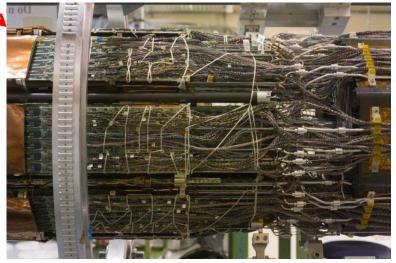


ATLAS Insertable B-Layer (IBL)

LHCC Upgrade Review CERN, February 16, 2009

G. Darbo - INFN / Genova

LHCC Review Agenda page:

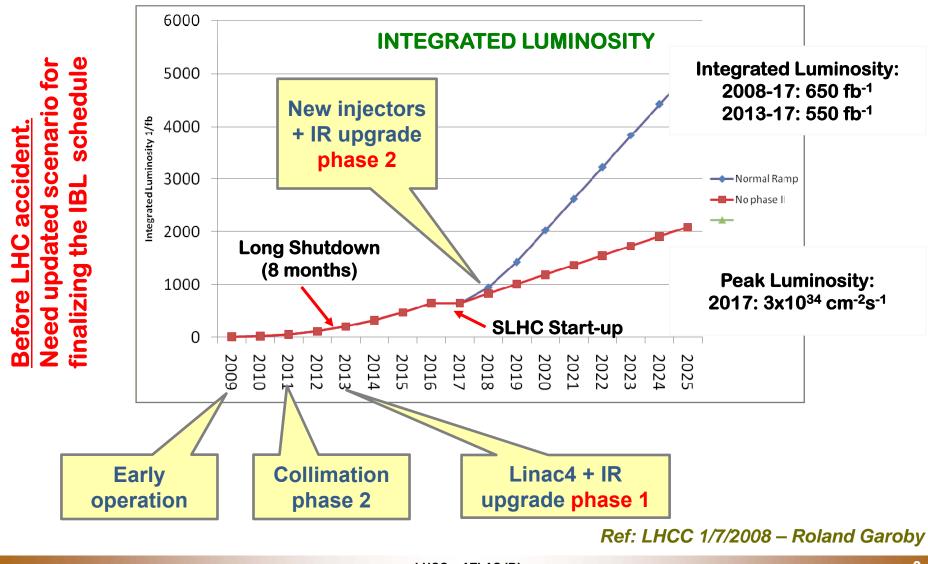

http://indico.cern.ch/conferenceDisplay.py?confld=52276

G. Darbo - INFN / Genova

LHCC – ATLAS IBL

From Replacement to Insertable BL

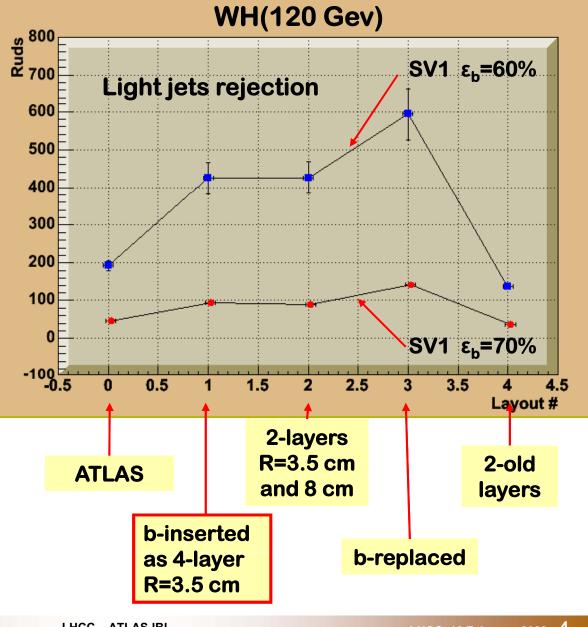
- One and half year ago (29/9/2007) the B-Layer Replacement Workshop.
 - Serious difficulties found in the original idea of replacement:
 - Longer than foreseen shutdown of LHC for replacement (>1 year);
 - Activation of present detector ← safety issues;
 - Need to dismount service panels, disks, etc to access B-Layer ← time, risk of damage.
- ATLAS appointed a B-Layer Task Force (BLTF):
 - Jan to Jun 2008 BLTF convened every two weeks, chairs: A.Clark & G.Mornacchi;
 - July 2008 BLTF Reported at Bern ATLAS Week, written document sent to the ATLAS EB.



