CMS HG-CAL
FEE 2016 - Krakow

Damien Thienpont on behalf of the HGC collaboration

June 3, 2016
CMS Phase-II upgrades

Trigger/HLT/DAQ
- Track information in Trigger (hardware)
- Trigger latency 12.5 µs - output rate 750 kHz
- HLT output 7.5 kHz

New Tracker
- Rad. tolerant - increased granularity - lighter
- 40 MHz selective readout in Outer Tracker for Trigger

Muon systems
- New DT & CSC FE/BE electronics
- Complete RPC coverage $1.6 < \eta < 2.4$
- Muon tagging $2.4 < \eta < 3$

Barrel EM calorimeter
- New FE/BE electronics with improved time resolution
- Lower operating temperature (8°C)

New Endcap Calorimeters
- Rad. tolerant
- High Granularity: increased transverse and longitudinal segmentation, needed to mitigate pileup effects to select events with a hard scatter process at L1-Trigger and to identify the associated vertex and particles
- Precise timing capability: further mitigation of pileup effects

CMS HGCAL - June 3, 2016
Modules, Cassettes and Mechanics (technical proposal)

Modules
With 2x 6 - 8’’ Hexagonal Si sensors, PCB, FE chip, on W/Cu baseplate

- Modules mounted on Cu Cooling plate with embedded pipe
 => **Cassettes**

Cassettes inserted in mechanical structure (containing absorber)

12 **Cassettes** mounted together to form the **ECAL (EE) and Front HCal (FH)**

3 sensor active thicknesses 100-200-300 µm
0.5(1) cm² pads for 100(200/300) µm

Replaced EndCap (maintained at -30°C)
Challenges for electronics

• Reading out full data or largest possible sub-set at 40 MHz for L1-Trigger

• Stringent requirements for Front-End Electronics
 – Low power (~5 mW for analogue channel), ~ 92 000 FE chips, 130 nm or 65 nm
 – Low noise: <2000 e- (0,32 fC)
 – MIP: 7k – 20k e- (1 – 3 fC)
 – Dynamic range up to 3000 MIP (10 pC), 17 bits required with 0,1 fC resolution
 – Detector capacitance 40-60pF, detector leakage: up to 10 µA
 – System on chip (charge, time, digitization, data and trigger processing, on-chip zero suppress, ...)
 – High speed readout (5-10 Gb/s)
Baseline architecture (Technical Proposal)

- Preamplifier and shaper DC coupled to detector, no reset, fast shaping (15ns peaking time)
- Analog gain around 25mV/fC (quantization noise negligible)
- Preamplifier linear range 100 fC => ADC conversion
- Above 80fC and after preamp saturation => ToT conversion

By Jan Kaplon (CERN)
Milestones for electronics

15-Feb-16 Submit v0 FE chip (SKIROC2-CMS) in 0.35 µm

Mid-May-16 Submit FE test vehicles in TSMC130 nm technology

1-Jun-16 1st Comprehensive Review

30-Sep-16 1st results from FE test vehicles and second test vehicle submission

31-Oct-16 Confirm choice of front-end electronics (130 nm)

15-Dec-16 Define architecture & specs for LV/HV supply

15-Dec-16 Define location of DC-DC converters

15-Dec-16 Define location of electrical/optical links

31-Mar-17 Submit V1 ASIC

31-Mar-17 Choice of Si sensors type: all n-on-p or mixed (i.e. n-on-p and p-on-n)

1-Jun-17 2nd Comprehensive Review

30-Sep-17 1st results from tests of V1 ASIC

1-Nov-17 Submit TDR

30-Jun-18 Submit V2 ASIC

Part 1

Part 2

First 32/64 ch ASIC with full functionnality
• Testbeam electronics
 – Use SKIROC2 to exercise system issues (low noise, large range)
 – Complex front-end boards designed at UCSB, Minnesota, FNAL: delicate routing
 – Evolutive readout designed at FNAL

• Development of SKIROC2-CMS
 – Optimized version for CMS test beams, pin to pin compatible
 – Dual polarity charge preamplifier
 – Faster slow shaper (25ns instead of 200ns)
 – SCA in roll mode (sampling of slow shapers @ 40MHz, depth = 300ns)
 – ToT for high input charge
 – TDC (TAC) for ToA (~20 ps binning, ~50ps jitter)
 – Will replace SKIROC2 on modules for timing and ToT studies

This “little” setup has ~14k ch. to read out!
• Input DAC and 3pF calibration Cap.

