

CMS HG-CAL FEE 2016 - Krakow

Damien Thienpont on behalf of the HGC collaboration

June 3, 2016

Organization for Micro-Electronics desiGn and Applications

CMS Phase-II upgrades

Barrel EM calorimeter Trigger/HLT/DAQ New FE/BE electronics with improved time Track information in Trigger (hardware) resolution Trigger latency 12.5 µs - output rate 750 kHz Lower operating temperature $(8\circ)$ HLT output 7.5 kHz Muon systems New DT & CSC FE/BE electronics Complete RPC coverage $1.6 < \eta < 2.4$ Muon tagging $2.4 < \eta < 3$ New Tracker Rad. tolerant - increased granularity - lighter 40 MHz selective readout in Outer Tracker for Trigger • Extended coverage to $\eta \simeq 3.8$

New Endcap Calorimeters

- Rad. tolerant
- High Granularity: increased transverse and longitudinal segmentation, needed to mitigate pileup effects to select events with a hard scatter process at L1-Trigger and to identify the associated vertex and particles
- precise timing capability: further mitigation of pileup effects

Modules, Cassettes and Mechanics (technical proposal)

- Reading out full data or largest possible sub-set at 40 MHz for L1-Trigger
- Stringent requirements for Front-End Electronics
 - Low power (~5 mW for analogue channel), ~ 92 000 FE chips, 130 nm or 65 nm
 - Low noise: <2000 e- (0,32 fC)</p>
 - MIP: 7k 20k e- (1 3 fC)
 - Dynamic range up to 3000 MIP (10 pC), 17 bits required with 0,1 fC resolution
 - Detector capacitance 40-60pF, detector leakage: up to $10 \mu A$
 - System on chip (charge, time, digitization, data and trigger processing, on-chip zero supress, ...)
 - High speed readout (5-10 Gb/s)

Baseline architecture (Technical Proposal)

RtR

20k

101

0-///

RefN 10k

- Preamplifier and shaper DC coupled to detector, no reset, fast shaping (15ns peaking time)
- Analog gain around 25mV/fC (quantization noise negligible)
- Preamplifier linear range 100 fC => ADC conversion
- Above 80fC and after preamp saturation => ToT conversion

mega

TDC (100ps)

~200ns/10pC

Discri

0-

Thr

 \Rightarrow Part 1

- 15-Feb-16 Submit v0 FE chip (SKIROC2-CMS) in 0,35 μm
- Mid-May-16 Submit FE test vehicles in TSMC130 nm technology \Rightarrow Part 2
- 1-Jun-16 1st Comprehensive Review
- 30-Sep-16 1st results from FE test vehicles and second test vehicle submission
- 31-Oct-16 Confirm choice of front-end electronics (130 nm)
- 15-Dec-16 Define architecture & specs for LV/HV supply
- 15-Dec-16 Define location of DC-DC converters
- 15-Dec-16 Define location of electrical/optical links
- 31-Mar-17 Submit V1 ASIC \Rightarrow First 32/64 ch ASIC with full functionnality
- 31-Mar-17 Choice of Si sensors type: all n-on-p or mixed (i.e. n-on-p and p-on-n)
- 1-Jun-17 2nd Comprehensive Review
- 30-Sep-17 1st results from tests of V1 ASIC
- 1-Nov-17 Submit TDR
- 30-Jun-18 Submit V2 ASIC

SKIROC2-CMS: Electronics for testbeam

- Testbeam electronics
 - Use SKIROC2 to exercise system issues (low noise, large range)
 - Complex front-end boards designed at UCSB, Minnesota, FNAL : delicate routing
 - Evolutive readout designed at FNAL
- Development of SKIROC2-CMS
 - **Optimized version for CMS test beams**, pin to pin compatible
 - Dual polarity charge preamplifier
 - Faster slow shaper (25ns instead of 200ns)
 - SCA in roll mode (sampling of slow shapers @ 40MHz, depth = 300ns)
 - ToT for high input charge
 - TDC (TAC) for ToA (~20 ps binning, ~50ps jitter)
 - Will replace SKIROC2 on modules for timing and ToT studies

ch. to read out !