An Insertable B-Layer (IBL) was the main recommendation of the BLTF:

- ATLAS will appoint the <u>IBL Project Leader</u> this week;
- Very motivated Pixel and Project Office groups, fully behind it.

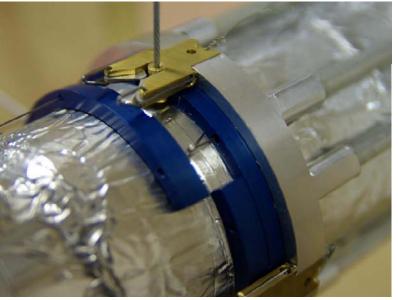
LHCC: Integrated Luminosity

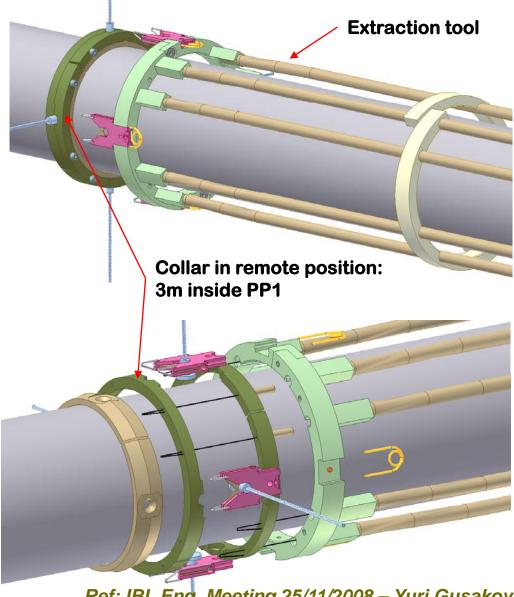

Integrated luminosity affects detector life – Peak Luminosity affects R/O

B-Layer Scenarios

- To maintain Pixel Detector performance with inserted layer, material budget is critical.
- Development of new local support structure with carbon-carbon foams.

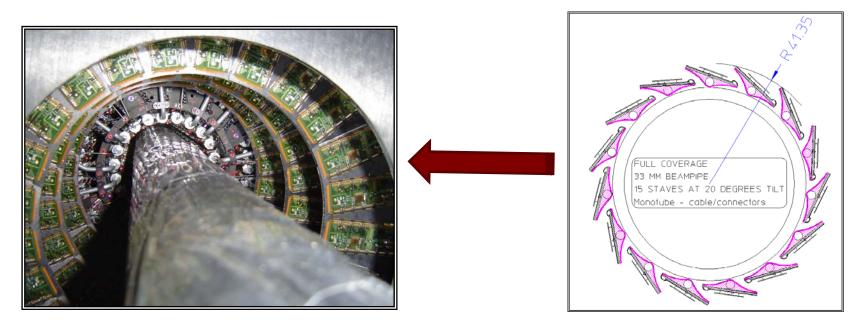
Component	% X ₀
beam-pipe	0.6
New-BL @ R=3.5 cm	1.5
Old BL @ R=5 cm	2.7
L1 @ R=8 cm	2.7
L2 + Serv. @ R=12 cm	3.5
Total	11.0


Main IBL Challenge


- Beam pipe extraction and installation of the IBL + new Beam pipe
 - Complicated by material activation.
- *Fight everywhere for space: engineers are starting with making a real design.*
 - Layout to fit into tight envelopes between present B-Layer and beam pipe.
 - Additional services (pipes, opto-fibers, electrical services).
 - Reduce beam pipe radius (Current internal r = 0.29). IBL assumes r = 0.25, with reduced isolation (from 8mm to 4mm). Smaller radius is investigated.
- Seep low the IBL radiation-length:
 - Low radiation length ($X_0 = 60\%$ of B-Layer) and smaller detector radius improve current Pixel detector physics performance (even with inefficient B-Layer).
 - Carbon-carbon foams with low density (ρ ~ 0.1÷0.2 g/cc) and reasonable thermal conductivity (K ~ 6÷18 W/m•K).
 - Head room in the cooling: low T, small fluid mass.
 - Electrical services low mass: Al (instead of Cu); high signal bandwidths.
 - Large active area in the modules (big FE chips).
- *Front-end chip and sensor design:*
 - Higher radiation dose (200Mrad, 2x1016 n_{eq}/cm²), higher R/O bandwidths.