• Versatile preamplifier
 – Dual polarity: single first stage with input PMOS transistor (available NMOS are directly on substrate), one feedback for each polarity (likely better for positive input charge), high dynamic range optimization
 – 60 dB Open loop gain, 4 GHz GBWP
 – Variable Rf: global 8 bits, from 10k to 2,55M
 – Variable Cf: global 6 bits, from 62fF to 4pF

• Charge measurement in 12 deep SCA
 – Slow shapers: gain 1 and 10, CRRC2; variable shaping time: global 4 bits, from 10ns to 150ns; output buffer
 – 2 measurements by BX, HG and LG
 – Nominal: roll mode @ 40MHz; custom mode: managed by external trigger

• Charge measurement with ToT for signal after peamp saturation
 – Discriminator connected to the preamp output
 – Fast ramp dedicated to the special study of the non-linear part
 – Slow ramp for the entire range (up to 10pC)
 – ToT data are memorized into the feedback capacitance of the integrator, rising edge starts the ramp and falling edge stop it

• Time measurement
 – Fast shaper: CRRC, gain 6, shaping time: 3bits, 1,25 to 9ns
 – Fast discri
 – Ramp: 35ns, rising edge starts the ramp
 – Time SCA: 2 holds done on rising and falling edges of the 40MHz

• Analogue to digital conversion
 – 12 bits Wilkinson ADC, common ramp

POWER CONSUMPTION

<table>
<thead>
<tr>
<th>Component</th>
<th>Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamplifiers (positive / negative)</td>
<td>5.3 mW / 5.6 mW</td>
</tr>
<tr>
<td>Slow shapers</td>
<td>1.94 mW</td>
</tr>
<tr>
<td>ToT</td>
<td>0.1 mW</td>
</tr>
<tr>
<td>ToA</td>
<td>2.6 mW</td>
</tr>
<tr>
<td>TDC</td>
<td>1.93 mW</td>
</tr>
<tr>
<td>Total analog (/channel)</td>
<td>12 – 13 mW</td>
</tr>
</tbody>
</table>

Assuming 20mW power dissipation for the digital part, we expect 850 mW for the entire chip.
Positive input: HG and LG linearity post-layout simulated

Charge PA
Rf=1M, Cf=1pF

HG and LG shaper outputs (Rf=1M, Cf=1pF)

• HG linearity: from 0 to 180 fC
• LG linearity: from 0 to 1750 fC

Current PA
Rf=20k, Cf=500fF

HG and LG shaper outputs (Rf=20k, Cf=500fF)

• HG linearity: from 0 to 160 fC
• LG linearity: from 0 to 950 fC
Positive input: ToT post-layout simulated

Charge PA
Rf=1M, Cf=1pF

- Threshold @ 700 fC
- Good ToT linearity: from 1.75 pC to 10 pC

Current PA
Rf=20k, Cf=500fF

- Threshold @ 450 fC
- ToT linearity: from 1.7 pC to 10 pC
Some time measurement simulated

Time Walk (ns)
30pF Cdet; T=-30°C

<table>
<thead>
<tr>
<th>Graph 1</th>
<th>Graph 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

jitter (ps)
30pF Cdet; T=-30°C; preamp gain = 2mV/fC

<table>
<thead>
<tr>
<th>Graph 3</th>
<th>Graph 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

jitter @10fC injected wrt. Cdet

<table>
<thead>
<tr>
<th>Graph 5</th>
<th>Graph 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMS HGCAL - June 3, 2016
Digital readout scheme

- Based on Calice chips readout scheme

<table>
<thead>
<tr>
<th>Acquisition</th>
<th>A/D conv.</th>
<th>DAQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Roll mode @ 40MHz
- Depth 12x25ns=300ns

- 12-bit Wilkinson ADC, starts on external Trigger
- 2 ToT (fast & slow); 2 ToA; 2x12 HG & LG Charge
- Duration (worst case)=$2^{12} \times 25n \times 30 = 3 \text{ ms}$