mega

SKIROC2-CMS analogue architecture

Omega

- Input DAC and 3pF calibration Cap.
- Versatile preamplifier
 - Dual polarity: single first stage with input PMOS transistor (available NMOS are directly on substrate), one feedback for each polarity (likely better for positive input charge), high dynamic range optimization
 - 60 dB Open loop gain, 4 GHz GBWP
 - Variable Rf: global 8 bits, from 10k to 2,55M
 - Variable Cf: global 6 bits, from 62fF to 4pF
- Charge measurement in 12 deep SCA
 - Slow shapers: gain 1 and 10, CRRC2; variable shaping time: global 4 bits, from 10ns to 150ns; output buffer
 - 2 measurements by BX, HG and LG
 - Nominal: roll mode @ 40MHz; custom mode: managed by external trigger
- Charge measurement with ToT for signal after peamp saturation
 - Discriminator connected to the preamp output
 - Fast ramp dedicated to the special study of the non-linear part
 - Slow ramp for the entire range (up to 10pC)
 - ToT data are memorized into the feedback capacitance of the integrator, rising edge starts the ramp and falling edge stop it
- Time measurement
 - Fast shaper: CRRC, gain 6, shaping time: 3bits, 1,25 to 9ns
 - Fast discri
 - Ramp: 35ns, rising edge starts the ramp
 - Time SCA: 2 holds done on rising and falling edges of the 40MHz
- Analogue to digital conversion
 - 12 bits Wilkinson ADC, common ramp

Preamplifiers (positive / negative)	5,3 mW / 5,6 mW		
Slow shapers	1,94 mW		
тот	0,1 mW		
ТоА	2,6 mW		
TDC	1,93 mW		
Total analog (/channel)	12 – 13 mW		

POWFR CONSUMPTION

Assuming 20mW power dissipation for the digital part, we expect 850 mW for the entire chip

Positive input: HG and LG linearity post-layout simulated

mega

Positive input: ToT post-layout simulated

Charge PA

Rf=1M, Cf=1pF

Threshold @ 700 fC

Good ToT linearity: from 1,75 pC to 10 pC

.

.

- Threshold @ 450 fC ٠
- ToT linearity: from 1,7 pC to 10 pC ٠

Current PA

Rf=20k, Cf=500fF

Some time measurement simulated

Based on Calice chips readout scheme

Summary of the SKIROC2-CMS chip

- HGC targeted Skiroc2-CMS chip variant with
 - n-on-p as well as p-on-n read-out
 - LHC-like ~ 20ns shaping time
 - Leakage current compensation for irradiated sensors
 - Key features and variants of HGC FE architecture
 - Including TDC for precision timing and ToT
 - Pin-to-pin compatible
 - Design submitted, expect chips back in Spring
- SKIROC2-CMS aims
 - ToT scheme non linear in region 100-200fC: needs precise calibration and demonstration in Test-beam
 - Will be studied with SKIROC2-CMS and test vehicle
 - Backup with bi-gain and ToT above 1-2 pC or dynamic gain switching
- January 2016: first fully functional Si-HGC modules equipped with existing SKIROC2 chips
 - Skiroc2 designed for p-on-n sensors, but too slow shaping time, readout based on Calice requirements
- Spring 2016: test beams at FNAL with Si-HGC EE slice equipped with Skiroc2
 - Enable tests of EM calorimetric response
 - Prepare for more detailed studies using modules equipped with Skiroc2-CMS
- Fall 2016: test beams at CERN with Si-HGC EE and FH slice equipped with Skiroc2-CMS
 - Enable detailed studies of calorimetric response and performances of baseline architecture and variants
 - Aim for timing studies of EM and Hadronic shower evolution with ~50ps calorimeter cell timing resolution

Landing of SKIROC2(-CMS)

Test vehicle floorplan: 130nm

- Area: 2,2x1,36 mm²
- 101 PADs, 100μm pitch
- Power supply: 1,2 1,5 V
- Submission date: mid-may 2016
- Floorplan
 - (1) positive input preamps x6
 - (2) negative input preamps x6
 - (3) baseline channel (CERN) x1
 - (4) discriminators x4
 - (5) CRRC shapers: HG and LG
 - (6) digital part
- Available outputs
 - Direct preamp output
 - Preamp after shaper
 - Preamp after discriminator
- Dedicated PAD available to characterize the shapers or the discriminators
- All bias can be externally tuned

