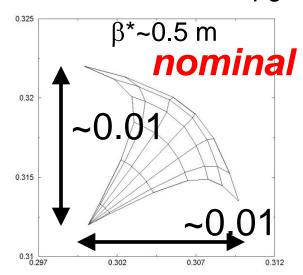
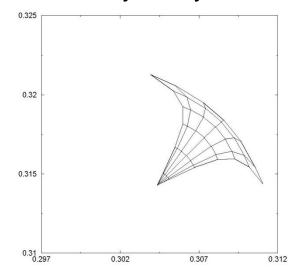
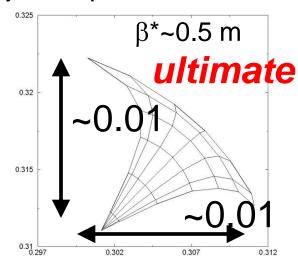
LHC Upgrade

Frank Zimmermann on behalf of many people, LHCC review, 16 February 2009

constraints from beam dynamics & collimation, parameter choices, and upgrade scenarios


We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395)


key upgrade drivers:


- head-on beam-beam limit
- detector pile up
- long-range beam-beam effects
- crossing angle
- collimation & machine protection
- beam from injectors
- heat load (SR, impedance, e-cloud)

head-on beam-beam limit

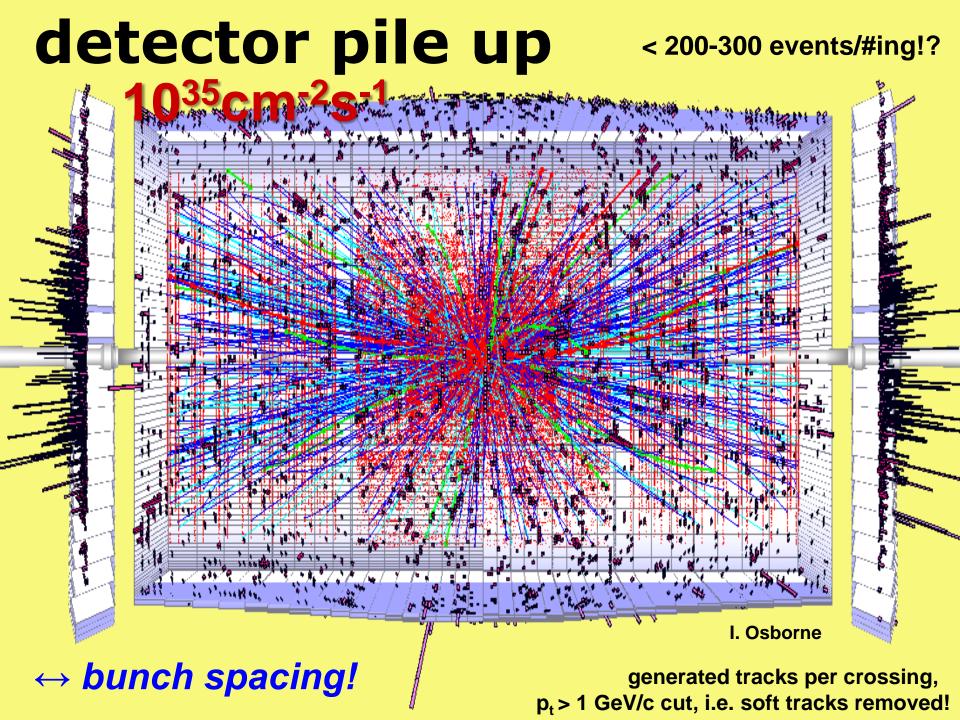
from 2001 upgrade feasibility study, LHC Project Report 626

nominal tune footprint up to 6σ with 4 IPs & nom. intensity $N_b=1.15\times10^{11}$

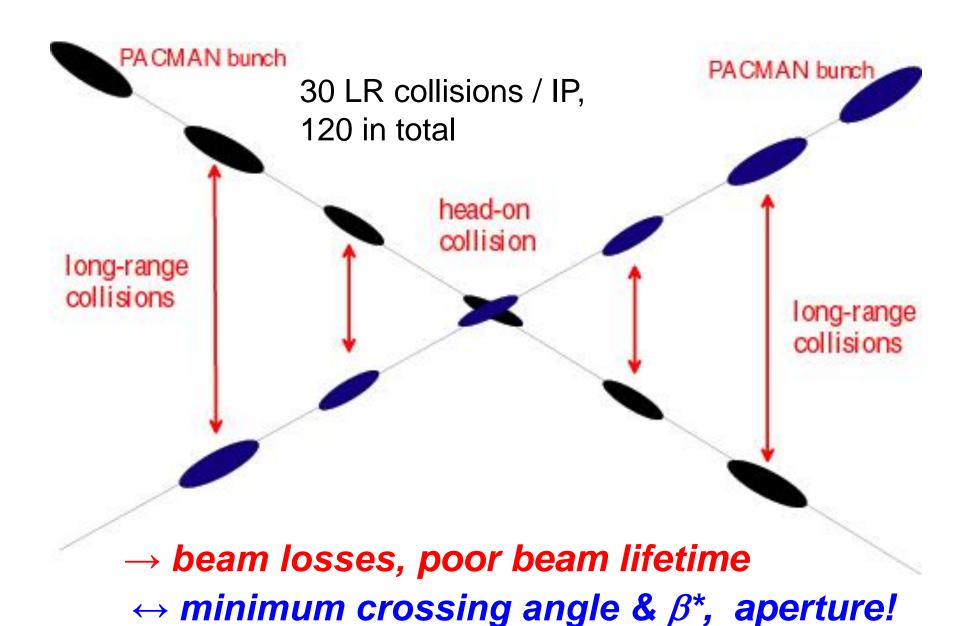
tune footprint up to 6σ with nominal intensity and 2 IPs

