fps with binning) read noise: 5.7 e⁻ RMS dark current: 0.0002 e⁻/p/s @ -20° C trigger: external bulb + others

Navitar focal length: 25 mm aperture: f/0.95 Mount: C-Mount Sensor type: 1" format

Ar/CF₄ 80/20 scintillation

⁵⁵Fe X-ray imaging

One of the first images 20 min exposure

70 um hole, 140 um pitch

4.4 cm

X-ray images

X-ray tube with W target at 20 kV - 40 kV at few mA

Charge acquisition (26/10/1998)

fast (<1 s) acquisition and no processing time ~7 cm

X-ray images

X-ray tube with W target

11 kV

Straight out from the camera, no even the flat field correction

EP Detector Seminar - CERN - Friday 29th of April

8 cm

X-ray images

Fluoroscopy

50 ms exposure 10 Hz acquisition

CT and 3D imaging

Image -> Sinograms -> Filtered Back Projection -> 3D image

What should be expected

W target: bremsstrahlung + characteristic lines Limiting factors (because not optimised):

- low energy -> window and cathode
- high energy -> gas

The painting (visible)

17 cm

The painting (X-rays)

O(1 kHz) in 500 s exposure

Event by event: alphas

Settable GEM gain: increasing it

Event by event: electrons

Settable GEM gain: increasing it more

Event by event: X-rays

X-rays from ⁵⁵Fe source

Analysis of single clusters

Spatial resolution improves using the barycentre of the cluster

The spectrum from CCD images

Gain uniformity, vignetting plays a role too

FWHM at 5.9 keV over 8x8 cm² ~36% before gain uniformity correction 24.7% after gain uniformity correction

EP Detector Seminar - CERN - Friday 29th of April

51

It's Zinc

Overview

Relevant mechanisms for the operation of gaseous detectors

Imaging applications of MPGDs outside high energy physics

Developments of the optical readout for MPGDs at CERN

Possible other applications

Other kind of MPGDs?

Developments not limited to triple GEMs

Transparent MSGC based on LCD technology

H. Takahashi, "Development of a transparent Single-grid-type MSGC based on LCD technology," MPGD2015

Scintillating glass THGEM

T. Fujiwara, "Development and application of Scintillating Glass-GEM detector," MPGD2015

TPC readout

Direction-Sensitive Dark Matter Searches with a low pressure CF₄ detector with optical readout.

pixel intensity (a.u.)

39

CERN/GDD development for studying scintillation in controlled conditions targeted to TPC readout with emphasis also on the primary scintillation.

Beam monitor

For instance for ion therapy beamlines

Heidelberg Ion-Beam Therapy Center (HIT)

B. Leverington private communication Requirements

- Fluxes: up to 10⁹ Hz/beam size
- Size: 32x42 cm²
- Material budget: <1.4 mm water equivalent
- X and Y profiles + beam direction
- Resolution: 200 um on the beam position
- Readout rate: 4 kHz (challenging)
- No deterioration in two years of operation
- Beam shape (ellipticity) desired

Possible other application

Crystallography

UV imaging

. . .

Neutron imaging

Gamma imaging

Radiography of a bat and closeup of the GEM holes

Freeze-frame of an X-ray movie of a flying drone

Radiography of a crushed cup with pens and its 3D tomographic reconstruction

AI

Visible picture of a *painting* and its X-ray fluorescence image. Different colours refer to different materials (energy resolved)

Single X-rays from ⁵⁵Fe and the energy spectrum extracted from the images