- OC @ 5MHz (SK2) to LVDS @ 40MHz (SK2-CMS)
- Cst. $1924 \times 16 \times 25 = 770 \mu s$
Summary of the SKIROC2-CMS chip

- **HGC targeted Skiroc2-CMS chip variant with**
 - n-on-p as well as p-on-n read-out
 - LHC-like ~ 20ns shaping time
 - Leakage current compensation for irradiated sensors
 - Key features and variants of HGC FE architecture
 - Including TDC for precision timing and ToT
 - Pin-to-pin compatible
 - Design submitted, expect chips back in Spring

- **SKIROC2-CMS aims**
 - ToT scheme non linear in region 100-200fC: needs precise calibration and demonstration in Test-beam
 - Will be studied with SKIROC2-CMS and test vehicle
 - Backup with bi-gain and ToT above 1-2 pC or dynamic gain switching

- **January 2016**: first fully functional Si-HGC modules equipped with existing SKIROC2 chips
 - Skiroc2 designed for p-on-n sensors, but too slow shaping time, readout based on Calice requirements

- **Spring 2016**: test beams at FNAL with Si-HGC EE slice equipped with Skiroc2
 - Enable tests of EM calorimetric response
 - Prepare for more detailed studies using modules equipped with Skiroc2-CMS

- **Fall 2016**: test beams at CERN with Si-HGC EE and FH slice equipped with Skiroc2-CMS
 - Enable detailed studies of calorimetric response and performances of baseline architecture and variants
 - Aim for timing studies of EM and Hadronic shower evolution with ~50ps calorimeter cell timing resolution
Test vehicle floorplan: 130nm

- Area: 2,2x1,36 mm²
- 101 PADs, 100μm pitch
- Power supply: 1,2 – 1,5 V
- Submission date: mid-may 2016

Floorplan
- (1) positive input preamps x6
- (2) negative input preamps x6
- (3) baseline channel (CERN) x1
- (4) discriminators x4
- (5) CRRC shapers: HG and LG
- (6) digital part

Available outputs
- Direct preamp output
- Preamp after shaper
- Preamp after discriminator

Dedicated PAD available to characterize the shapers or the discriminators
- All bias can be externally tuned
Input NMOS transistor preamplifier for positive signal

- 6 different preamps for positive signals
- Based on a cascode architecture
- Used different NMOS sizes (1200μ, 2400μ, 3600μ) and transistor flavors proposed by the technology ("normal", "HiVt", "LoVt")
- Variable Cf from 100fF to 1.5pF step 100fF
- Variable Rf: 20k, 200k and 1MΩ
- Optimize to get open loop gain above 60dB and minimize noise
- Power consumption: ~2mW

\[e_n = 0.4 \text{ nV/}\sqrt{\text{Hz}} \]
\[\text{rms noise} = 210 \mu\text{V} \]
\[\text{With 50pF Cdet, after 25ns shaper, ENC } \sim 1.3 \text{ke}^- \]

Qinj=100fC; Cd=50pF; Cf=1pF; Rf=20k
Input NMOS transistor preamplifier for negative signal

- 6 different preamps for negative signals
- Used different NMOS sizes and architectures
- Variable C_f from 100fF to 1,5pF step 100fF
- Variable R_f: 20k, 200k and 1MΩ

- Input stage: cascode with NMOS input transistor
- Output buffer: source follower with NMOS native transistor biased with 100μA
- 62 dB open loop gain; 2,4 GHz GBP; Input impedance: 16Ω (50Ω @ 50MHz)
- Power consumption: 2,4 mW (@ 1,5V)
- Three sizes of input NMOS transistors

- Input stage: regulated cascode with NMOS input transistor
- Output buffer: source follower with NMOS native transistor biased with 100μA
- 94 dB open loop gain; 3,5 GHz GBP; Input impedance: 0,5Ω (43Ω @ 50MHz)
- Power consumption: 2,85 mW (@ 1,5V)
- Well suited for high loop gain preamp (0,2pF C_f)
- Three sizes of input NMOS transistors