Challenges: Beam Pipe Removal

- Tools to dismount Beam Pipe support collars:
 - Remote access >3 m inside
 - Activated material fast operation
- Beam pipe must been supported 9 from inside.
 - Tool has to compensate gravity bow (7m long pipe).


Ref: IBL Eng. Meeting 25/11/2008 – Yuri Gusakov

B-Layer Replacement - Insertion

Smaller radius B-layer to insert in the existing Pixel

- 16-staves (current module "active" footprint gives hermetic coverage in phi, but current total width does not fit); IBL will be not shingled in Z (no space).
 Requires new smaller beam-pipe; beam-pipe Ø is the most important inputs
- Pixel Modules: increase live area of the footprint:
 - New chip design (FE-I4) live fraction, I/O bandwidth, 200 Mrad;
 - Sensor increase radiation hard (smaller radius and ramping up LHC luminosity): 3x10¹⁵ n_{eq}/cm². New radiation dose simulation is going on with new release of Fluka.

R&D and prototyping in 2009, construction 2010-2012;

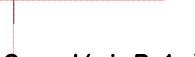
Possible Layouts

With "agreed" FE-I4 size full coverage

- Fighting for space to old b-layer against full coverage
- 15 staves looks the most promising, at 35 or 36 mm radius, but mechanically is tight
- We may not profit from smaller radius beampipe so much if we want full coverage (agreed module size). Tune FE-I4size?
- We are also looking at several bistave options with inependent cooling circuits

Castellated layer

- 7 bistaves
- *0 tilt*
- 32.5 IR, 41.5 OR


Bistave

Bistave atractive:

- Good clearace & overlap
- More mechaniccally stable
- Potenzial cooling redundance

However:

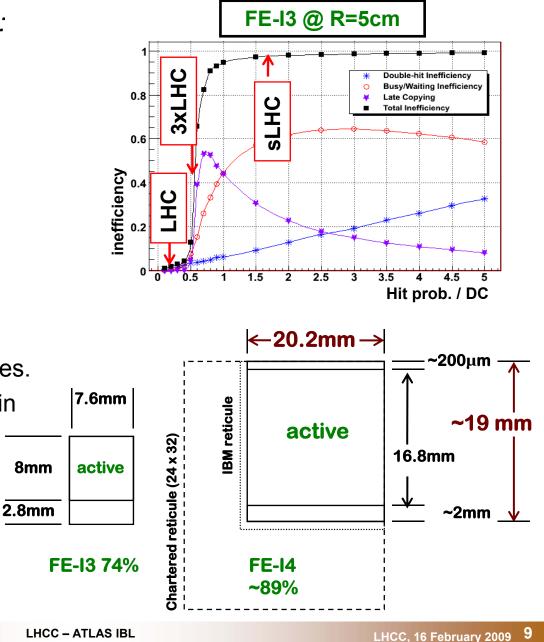
- More difficult handling
- Support may only be possible on one end

Monostave

Curved (min R=1m)

Straight

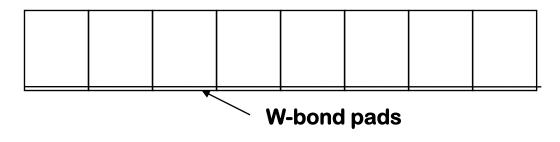
Flex Hybrid

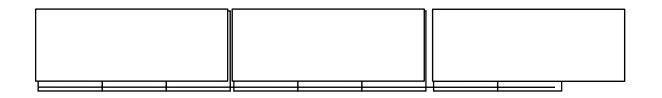

7mm offset

Coverage Diagram

Ref.: Neal Hartman

Frontend Chip - FE-I4


- *Reasons for a new FE design:*
 - Increase live fraction
 - New architecture to reduce inefficiencies (*L*=3xLHC)
- - Pixel size = 250 x 50 µm²
 - Pixels = 80 x 336
 - Technology = 0.13µm
 - Power = 0.5 W/cm²
- FE-I4 Design Status
 - Contribution from 5 laboratories.
 - Main blocks MPW submitted in Spring 2008.
 - Full FE-I4 Review: 2/3/3009
 - Submission in Summer



Modules & Stave Arrangement

- Solutions:
 - Single chip modules abut one against the next
 - Small sensor type: like 3D, active edge

- Multi chip modules: chip look the same if using multi-chip modules
- As present sensor size (~3xFE-I4) : like planar n-on-n

• assuming no Z-shingling, no space.