 $L=10^{34} \text{ cm}^{-2}\text{s}^{-1}$

tune footprint up to 6σ with 2 IPs at ultimate intensity N_b =1.7x10¹¹

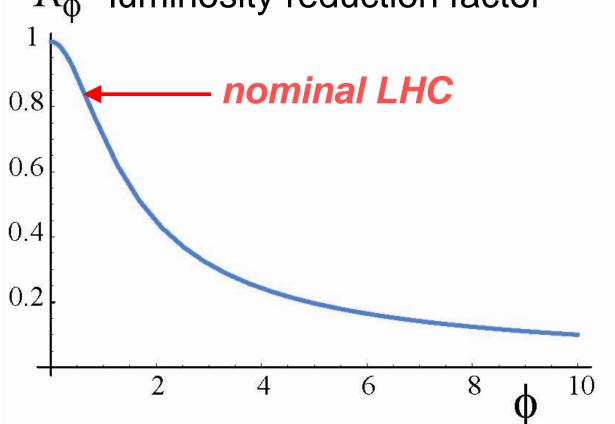

 $L=2.3x10^{34}$ cm⁻²s⁻¹

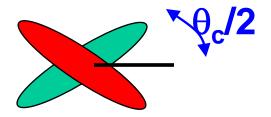
SPS: beam-beam limit \leftrightarrow total tune shift $\Delta Q \sim 0.01$ (Tevatron: 0.02?!)


going from 4 to 2 IPs ATLAS & CMS luminosity can be increased by factor 2.3

further, increasing crossing angle to 340 μ rad, bunch length (x2), & bunch charge to N_b =2.6x10¹¹ would yield L=3.6x10³⁴ cm⁻²s⁻¹ (β *=0.5 m still)

beam-beam limit ↔ bunch charge!


long-range (LR) beam-beam


crossing angle

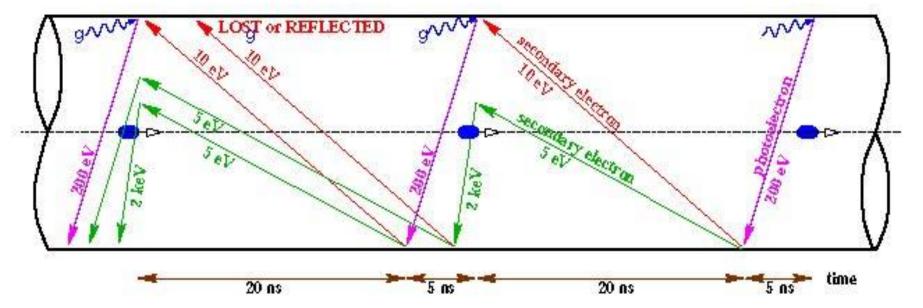
$$R_{\phi} = \frac{1}{\sqrt{1+\phi^2}}; \quad \phi \equiv \frac{\theta_c \sigma_z}{2\sigma_x}$$

 R_{Φ} luminosity reduction factor

"Piwinski angle"

effective beam size $\sigma \rightarrow \sigma/R_{\phi}$

- → luminosity loss, poor beam lifetime
- \leftrightarrow bunch length, β^* , crab cavities, emittance, early separation scheme!


collimation

R. Assmann, HHH-2008

- main task: quench protection: 1% beam loss in 10 s
 at 7 TeV ~ 500 kW energy; quench limit = 8.5 W/m!
- simulated cleaning efficiency w. errors allows only
 ~5% of nominal intensity for assumed loss rate
- IR upgrade will not improve intensity limit
- "phase-II" collimation with (sacrificial or consumable?) Cu & cryogenic collimators under study; predicted factor 30 improvement in cleaning efficiency: 99.997 %/m → 99.99992 %/m; ready for nominal and higher intensity in 2012?!

electron cloud

[F. Ruggiero]

schematic of e- cloud build up in LHC beam pipe, due to photoemission and secondary emission

→ heat load (→ quenches), instabilities, emittance growth, poor beam lifetime

also synchrotron radiation & beam image currents add to heat load

→ bunch spacing, bunch charge & bunch length!

injector limitations

- nominal LHC beam ~ present performance limit
- ultimate LHC beam out of reach
- component aging & reliability problems
- important limiting mechanisms like space charge, & aperture are common to all injectors and will "profit" from an injection energy increase; in particular the PSB will profit from new LINAC4
- TMCI is a major limitation for PS and SPS and an increase in $|\eta|$ is necessary (avoid transition crossing and $\gamma_{inj}>>\gamma_{tr}$)

 TMCI is a major limitation for PS and SPS and an $\eta_{inj}>>\gamma_{tr}$

development of scenarios

2001/02 feasibility study (LHC Project Report 626):

