

History of particle therapy in the Netherlands

Johannes (Hans) A. Langendijk

Department of Radiation Oncology
University Medical Center Groningen (UMCG)
UMC Groningen Comprehensive Cancer Center
UMC Groningen Proton Therapy Center (GPTC)
GRONINGEN
The Netherlands

Disclosures

- Department research agreements with:
 - RaySearch
 - Philips
 - IBA
 - Mirada
- Speaker for IBA symposium with honorarium (UMCG Research BV)
- Conference sponsorship by IBA

Milestones

Year	Milestone		
2009	Horizon Scanning Report (Health Council)		
2010-2012	Advisory Reports (Health Insurance Board)		
2013	Planning Directive Proton Therapy (Ministry of Health)		
2015	Start construction of first two Dutch Proton therapy centres		
2017	First patient treatment planned		
2020-2022	Full capacity available		

- Should proton therapy be part of Specific Medical Procedures Act (WBMV)
 - Requires formal governmental license
- Considerations regarding the need for RCT and alternative evidence-based methods
- Overview of indications
- Estimation of the number of patients with an expected benefit from proton therapy
 - Which capacity is needed?

Example (breast cancer)

Indication group	Annual incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Breast cancer	12,171	10,102	5%	505

- Annual incidence based on the Dutch Cancer Registry (2005)
- Percentage and number of patients treated with radiotherapy based on CCORE Report
- Percentage and number of irradiated patients with expected benefit from protons

Example (breast cancer)

Indication group	Annual incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Breast cancer	12,171	10,102	5%	505

- Annual incidence based on the Dutch Cancer Registry (2005)
- Percentage and number of patients treated with radiotherapy based on CCORE Report
- Percentage and number of irradiated patients with expected benefit from protons

Example (breast cancer)

Indication group	Annual incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Breast cancer	12,171	10,102	5%	505

- Annual incidence based on the Dutch Cancer Registry (2005)
- Percentage and number of patients treated with radiotherapy based on CCORE Report
- Percentage and number of irradiated patients with expected benefit from protons

Horizon Scanning Report

Indication grouping

- Standard indications
- Prevention of secondary tumours
- Potential indications
- Model-based indications

Indication group	Incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Standard indications	550	299	84%	252

- Generally accepted indications for proton therapy world wide:
 - Paediatric tumours
 - Base of skull tumours
 - Ocular melanoma

Indication group	Incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Prevention secondary tumours	15,867	11,289	7%	807

- Young patients (18-40 years) with tumours with favourable prognosis:
 - Early stage breast cancer
 - Hodgkin lymphoma
 - Seminoma testis

Indication group	Incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Potential indications	21,061	14,471	8%	1,215

- Target dose escalation
 - Individual:
 - when the required dose can not be given without exceeding the threshold dose for critical structures (e.g. spinal cord)
 - Within framework of RCT

Indication group	Incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Model-based indications	52,305	34,578	14%	4,824

- Proton therapy indicated based on expected benefit in terms of clinically relevant risk reduction of radiation-induced side effects
- Model-based selection and validation

Step 1: NTCP-model

Example: Tube feeding dependence (n=350)

Step 2: Dose comparison

Assessment \(\D\) Dose (individual patient)

Standard IMRT (parotid glands)

Swallowing sparing IMRT (parotid glands and superior

Swallowing sparing IMPT (parotid glands and superior PCM)

Dmean superior PCM: 66 Gy

Dmean superior PCM: 60 Gy

Dmean superior PCM: 50 Gy

Step 3: Clinical benefit

Translate ΔDose into ΔNTCP

Step 3: Clinical benefit

Translate ΔDose into ΔNTCP

Step 3: Clinical benefit

Step 3: Selection

Which threshold should be used?

ANTCP varies widely among individual patients with apparently similar tumour charactersitics

NVRO consensusThresholds for ANTCP

Thresholds for 1 complication

CTCAE Grade	Threshold for ΔNTCP
1	No indication
II	≥ 10%
Ш	≥ 5%
IV-V	≥ 2%

NOTE:

Separate algorithms in case of multiple complications

Landelijk Platform Protonen Therapie (LPPT)

Consensus document voor selectie van patiënten met een model-based indicatie voor protonen therapie

Versie: 5 juni 2015

Inleiding

In augustus 2012 heeft het Zorginstituut Nederland (ZiN (voormalig CVZ) geoordeeld dat de zogenaamde model-based indicaties voor protonentherapie voldoen aan de stand van de wetenschap en praktijk [1]. Hiermee maken de model-based indicaties voor het basispakket en vallen zij onder de verzekerde zorg.

Van een model-based indicatie voor protonentherapie is sprake als er op basis van een planningsvergelijking tussen protonen en fotonen een relevant verschil in het risco op een ongewenst neveneffect verwacht wordt (ANTCP). Het principe van deze model-based selectiemethode staat kort samengevat in Figuur 1.