Sensors Options

- *Two "silicon" technologies considered: Planar and 3D sensors.*
 - Could profit from 2 large "SLHC" R&D communities.

3D sensor

- pro's:
 - Larger charge collection after irradiation (but more power in the FE for same time-walk)
 - Active edge (butting modules)
 - Lower voltage (<150 V), power after irradiation
- Con's:
 - column Inefficiency at 90°
 - Higher C_{det}
 - No experience in "scale" production
 - Several options and design flavours
 - Higher cost. Yield?

Planar (n-on-n)

- Pro's
 - n-on-n is a proven technology
 - Lower C_{det} -> lower noise, lower intime threshold for same power settings in the FE.
 - Partially depleted sensors collect charge
- Con's
 - No active edge (?)
 - Guard ring -> dead area in Z, constraints the envelope (?)
 - Charge collected at 600V_{bias}
- *Other options? Diamonds could be a compatible technology*
 - No cooling issues, low capacitance, no leakage current make them appealing...
 - Smaller community than silicon...

External Services – ID Endplate

- Final services arrangement necessitated improvisation
 - Cable over-length, mapping changes. Not all improvisations are documented ← in situ cross check is going on before closing of ATLAS.
 - Entering of nose region is critical even for few additional services, as available envelope is basically taken

External Services

- Installation of additional services for IBL is certainly not straight forward
- Careful design on flange (and in ID endplate region) is necessary, which must combine
 - Verification in situ happening now before closing ID end-plate & ATLAS
 - New design/drawings (in CATIA for flange)
- **Pipe routing for eventual CO**₂ cooling up to USA 15 should be o.k.
- Radiation protection aspects have to be considered early enough

<u>All installation aspects of new IBL services have to be considered from</u> <u>the very beginning !</u>

Cooling – $CO_2 vs C_3F_8$

IBL cooling parameters:

- 15 staves with 112W each \leftarrow P_{total} = 1.68kW
- T_{sensor} -25°C, ΔT to coolant ≤10°C \leftarrow $T_{coolant}$ -35°C
- *Options (limited by main constraint: develop time & working experience):*
 - CO₂: copy of the LHCb VELO system, similar in cooling power.
 - FC: present C₃F₈ system (after modifications).

Consider the new ATLAS and CERN reorganisation of the Cooling group:

- ATLAS long term Upgrade and the improvement of present C3F8 system
- Available Nikhef interest in contributing in the CO2 system ("cooling guru").

	C ₃ F ₈	CO ₂
Pevaporation	1.7 bar	17 bar
ΔT for ΔP =+-0.1bar	+1.4 C / -1.5C	+0.2 C / -0.2 C
ΔT for ΔP =+-1.0bar	+12 C / ~-20 C	+1.8 C / -1.9 C
ΔH for evaporation	100 J/g	280 J/g
Flow for 100 W	1.0 g/sec	0.4 g/sec
Volume flow	0.6 cm ³ /sec	0.4 cm ³ /sec