- With 50pF C_{det}, 20k R_f, after 25ns shaper, ENC ~1.2ke
- With 50pF C_{det}, 1M R_f, after 25ns shaper, ENC ~ 1ke

- Input stage: cascode with NMOS input transistor
- Output buffer: source follower with NMOS native transistor biased with 100μA
- 62 dB open loop gain; 2,4 GHz GBP; Input impedance: 16Ω (50Ω @ 50MHz)
- Power consumption: 2,4 mW (@ 1,5V)
- Three sizes of input NMOS transistors
TV1: linearities

- 1pF Cf, 20K Rf, 30 and 50pF Cdet, 27 and -30 °C

- High gain:
 - linear up to 240 fC
 - Better linearity at low temperature

- Low gain:
 - Good linearity up to 1200 fC
 - Saturation occurs before with high Cdet

- Time over Threshold:
 - Threshold @ 250 fC
 - Linearity better than 1% begins around 1300 -1600 fC
 - Dependence to the temperature: 26ns/pC @ 27°C and 30ns/pC @ -30°C
 - Low dependence to Cdet: 29ns/pC @ 30pF Cdet and 30ns/pC @ 50pF Cdet

- There is never a good overlap between low gain and ToT, precise characterization is needed. It is due to the non-linear behavior when preamplifier pass through from the non-saturation mode to the saturation mode
CRRC shapers

- Rail-to-Rail class AB operational amplifier
 - Cascode-miller compensation tunable on 5 bits
- 2 shapers
 - Gain 1 and gain 10
 - Variable shaping time: global 4 bits, from 5ns to 75ns
Discriminators

- 4 fast discriminators designed (2 designs for each polarity) for ToA, ToT and ADC
- Power consumption: ~750uW
- Offset: 3,5mV rms

- Time Walk
 - 6ns @ 20fC (~10 MIP)
 - 1,5ns @ 100fC (~50 MIP)

- ToT
 - Linear from 1pC to 10pC

- Jitter
 - Without detector capacitance: 60ps rms @ 10fC (~3 - 6 MIP)
 - With 50pF detector capacitance: 400 ps rms @ 10fC (~5 MIP), 50 ps rms @ 100 fC (~50 MIP)
 - Jitter performances should be improved with a fast and high gain shaper after preamplifier

- 4 fast discriminators designed (2 designs for each polarity) for ToA, ToT and ADC
- Power consumption: ~750uW
- Offset: 3,5mV rms

- Time Walk
 - 6ns @ 20fC (~10 MIP)
 - 1,5ns @ 100fC (~50 MIP)

- ToT
 - Linear from 1pC to 10pC

- Jitter
 - Without detector capacitance: 60ps rms @ 10fC (~3 - 6 MIP)
 - With 50pF detector capacitance: 400 ps rms @ 10fC (~5 MIP), 50 ps rms @ 100 fC (~50 MIP)
 - Jitter performances should be improved with a fast and high gain shaper after preamplifier
Packaging

- Packaging issues
 - Wire bond angles between chip pads and package plots cannot be higher than 20°
 - Wire bond length issue
 - Finally enlarged pad ring => 2x4mm single in-line
ToT challenges

- High crosstalk when preamplifier is saturating
- Long dead time due to ToT. It depends on preamplifier feedback resistance
- There is never a good overlap between low gain and ToT, precise characterization is needed. It is due to the non-linear behavior when preamplifier pass through from the non-saturation mode to the saturation mode
- Trigger path has to deal with ADC data (mV) and ToT data (ns) and with a non-linear ToT behavior at the first. The ToT data have to be linearized.
Study 2x2 linearization to be ready for 2nd TV:
- ADC data
- TOT without non-linear region

Focusing on “method 3”

Solution applicable for baseline or bi-gain PA
What do we plan to submit in TV2?