"phase 0" - no HW changes

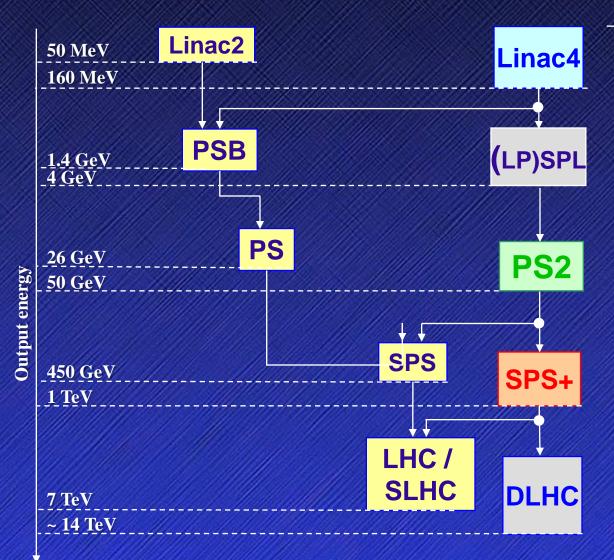
"phase 1" – IR upgrade, 12.5 ns or superbunches

"phase 2" - major HW changes; injector upgrade

HHH-2004: superbunches † LUMI'05: IR upgrade w. NbTi and β *=0.25 m, "LPA" scheme; "early separation" **LUMI'06:** 12.5 ns † "dipole first schemes" † BEAM'07: beam production; luminosity leveling; "full crab crossing" HHH-2008: "low emittance"

LHC upgrade stages

```
"phase 1" 2013, 2x10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>:
      new NbTi triplets, D1, TAS,
      \beta^* \sim 0.25 - 0.3 m in IP1 & 5,
      beam from new Linac4
                                                  + injector
"phase 2" 2017, ~10<sup>35</sup> cm<sup>-2</sup>s<sup>-1</sup>:
                                                  upgrade
      possibly Nb<sub>3</sub>Sn triplet & β*~0.15 m
complementary measures 2010-2017:
      e.g. long-range beam-beam compensation,
      crab cavities, advanced collimators, crab waist?
```


phase-2 might be just phase 1 plus complementary measures

[, coherent e- cooling??, e- lenses??]

longer term (2020?): energy upgrade, LHeC,...

present and future injectors

(LP)SPL: (Low Power)
Superconducting Proton
Linac (4-5 GeV)

PS2: High Energy PS
(~ 5 to 50 GeV – 0.3 Hz)

SPS+: Superconducting SPS
(50 to1000 GeV)

SLHC: "Superluminosity" LHC
(up to 10³⁵ cm⁻²s⁻¹)

DLHC: "Double energy" LHC
(1 to ~14 TeV)

LHC "phase-2" scenarios

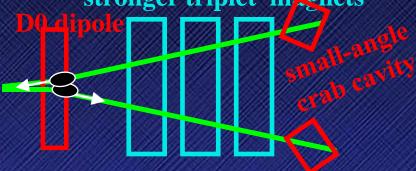
early separation (ES)

```
\beta^*~0.1 m, 25 ns, N_b=1.7x10<sup>11</sup>, detector embedded dipoles
```

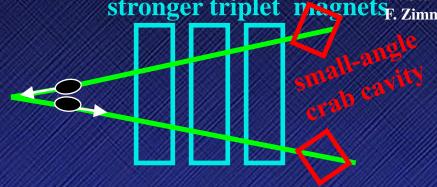
full crab crossing (FCC)

```
\beta^*~0.1 m, 25 ns, N_b=1.7x10<sup>11</sup>, local and/or global crab cavities
```

large Piwinski angle (LPA)

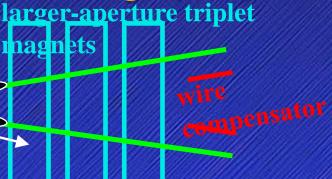

```
\beta*~0.25 m, 50 ns, N_b=4.9x10<sup>11</sup>, "flat" intense bunches
```

low emittance (LE)


```
\beta^*~0.1 m, 25 ns, \gamma \varepsilon~1-2 \mum, N_b=1.7x10<sup>11</sup>
```

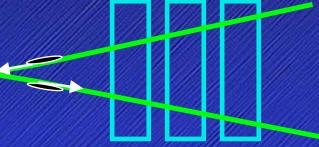
"phase-2" IR layouts

early separation (ES) J.-P. Koutchouk stronger triplet magnets


- early-separation dipoles in side detectors, crab cavities
 - \rightarrow hardware inside ATLAS & CMS detectors, first hadron crab cavities; off-δ β

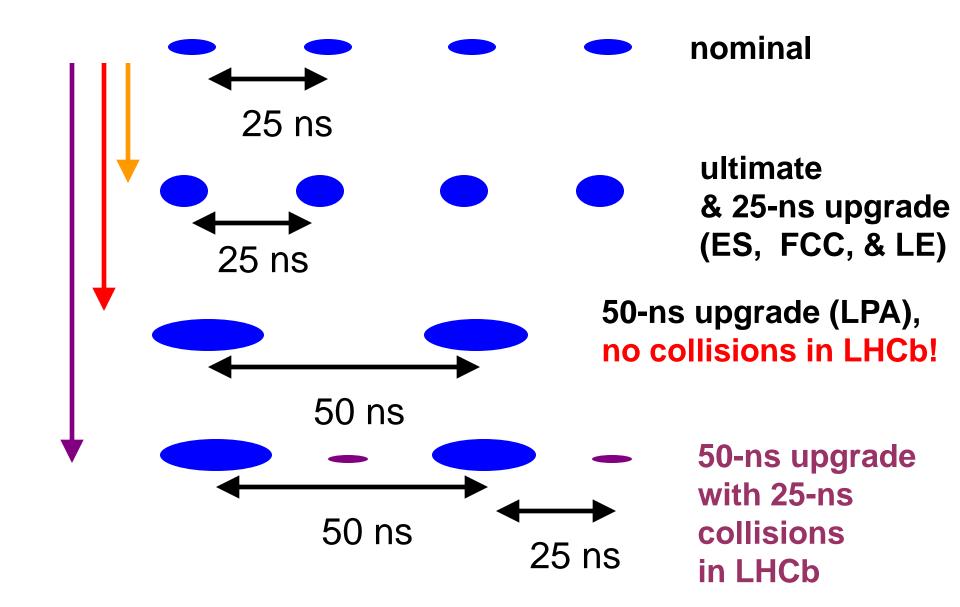
- crab cavities with 60% higher voltage
 - \rightarrow first hadron crab cavities, off- δ β -beat