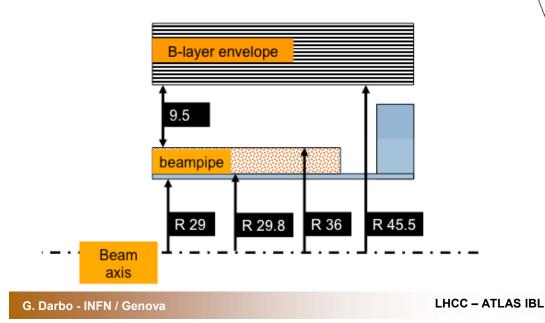
IBL Project Organization

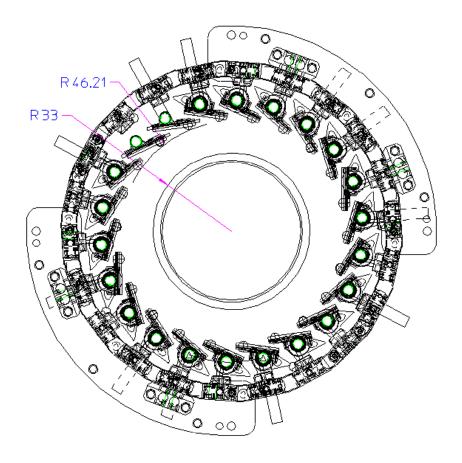
- IBL Project Leader (IBL PL) reporting to ATLAS and Pixel community:
 - Final round of IBL PL search (probably) ATLAS CB nominates this week
- *Project Documents*
 - Draft WBS exists: used to assign deliverables, costs and interest from ATLAS groups;
 - <u>TDR</u> in late 2009 (early 2010): TDR should not have options inside (sensor could be the exception);
 - <u>Schedule</u>: it will be agreed with CMS and LHC. Long shutdown for new triplet used to install. This will happen before the B-Layer will have seen life dose.

Funding Model

- The overall model for the B-Layer Replacement was that this part of the detector was a "consumable".
- A dedicated line of funding, contained inside the Pixel M&O B, exists for the B-Layer Replacement. This will cover part of the costs.
- First estimate would indicate a cost of about 7-8 MCHF, including new beampipe.

Conclusions

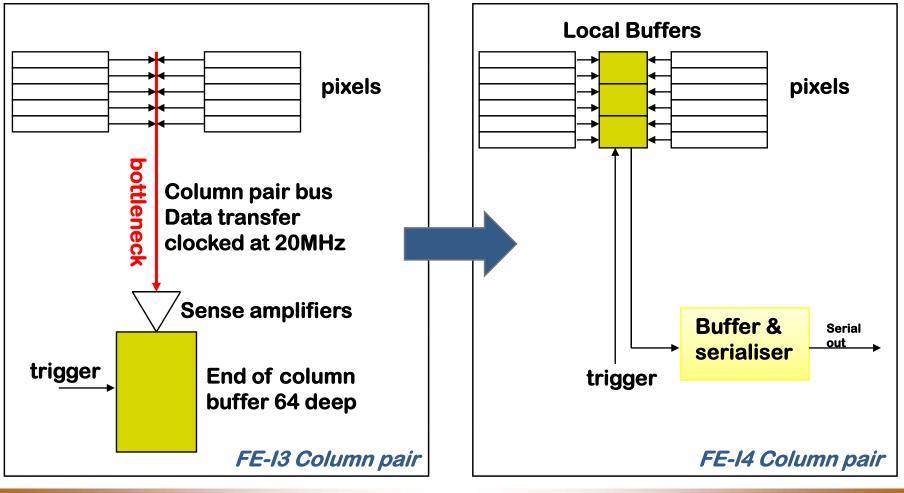

- Big progress in convergence to a B-Layer project: IBL
 - Feasibility studies on-going and "strawman" coming soon for several subparts
 - Organization structure will have soon Project Leader
 - Cost evaluation and funding model
 - Interest from groups to contribute. Open to Pixel and ATLAS
- Schallenging project
 - It will be an "assurance" for present B-Layer both for radiation end-of-life and for hard failures
 - Time scale is short, need optimization of design and prototyping but no time for basic R&D
 - Options should be kept small: decision between option is usually long and require parallel efforts.

