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Figure 1: Training in the tunnel versus trainin

benches 
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SUPERCONDUCTING ELECTR
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 THE SECTOR 34 INC
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Figure 2: Measured versus simulated 
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positions. Certain regions of the beam vacuum were 
heavily contaminated with soot. 

The task force formulated recommendations on two 
axes: the first ones aim at the prevention of initial fault 
and the second ones aim the mitigation of consequences. 
They concern actions, hardware upgrades, improvements 
of test procedures as well as personnel access rules. Many 
of these are already implemented during the present shut 
down, others will be implemented during the 
commissioning and operation of the collider. 

CALORIMETRIC AND ELECTRICAL 
MEASUREMENTS  

One of the first studies of the task force was the 
examination of data recorded during the tests to assess 
whether there were precursors to the September 19th 
incident that had gone undetected. This analysis revealed 
[4] that some sectors indeed had shown an anomalous 
increase of temperature during high current plateaux. 
Among them Sector 34 which exhibited a parabolic 
increase of 30 mK per hour during a one hour-long 
plateau. The observations however were done in unstable 
conditions because of the activity of the temperature 
control loops. A method was developed to repeat these 
measurements in normalized conditions; the method was 
validated by simulating the heat load of a faulty splice 
with a heater located inside the cold mass. Clearly these 
measurements will have to be repeated during the 
recommissioning. This method revealed two additional 
regions in the collider (Sector 12 and Sector 67) where 
abnormally high heat loads were measured during current 
ramps in the dipole circuit. 

 

 
Figure 3: Confirmation of a100 nΩ resistance measured 

inside a magnet cold mass (B16R1) spotted by 
calorimetric measurements 

These suspect regions were equipped with voltmeters to 
measure, with an accuracy of a few μV, the voltage drop 
across the splices in the interconnects. These electrical 
measurements did not reveal any non-conformity and 
only confirmed very good quality splices. It was therefore 
decided to measure the resistance of the splices inside the 
magnets: the splices in the coils, the inter-pole and inter 
aperture splices. This measurement could be carried-out 
with existing quench detection electronics. They indeed 
revealed faulty splices with resistances compatible with 

the calorimetric measurements. The data collected during 
the measurements at the test benches confirmed the 
findings. 

CRYOGENICS FROM FIRST COOL 
DOWN TO FIRST BEAMS 

The performance of cryogenic system [5] as a whole 
has improved with the experience gained after the cool 
down of each sector, the quench recoveries and the 
recovery from outages of the infrastructure systems or 
faults in the cryoplants themselves. The calculated 
estimates for a sector cool down of 14 days could not be 
confirmed; this figure is now revised to 30 days: they are 
split between the cool down from room temperature to 20 
K which require 25 days, the filling of the cold masses 
which require 3 days and the cool down from 4.5 K to 1.9 
K which takes another 2 days. It is worthwhile 
mentioning that towards the end of the year almost two 
months of continuous operation of the 1.9 K cold 
compressors could be achieved. 

The possibility to run two sectors on one cryoplant was 
validated during powering tests on the sectors around 
Point 6. The power consumption could be reduced to 5 
MW compared to the 2x4MW if the two cryoplants are 
operating. Although this method is not valid for large 
transients, it is an interesting alternative for low beam 
loads and it is a validated fallback scenario if serious 
problems are encountered with one refrigerator. Whether 
this is applicable to all the plants remains to be confirmed. 

The very stringent requirements of the powering tests 
highlighted non conformities which required 
consolidation actions when possible or workarounds to 
continue with the tests: among those, the non conformities 
on the level gauges of the stand alone magnets, heat load 
on a superconducting link, valves on current leads, heat 
loads on the triplet, etc. The stability of the cryoplants and 
the infrastructures around them, the DFB, current lead 
and beam screen cooling loops as well as the coupling of 
the cold compressors after a fault are to be noted. A 
number of consolidation actions are taking place during 
the shutdown at the interface with the infrastructure 
systems (e.g. electricity distribution, cooling water, 
vacuum interlocks) to achieve better tolerance to short 
interruptions 

WHAT ELSE DID WE LEARN? 
To complete the picture of the lessons learnt during 

commissioning without beam the experience [6] gained 
with the procedures and the tools, which implemented 
them as well as the tools assisting the operators for the 
execution and the analysis, was described. All these 
guaranteed efficiency, automation and excluded any 
compromise; also, they ensure that the same test sequence 
and the same analysis of the data are repeated again and 
again on the different circuits of the eight sectors. A 
number of non-conformities discovered on some of the 
superconducting circuits were also mentioned for 
completeness. 

Proceedings of Chamonix 2009 workshop on LHC Performance

2



CONCLUSIONS 
Many surprises were encountered during the 

commissioning campaign: the training behaviour of the 
dipoles in the tunnel and the incident in Sector 34 were 
the biggest. 

During most of the commissioning campaign the 
observations matched what was expected; in a few cases 
however, they revealed non-conformities some of which 
remain to be understood, followed and corrected. 

Even if, during the commissioning, the equipment 
owners and the operation crews gathered the experience 
which they will apply to re-commission, run and debug 
the equipment, the incident in Sector 34 forces us to 
review and upgrade some of the protection and safety 
systems. This experience and the introduction of new 
hardware will now require additional test procedures. 
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