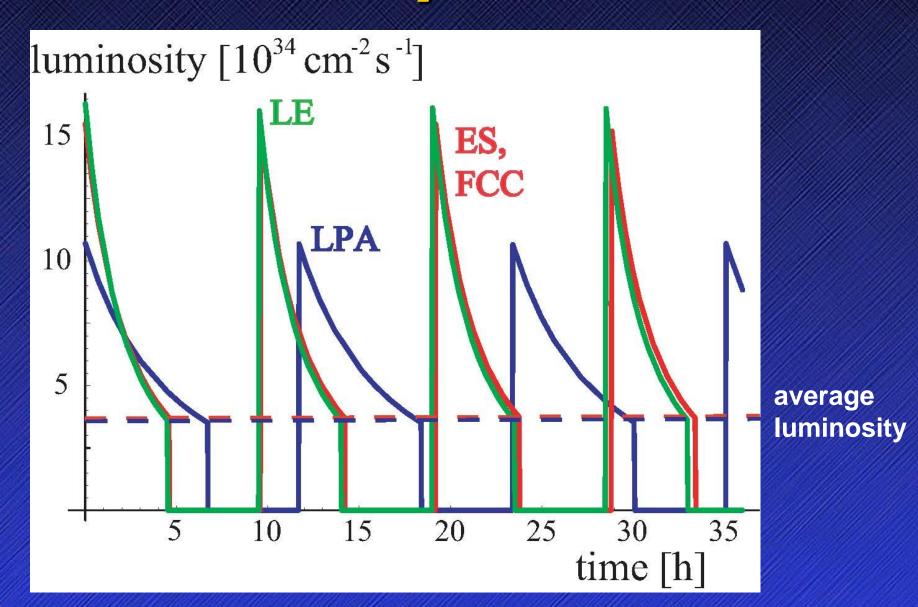
large Piwinski angle (LPA)


F. Ruggiero, W. Scandale.

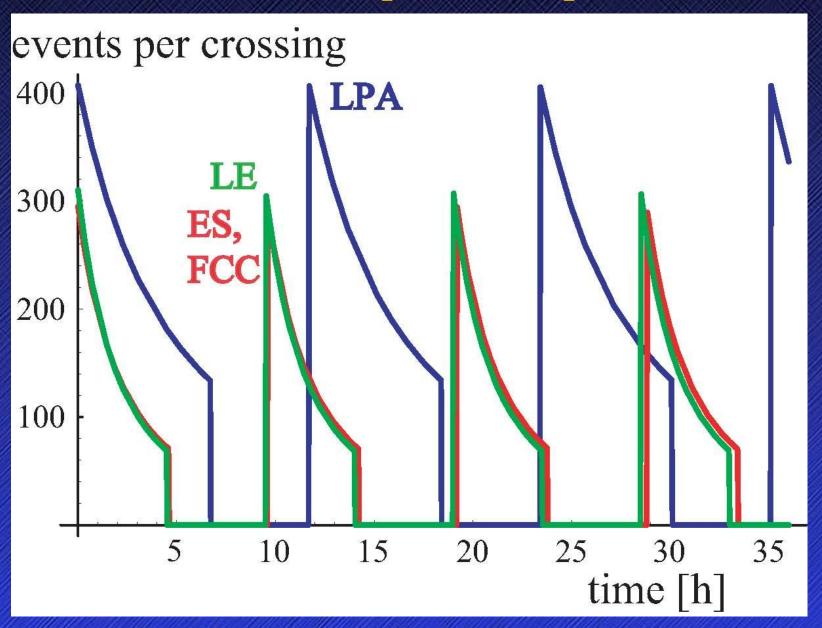
F. Zimmermann

- long-range beam-beam wire compensation
 - → novel operating regime for hadron colliders, beam generation


low emittance (LE) R. Garoby stronger triplet magnets


- smaller transverse emittance
 - \rightarrow constraint on new injectors, off-δ β-beat