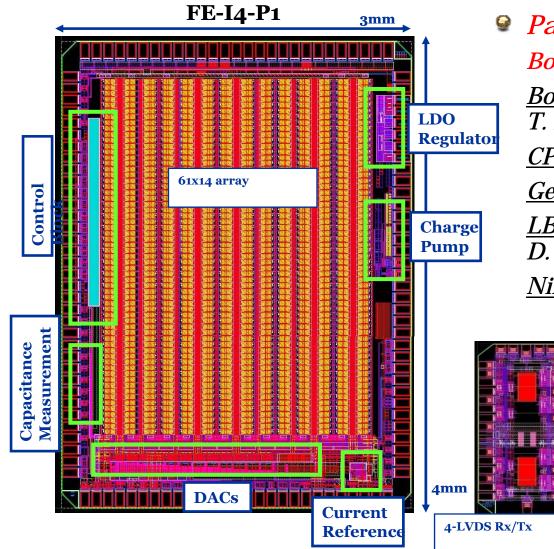


BACKUP SLIDES

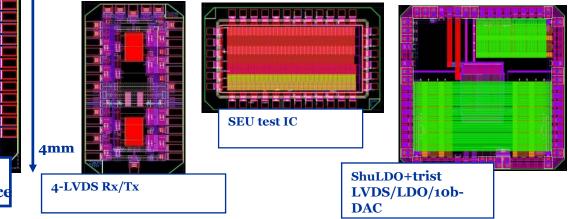
Critical Issues – Available Envelopes

- Nominal Current B-Layer inner radius is just over 46 mm.
 - Envelope for B-Layer is 45.5 mm.
- Assumed that is possible to reduce the beam pipe envelope
 - Reduce beam pipe isolation
 - Smaller beam pipe? R=25mm?
- Need also clearance for beam pipe alignment (together with IBL)

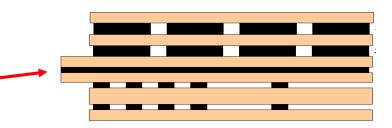


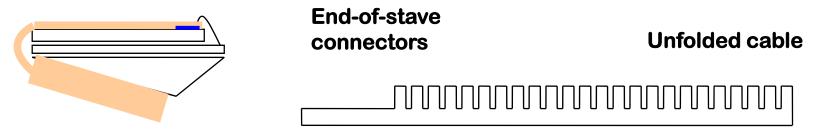

Current envelopes

FE-I4 Architecture: Obvious Solution to Bottleneck


- >99% or hits will not leave the chip (not triggered)
 - So don't move them around inside the chip! (this will also save digital power!)
- **•** This requires local storage and processing in the pixel array
 - Possible with smaller feature size technology (130nm)

FE-I4_proto1 Collaboration

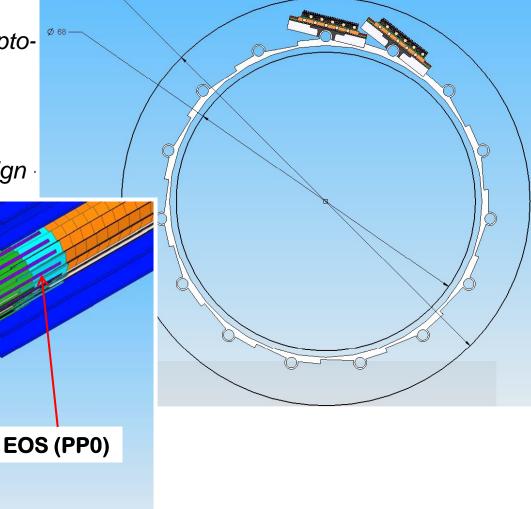

Participating institutes:
Bonn, CPPM, Genova, LBNL, Nikhef.
Bonn: D. Arutinov, M.Barbero, T. Hemperek, M. Karagounis.
CPPM: D. Fougeron, M. Menouni.
Genova: R. Beccherle, G. Darbo.
LBNL: R. Ely, M. Garcia-Sciveres, D. Gnani, A. Mekkaoui.
Nikhef: R. Kluit, J.D. Schipper



Internal Services – Stave Cable

- Stave cable still on conceptual stage:
 - Cable using System Task force recommended signals + direct power.
 - Wire bonding <u>MUST</u> be done on stave
- Many ideas (none developed to the end)
 - Single cable (conceptually like a circuit board to connect the FE chips)
 - Monolithic cable on top or on the bottom
 - Single cable also possible
- Space is limited, what about reworking?