- 6 different preamps for positive signals
- Based on a cascode architecture
- Used different NMOS sizes (1200μ, 2400μ, 3600μ) and transistor flavors proposed by the technology ("normal", "HiVt", "LoVt")
- Variable Cf from 100fF to 1,5pF step 100fF
- Variable Rf: 20k, 200k and $1M\Omega$
- Optimize to get open loop gain above 60dB and minimize noise
- Power consumption: ~2mW

- rms noise = 210 μV
- With 50pF Cdet, after 25ns shaper, ENC ~1.3ke⁻

nega

Input NMOS transistor preamplifier for negative signal

mega

- 6 different preamps for negative signals
- Used different NMOS sizes and architectures
- Variable Cf from 100fF to 1,5pF step 100fF
- Variable Rf: 20k, 200k and $1M\Omega$

- Input stage: cascode with NMOS input transistor
- Output buffer: source follower with NMOS native transistor biased with 100μA
- 62 dB open loop gain; 2,4 GHz GBP; Input impedance: 16Ω (50Ω @ 50MHz)
- Power consumption: 2,4 mW (@ 1,5V)
- Three sizes of input NMOS transistors

- With 50pF Cdet, 20k Rf, after 25ns shaper, ENC ~1.2ke⁻
- With 50pF Cdet, 1M Rf, after 25ns shaper, ENC ~ 1ke⁻

- Input stage: regulated cascode with NMOS input transistor
- Output buffer: source follower with NMOS native transistor biased with 100µA
- 94 dB open loop gain; 3,5 GHz GBP; Input impedance: 0,5Ω (43Ω @ 50MHz)
- Power consumption: 2,85 mW (@ 1,5V)
- Well suited for high loop gain preamp (0,2pF Cf)
- Three sizes of input NMOS transistors

TV1: linearities

- 1pF Cf, 20K Rf, 30 and 50pF Cdet, 27 and -30 °C
- High gain:
 - linear up to 240 fC
 - Better linearity at low temperature
- Low gain:
 - Good linearity up to 1200 fC
 - Saturation occurs before with high Cdet
- Time over Threshold:
 - Threshold @ 250 fC
 - Linearity better than 1% begins around 1300 -1600 fC
 - Dependence to the temperature: 26ns/pC @ 27°C and 30ns/pC @ -30°C
 - Low dependence to Cdet: 29ns/pC @ 30pF Cdet and 30ns/pC @ 50pF Cdet
 - There is never a good overlap between low gain and ToT, precise characterization is needed. It is due to the non-linear behavior when preamplifier pass through from the non-saturation mode to the saturation mode

CMS HGCAL - June 3, 2016

CRRC shapers

- Rail-to-Rail class AB operational amplifier
 - Cascode-miller compensation tunable on 5 bits
- 2 shapers
 - Gain 1 and gain 10
 - Variable shaping time: global 4 bits, from 5ns to 75ns

Discriminators

- 4 fast discriminators designed (2 designs for each polarity) for ToA, ToT and ADC
- Power consumption: ~750uW
- Offset: 3,5mV rms
- Time Walk

-

- 6ns @ 20fC (~10 MIP)
 - 1,5ns @ 100fC (~50 MIP)
- ТоТ
 - Linear from 1pC to 10pC
- Jitter
 - Without detector capacitance: 60ps rms @ 10fC (~3 - 6 MIP)
 - With 50pF detector capacitance: 400 ps rms @ 10fC (~5 MIP), 50 ps rms @ 100 fC (~50 MIP)
 - Jitter performances should be improved with a fast and high gain shaper after preamplifier

Packaging

Omega

- Packaging issues
 - Wire bond angles between chip pads and package plots cannot be higher than 20°
 - Wire bond length issue
 - Finally enlarged pad ring => 2x4mm single inline

ToT challenges

Omega

- High crosstalk when preamplifier is saturating
- Long dead time due to ToT. It depends of preamplifier feedback resistance
- There is never a good overlap between low gain and ToT, precise characterization is needed. It is due to the nonlinear behavior when preamplifier pass through from the non-saturation mode to the saturation mode
- Trigger path has to deal with ADC data (mV) and ToT data (ns) and with a non-linear ToT behavior at the first. The ToT data have to be linearized.