parameter	symbol	nominal	ultimate	ES	FCC	LE	LPA
transverse emittance	ε [μm]	3.75	3.75	3.75	3.75	1.0	3.75
protons per bunch	$N_b [10^{11}]$	1.15	1.7	1.7	1.7	1.7	4.9
bunch spacing	Δt [ns]	25	25	25	25	25	50
beam current	I [A]	0.58	0.86	0.86	0.86	086	1.22
longitudinal profile		Gauss	Gauss	Gauss	Gauss	Gauss	Flat
rms bunch length	σ_{z} [cm]	7.55	7.55	7.55	7.55	7.55	11.8
beta* at IP1&5	β* [m]	0.55	0.5	0.08	0.08	0.1	0.25
full crossing angle	$\theta_{\rm c}$ [µrad]	285	315	0	0	311	381
Piwinski parameter	$\phi = \theta_c \sigma_z / (2^* \sigma_x^*)$	0.64	0.75	0	0	3.2	2.0
geometric reduction		1.0	1.0	0.86	0.86	0.30	0.99
peak luminosity	$L [10^{34} \text{cm}^{-2} \text{s}^{-1}]$	1	2.3	15.5	15.5	16.3	10.7
peak events per #ing		19	44	294	294	309	403
initial lumi lifetime	$\tau_{L}[h]$	22	14	2.2	2.2	2.0	4.5
effective luminosity (T _{turnaround} =10 h)	$L_{e\!f\!f}[10^{34}\mathrm{cm}^{\text{-}2}\mathrm{s}^{\text{-}1}]$	0.46	0.91	2.4	2.4	2.5	2.5
	T _{run,opt} [h]	21.2	17.0	6.6	6.6	6.4	9.5
effective luminosity (T _{turnaround} =5 h)	$L_{e\!f\!f}[10^{34}{ m cm}^{-2}{ m s}^{-1}]$	0.56	1.15	3.6	3.6	3.7	3.5
	T _{run,opt} [h]	15.0	12.0	4.6	4.6	4.5	6.7
e-c heat SEY=1.4(1.3)	P [W/m]	1.1 (0.4)	1.04(0.6)	1.0 (0.6)	1.0 (0.6)	1.0 (0.6)	0.4 (0.1)
SR heat load 4.6-20 K	P _{SR} [W/m]	0.17	0.25	0.25	0.25	0.25	0.36
image current heat	P _{IC} [W/m]	0.15	0.33	0.33	0.33	0.33	0.78
gas-s. 100 h (10 h) τ _b	P _{gas} [W/m]	0.04 (0.4)	0.06 (0.6)	0.06 (0.56)	0.06 (0.56)	0.06 (0.56)	0.09 (0.9)
extent luminous region	σ_{l} [cm]	4.5	4.3	3.7	3.7	1.5	5.3
comment		nominal	ultimate	D0 + crab	crab		wire comp.


upgrade bunch patterns

luminosity evolution

event pile up

b.-b. ΔQ & peak luminosity

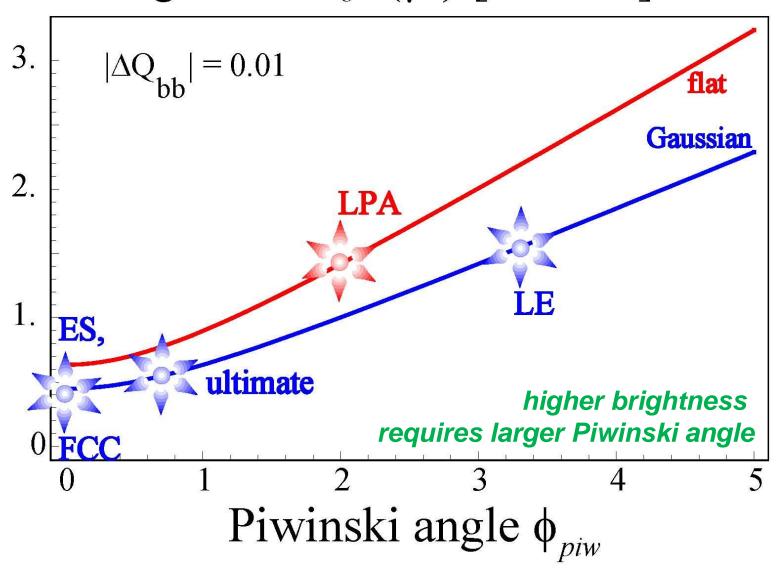
$$\Delta Q_{bb} = \frac{N_b}{\gamma \varepsilon} \frac{r_p}{2\pi} \frac{1}{\sqrt{1 + \phi_{piw}^2}} \frac{1}{F_{profile}} \qquad \phi_{piw} \equiv \frac{\sigma_z \theta_c}{2\sigma_{x,y}^*}$$

total beam-beam tune shift at 2 IPs with alternating crossing;

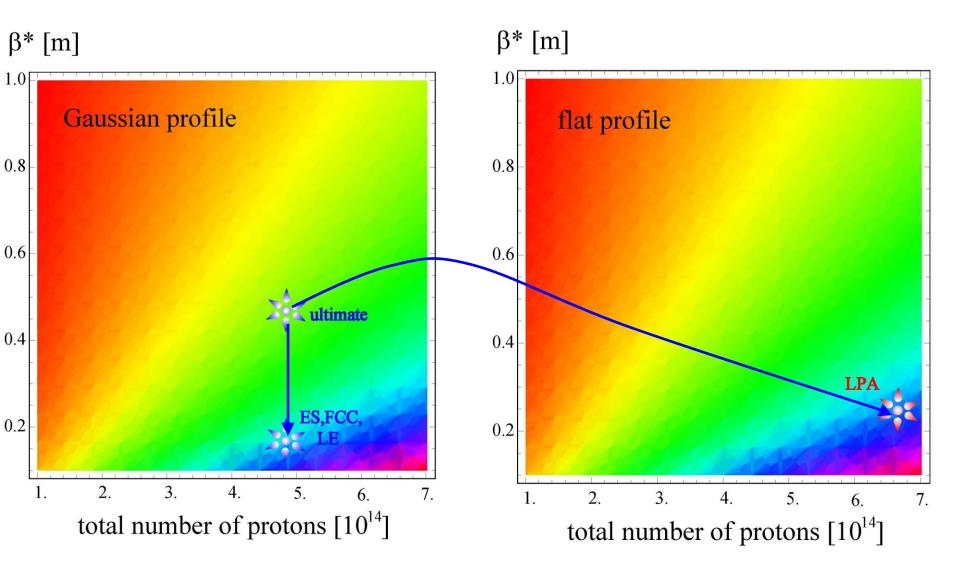
Piwinski angle

we increase charge N_b until limit ΔQ_{bb} is reached; to go further we must increase ϕ_{piw} , and/or ε and/or $F_{profile}$ (~2^{1/2} for flat bunches)