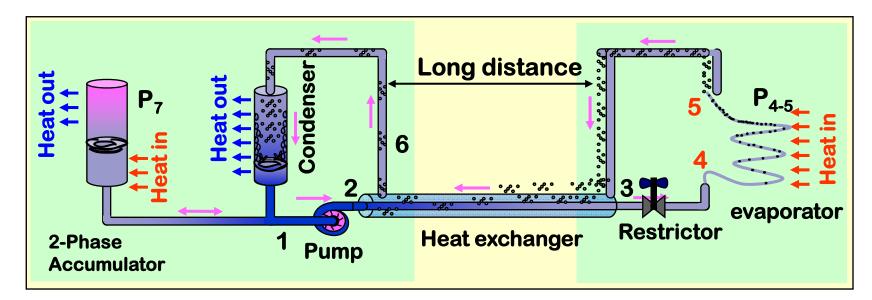
Monolithic Cable on the Bottom


LHCC – ATLAS IBL

From End-of-Stave (PP0) to PP1

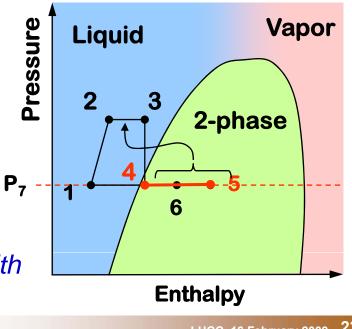
Ø 92.8

"Strawman" Issuess:

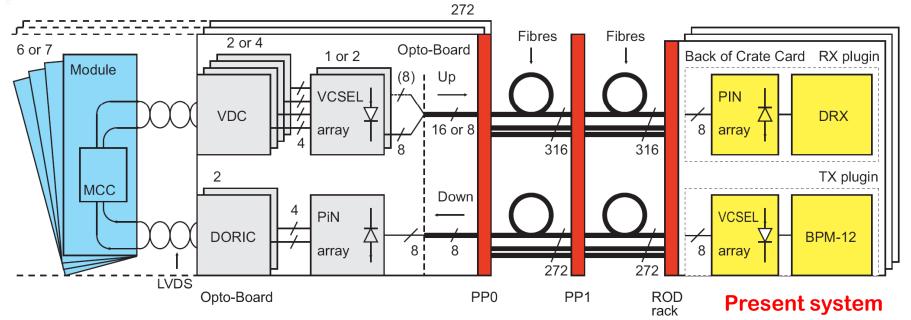

- X-section of LV cables
- No active EOS -> 6m (FE-I4 to optoboard)
- Interconnection space at PP0.
- PP1 connectors...
 - ...more work to come to a design

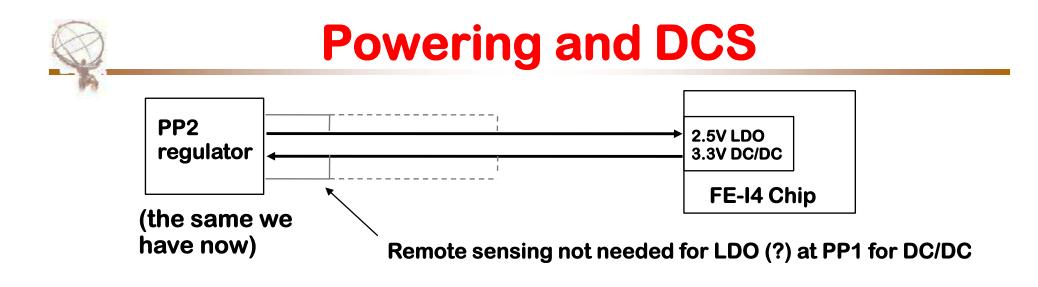
Ref.: Marco Oriundo, Danilo Giugni, ...

LHCC – ATLAS IBL



2PACL (2-Phase Accumulator Controlled Loop) principle of cooling:


- -Liquid overflow => no mass flow control
- -Low vapor quality => good heat transfer


-Very stable evaporator temperature control with 2-phase accumulator ($P_{4-5} = P_7$)

R/O Links

- Changes (strawman R/O from System Task force):
 - Down link (TTC) stay the same 40Mb/s (Manchester coding) to 2 FE-I4 (?)
 need clock multiplier in the FE-I4 (issues of SEU for clock multiplier).
 - Uplink use 160 Mb/s data+clock (8b/10b encode) Single FE-I4
 - Need new BOC design (substitute custom ASIC(s) with FPGA)
 - ROD could stay the same: reprogram FPGA (or new design for x2 links: need also 2 S-Links)
 - Use GRIN fibers (under rad-test for SLHC, or new Ericsson)
 - Opto-board at PP1 need test of reliable electrical signal transmission (~4m)

Power scheme – Independent powering with PP1 regulators:

• Use, on FE-I4 chip, x2 DC/DC and/or LDO conversion

DCS: similar implementation that today

- Temperature sensors not on each module, smaller granularity
- More than 600V if planar sensors?
- Minor changes needed but it has a lot of different components to build/acquire.