Digital block: 1MHz readout architecture / trigger sums

150 200 25 Input charge (fC)

What do we plan to submit in TV2 ?

- Full analogue channel
 - Preamplifiers, shapers, comparators, input DAC (leakage compensation)
 - 10-bit ADC, 12-bit TDC
- Digital sum for trigger path
 - Linearization ToT @ 40 MHz
 - Digital sum: 2x2 cluster
 - L1 buffer for 1 MHz readout
- Common services
 - 10-bit DAC, bandgap, LVDS, PLL and DLL

- Challenging detector
 - High speed low noise large dynamic range readout
 - High integration and large data output

- Several issues to be studied rapidly
 - ToT accuracy. Timing performance.
 - System issues.
 - Prototypes assembled for tests in beam
 - Will be studied with SKIROC2-CMS and test vehicle
 - Backup with bi-gain and ToT above 1-2 pC or dynamic gain switching

Basic Silicon sensor R&D

Essential results documented in TP

Slide From M. Mannelli, ACES Workshop

• Cd = 50pF, T=-30°C, noise after HG shaper, no leakage current

ENC	Rf=1M, Cf=1pF	Rf=20k, Cf=500fF		
Positive input	0,2fC (1250 e-)	0,25fC (1560 e-)		
Negative input	0,23fC (1440 e-)	0,3fC (1875 e-)		

• Noise after HG shaper is dominated by input PMOS transistor

CROSSTALK

Signal	Crosstalk	Crosstalk
Preamp output	0,34%	0,35%
HG shaper	0,3%	0,7%
LG shaper	0,34%	0,35%
Fast shaper	0,62%	3% ⁽¹⁾

(1) Neighboring channels trigger when hit channel is saturating

POWER CONSUMPTION

Preamplifiers (positive / negative)	5,3 mW / 5,6 mW
Slow shapers	1,94 mW
ТоТ	0,1 mW
ТоА	2,6 mW
TDC	1,93 mW
Total analog (/channel)	12 – 13 mW

Assuming 20mW power dissipation for the digital part, we expect 850 mW for the entire chip

Trigger: 1MHz readout issues / info

3 possibilities for	or sums:			I	LSB ADC	
Analog sum: co	ost = 1 AD	C / 4 channels				ТОТ
 Full range Digit Correct for T Correct diffe 	t al sums: (OT non linear rent slopes	cost 1 LUT / cha ^{ity}	nnel		- / -	
ADC(s) range D	igital sum	ns:				Charge
up to 30 MIF	in baseline				100 fC	C (~30
Up to 300 M	IP in bi-gain (I	HG/LG factor of 2)			MIF	P)
					LSB ADC	ADC TOT
	Range	Sum precision	Extra ADC	Extra LUT power	(HG)	(LG) TOT
A-sums	Full	++	16	0		Charge
Full D-sums	Full	++++	0	64		(fC)
ADC D-sums (baseline)	30 MIP	+	0	0		1 рС (~ 300 МІР)
ADC D-sums (bi-gain)	300 MIP	+++	0	0		

□ For sums, mapping sensor cell to ASIC channel is done on PCB

- □ Could have 2x2 / 4x4 sums (if adjacent channels ex:0-3 and 4-7)
- □ Adding extra mapping/confirmation in ASIC may add complexity / power consumption

Bandwidth: (dedicated slide ?) TP + DATA

- □ Full process takes about **15 ns** (post synthesis)
- Next steps: estimate power/timing vs multiplication factor precision
- Easily adaptable to all "method" (except 2) + Baseline & Bi-Gain architecture

Serial

link(s)

Readout Buffer

Linearization (TOT only)

Analog Σ

(2x2)

Digital Σ (2x2)

- 64-channel ASIC with 0-suppress (see Philippe talk @ Engineering days):
 - 1 bit for empty cells
 - □ E > Ethr1, register ADC
 - □ E > Ethr2, register ADC + TOA

Power balance should be estimated