$$L = \frac{1}{4\pi} f_{rev} n_b \gamma \frac{1}{\beta^* \sqrt{\varepsilon}} N_b^2 F_{hg} \frac{1}{\sqrt{1 + \phi_{piw}^2}}$$

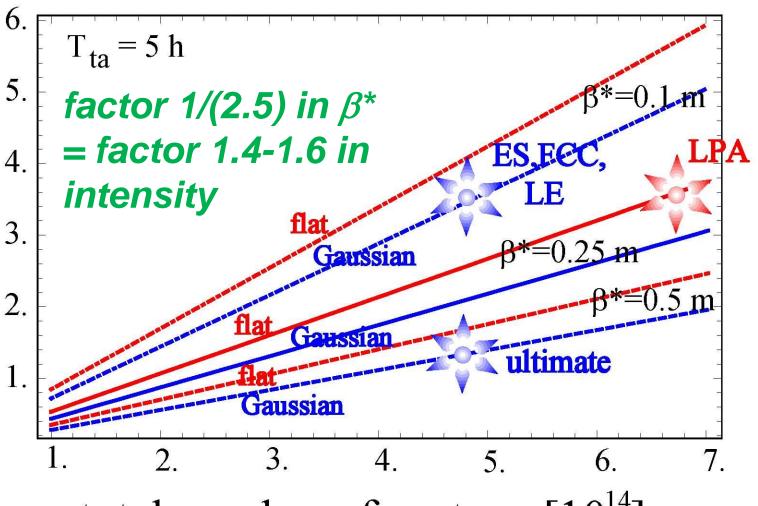

$$= \frac{1}{2r_{p}} f_{rev} n_{b} \gamma \frac{1}{\beta^{*}} N_{b} \Delta Q_{bb} F_{profile} F_{hg}$$

$$= \frac{\pi}{r_{p}^{2}} f_{rev} n_{b} \gamma \frac{\langle \mathcal{E} \rangle}{\beta^{*}} \Delta Q_{bb}^{2} F_{profile}^{2} F_{hg} \sqrt{1 + \phi_{piw}^{2}}$$


at the b-b limit, larger Piwinski angle &/or larger emittance increase luminosity

$N_b/(\gamma \epsilon)$ vs ϕ_{piw} plane

bunch brightness N_b /($\gamma \epsilon$) [10^{17} m⁻¹]


av. luminosity vs #p's & β *

"linear" scale from 1033 to 2x1035 cm-2s-1

av. luminosity vs #p's

average luminosity [10³⁴ cm⁻² s⁻¹]

total number of protons [10¹⁴]

luminosity leveling

experiments prefer constant luminosity: less pile up at start of run, and higher luminosity at the end of a physics store

how can we achieve this?

ES, or FCC: dynamic β squeeze, or dynamic θ change (either IP angle bumps or <u>varying</u> <u>crab voltage</u>); <u>LE:</u> β or θ change; <u>LPA:</u> dynamic β squeeze, or dynamic change of bunch length