- Full analogue channel
 - Preamplifiers, shapers, comparators, input DAC (leakage compensation)
 - 10-bit ADC, 12-bit TDC
- Digital sum for trigger path
 - Linearization ToT @ 40 MHz
 - Digital sum: 2x2 cluster
 - L1 buffer for 1 MHz readout
- Common services
 - 10-bit DAC, bandgap, LVDS, PLL and DLL
• Challenging detector
 – High speed low noise large dynamic range readout
 – High integration and large data output

• Several issues to be studied rapidly
 – System issues.
 – Prototypes assembled for tests in beam
 – Will be studied with SKIROC2-CMS and test vehicle
 • Backup with bi-gain and ToT above 1-2 pC or dynamic gain switching
Basic Silicon sensor R&D

Essential results documented in TP

Slide From M. Mannelli, ACES Workshop
• Cd = 50pF, T=-30°C, noise after HG shaper, no leakage current

<table>
<thead>
<tr>
<th>ENC</th>
<th>Rf=1M, Cf=1pF</th>
<th>Rf=20k, Cf=500fF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive input</td>
<td>0,2fC (1250 e-)</td>
<td>0,25fC (1560 e-)</td>
</tr>
<tr>
<td>Negative input</td>
<td>0,23fC (1440 e-)</td>
<td>0,3fC (1875 e-)</td>
</tr>
</tbody>
</table>

• Noise after HG shaper is dominated by input PMOS transistor
CROSSTALK

<table>
<thead>
<tr>
<th>Signal</th>
<th>Crosstalk</th>
<th>Crosstalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamp output</td>
<td>0.34%</td>
<td>0.35%</td>
</tr>
<tr>
<td>HG shaper</td>
<td>0.3%</td>
<td>0.7%</td>
</tr>
<tr>
<td>LG shaper</td>
<td>0.34%</td>
<td>0.35%</td>
</tr>
<tr>
<td>Fast shaper</td>
<td>0.62%</td>
<td>3%<sup>(1)</sup></td>
</tr>
</tbody>
</table>

⁽¹⁾ Neighboring channels trigger when hit channel is saturating

POWER CONSUMPTION

<table>
<thead>
<tr>
<th>Component</th>
<th>Power Consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preamplifiers (positive / negative)</td>
<td>5.3 mW / 5.6 mW</td>
</tr>
<tr>
<td>Slow shapers</td>
<td>1.94 mW</td>
</tr>
<tr>
<td>ToT</td>
<td>0.1 mW</td>
</tr>
<tr>
<td>ToA</td>
<td>2.6 mW</td>
</tr>
<tr>
<td>TDC</td>
<td>1.93 mW</td>
</tr>
<tr>
<td>Total analog (/channel)</td>
<td>12 – 13 mW</td>
</tr>
</tbody>
</table>

Assuming 20mW power dissipation for the digital part, we expect 850 mW for the entire chip
3 possibilities for sums:

- Analog sum: cost = 1 ADC / 4 channels
- Full range Digital sums: cost 1 LUT / channel
 - Correct for TOT non linearity
 - Correct different slopes
- ADC(s) range Digital sums:
 - up to 30 MIP in baseline
 - Up to 300 MIP in bi-gain (HG/LG factor of 2)

For sums, mapping sensor cell to ASIC channel is done on PCB

- Could have 2x2 / 4x4 sums (if adjacent channels ex:0-3 and 4-7)
- Adding extra mapping/confirmation in ASIC may add complexity / power consumption

Bandwidth: (dedicated slide ?) TP + DATA
Architecture for “method3”

- **Block inputs:**
 - Charge ➔ ADC and TOT
 - Multiplication factor (SC) ➔ needed to have the same slope between ADC / TOT (0 to 1 with step 2^{-k})
 - TOT Threshold (SC) ➔ to remove TOT data below it

- **Design and simulation:**
 - VHDL block written, simulated and synthesized
 - Full process takes about **15 ns** (post synthesis)
 - Next steps: estimate power/timing vs multiplication factor precision
 - Easily adaptable to all “method” (except 2) + Baseline & Bi-Gain architecture

$$\sum_{k=0}^{n} a_k \cdot 2^{-k}$$
- 64-channel ASIC with 0-suppress (see Philippe talk @ Engineering days):
 - 1 bit for empty cells
 - $E > \text{Ethr}_1$, register ADC
 - $E > \text{Ethr}_2$, register ADC + TOA

- Trigger logic / mapping done outside
- Reduction of buffers inside FE
- Increase Bandwidth / chip
- Power balance should be estimated

CMS HGCAL - June 3, 2016