run time & av. luminosity

	w/o leveling	with leveling
luminosity	\hat{L}	$L = L_{*} \approx const$

$$\frac{N_0}{+t/\tau_{eff}} \qquad N = N_0 - \frac{N_0}{\tau_{lev}} t$$

evolution

evolution

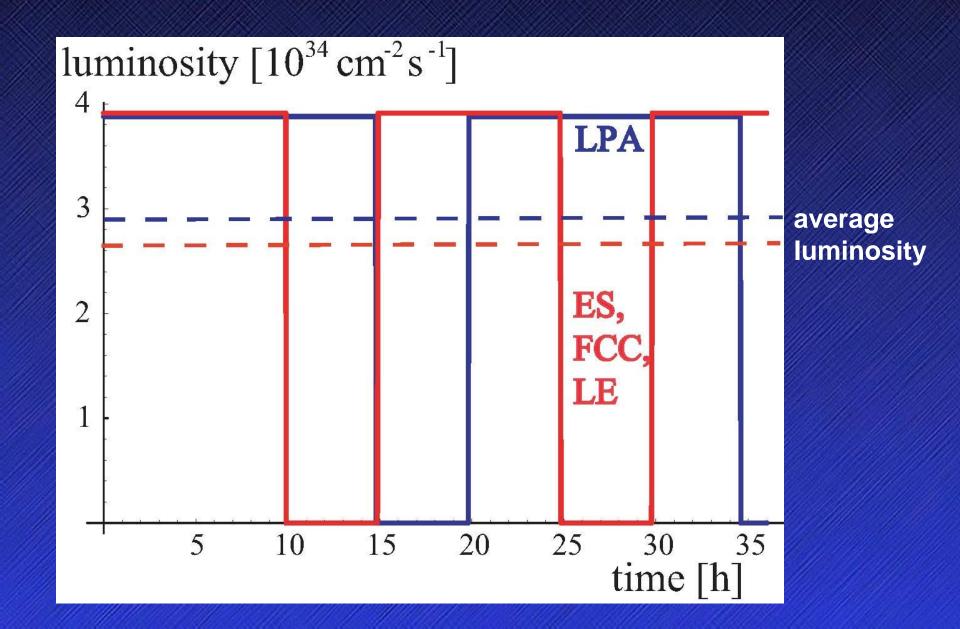
average

luminosity

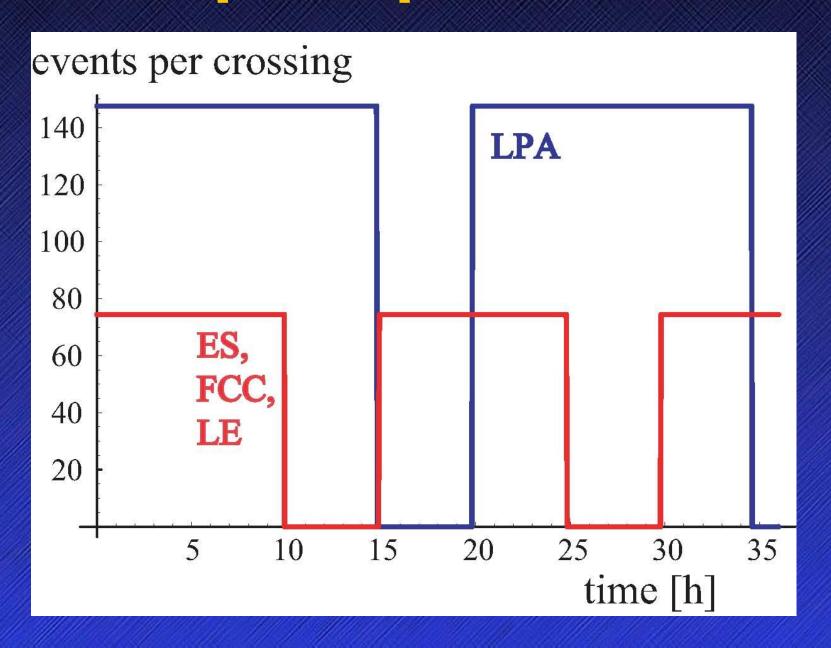
time

$$T_{run} = \sqrt{\tau_{eff}} T_{turn-around}$$

$$L_{ave} = \frac{L_0}{1 + \frac{L_0 \sigma_{tot} n_{IP}}{\Lambda N n_t} T_{turn-around}}$$


$$\tau_{eff} = \frac{N_0 n_b}{n_{IP} \hat{L} \sigma_{tot}}$$

$$\tau_{lev} = \frac{N_0 n_b}{n_{IP} L_0 \sigma_{tot}}$$


luminosity liftetime scales with total # protons!

examples	ES, FCC, or LE,	LPA, with leveling			
	with leveling				
events/crossing	300	300			
run time	N/A	2.5 h			
av. luminosity	N/A	2.6x10 ³⁴ s ⁻¹ cm ⁻²			
events/crossing	150	150			
run time	2.5 h	14.8 h			
av. luminosity	2.6x10 ³⁴ s ⁻¹ cm ⁻²	2.9x10 ³⁴ s ⁻¹ cm ⁻²			
events/crossing	75	75			
run time	9.9 h	26.4 h			
av. luminosity	2.6x10 ³⁴ s ⁻¹ cm ⁻²	1.7x10 ³⁴ s ⁻¹ cm ⁻²			
assuming 5 h turn-around time					

luminosity with leveling

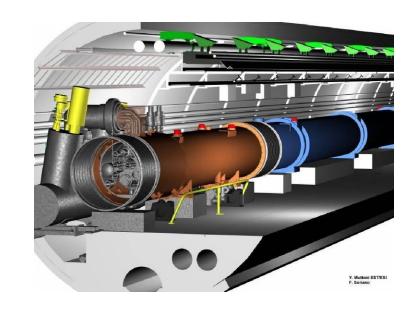
event pile up with leveling

some conclusions

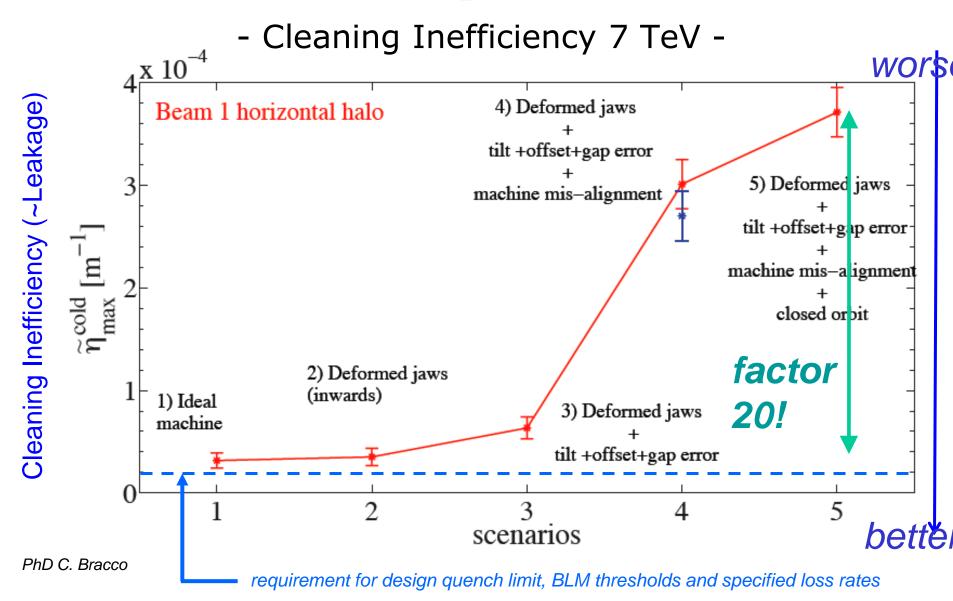
- ✓ nominal LHC is challenging
- ✓ upgrade of collimation system mandatory
- ✓ beam parameter sets evolved over past 8 years
- ✓ several scenarios exist on paper which can reach 10x nominal luminosity with acceptable heat load & pile up; different merits and drawbacks (not in a corner)
- if possible, raising beam intensity is preferred over reducing β* (better beam lifetime); but intensity might be limited by collimation!
- needed: work on s.c. IR magnets for phase-2 and on complementary measures (LR beambeam compensation, crab cavities, etc.)
- ✓ close coordination with detector upgrades

thank you!

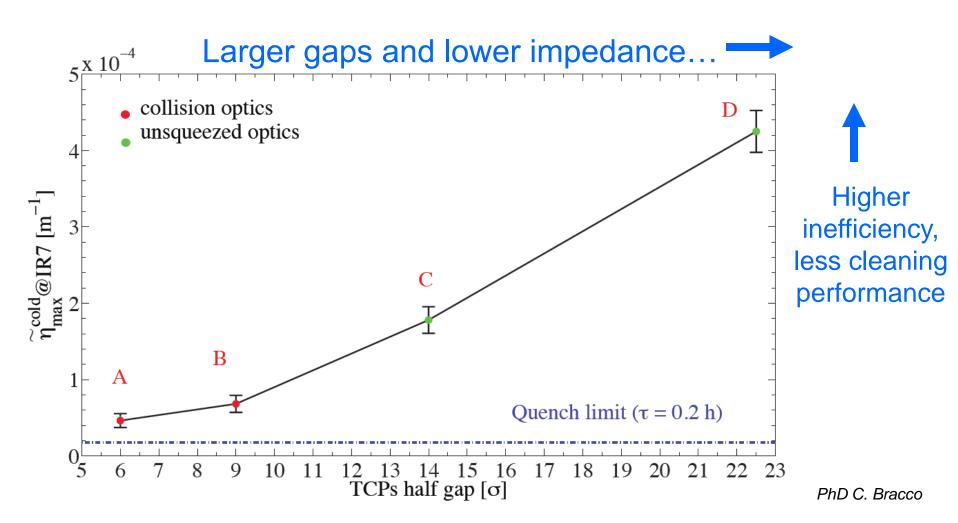
appendix:


more details on collimation constraints

collimation – quench prevention

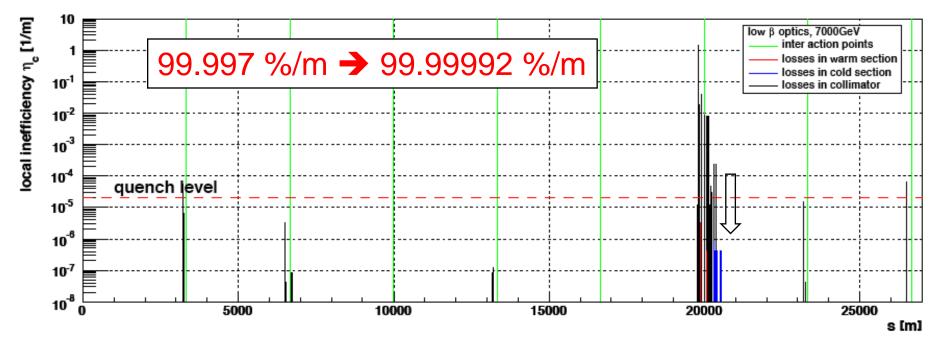

Maximum beam loss at 7 TeV: 1% of beam over 10 s 500 kW

Quench limit of SC LHC magnet:


8.5 W/m

collimation performance

collimation performance II


→ Phase I IR upgrade will not improve intensity limit from phase I collimation!

Additional room from triplet aperture can only be used after collimation upgrade

R. Assmann - HHH 2008

p collimation efficiency w. "phase II" Cu & Cryogenic Collimators

T. Weiler & R. Assmann

inefficiency reduces by factor 30 (good for nominal intensity)

caution: further studies must show feasibility of this proposal

cryogenic collimators will be studied as part of FP7 with GSI in Germany

R. Assmann - HHH 2008

collimation time line

Present view, to be refined in 2009 review:

- February 2009: First phase II project decisions. Design work on phase II TCSM ongoing at LARP and CERN. Work on beam test stand at CERN
- April 2009: Start of FP7 project on collimation → Start of development for cryogenic collimator and (lower priority) LHC crystal collimator
- <u>2009-2010</u>: Laboratory tests on TCSM and cryo collimator prototypes
- Mid 2010: Beam test stand available for robustness tests. Safe beam tests with
 TCSM and cryogenic collimators (catastrophic failure possible)
- <u>2011</u>: LHC beam tests of TCSM and cryogenic collimators
- <u>2011-2012</u>: Production and installation of phase II collimation upgrade.
- Mid 2012: Readiness for nominal and higher intensities from collimation side