Step 3: Selection

Which threshold should be used?

Threshold for grade III or higher side effects: 5%

Four major examples

Indication group	Incidence in 2005	Number of patients treated with RT	Expected percentage with benefit from protons	Number of patients with benefit of protons
Breast cancer	12,171	10,102	5%	505
Prostate cancer	8,773	5,264	10%	526
Lung cancer	9,801	5,264	15%	1,118
Head and neck cancer	2,487	2,288	45%	1,069

Horizon Scanning Report

Report of the Dutch Health Council (2009)

Indications for proton therapy (4 categories)

Milestones

Year	Milestone
2009	Horizon Scanning Report (Health Council)
2009-2012	Advisory Reports (Health Insurance Board)
2013	Planning Directive Proton Therapy (Ministry of Health)
2015	Start construction of first two Dutch Proton therapy centres
2017	First patient treatment planned
2020-2022	Full capacity available

Health Insurance Board

Introduction

- Main task:
 - Review scientific evidence to accept a new treatment modality / drug / technology to be part of the Basic Health Insurance Package
 - If YES, all patients will be reimbursed
 - If NO, reimbursement depends on individual Health Insurance Company
- Main problem in 2010:
 - Only level I-II evidence accepted as evidencebased medicine

Health Insurance Board Reports

- Report: 'Proton Therapy' (2009)
 - Recognition of the model-based approach
- Report: 'Indications for proton therapy part
 I: the standard indications' (2010):
 - Positive advice
 - Insured care (252 patients per year)
- Report: 'Indications for proton therapy part II: the model-based indications' (2012)
 - Positive advice
 - 3,218 patients per year
 - requires indication protocols per tumour site

Milestones

Year	Milestone
2009	Horizon Scanning Report (Health Council)
2009-2012	Advisory Reports (Health Insurance Board)
2013	Planning Directive Proton Therapy (Ministry of Health)
2015	Start construction of first two Dutch Proton therapy centres
2017	First patient treatment planned
2020-2022	Full capacity available

Planning Directive PT

Ministry of Health

- Based on reports from:
 - Health Council (2009)
 - Health Insurance Board (2009-2012)
 - Consensus with all proton therapy initiatives
- Main issues:
 - Specific Medical Procedures Act (WBMV)
 - Maximum license for 2,200 patients per year
 - 4 centres
 - Optimal geographic distribution
 - Optimal accessibility for patients
 - Re-evaluation after full capacity reached

Proton therapy facilities

Geographic distribution

Groningen (GPTC)
Treatment rooms: 2
Capacity: 600 patients

Vendor: IBA

Operational: Q4-2017

Amsterdam (APTC)
Treatment rooms: 3
Capacity: 600 patients
Set on hold

Delft (HollandPTC)
Treatment rooms: 3
Capacity: 600 patients

Vendor: Varian

Operational: Q3-2017

Maastricht (ZonPTC)

Treatment rooms: 1 gantry

Capacity: 400 patients

Vendor: Mevion

Operational: Q4-2018

Planning Directive PT

Background and license conditions

- Realistic business cases regarding maximum capacity:
 - Limited experience with PBS + image-guidance+ real time adaptation
 - Maximum capacity: 600 patients
- Existing radiotherapy department:
 - Efficient use of existing experience/infrastructure
 - Better integration with existing multidisciplinary pathways

Planning Directive PT

Background and license conditions

- Direct involvement of University Medical Centre:
 - Strong clinical scientific track record
 - Research plan
 - Clinical validation of benefits of protons
 - Cost effectiveness
- Uniform national prospective data registration
 - Involvement of 7 university departments ->
 optimal environment for clinical studies with
 high patient accrual

Planned capacity

In relation to expected future indications

Planned capacity

In relation to total number of RT treatments

Next steps

NVRO consensusThresholds for ANTCP

Thresholds for 1 complication

CTCAE Grade	Threshold for ΔNTCP
1	No indication
II	≥ 10%
III	≥ 5%
IV-V	≥ 2%

NOTE:

Separate algorithms in case of multiple complications

Which NTCP models should be used for model-based selection?

Landelijk Platform Protonen Therapie (LPPT)

Consensus document voor selectie van patiënten met een model-based indicatie voor protonen therapie

Versie: 5 juni 2015

Inleiding

In augustus 2012 heeft het Zorginstituut Nederland (ZiN (voormalig CVZ) geoordeeld dat de zogenaamde model-based indicaties voor protonentherapie voldoen aan de stand van de wetenschap en praktijk [1]. Hiermee maken de model-based indicaties deel uit van het basispakket en vallen zij onder de verzekerde zorg.

Van een model-based indicatie voor protonentherapie is sprake als er op basis van een planningsvergelijking tussen protonen en fotonen een relevant verschil in het nisco op een ongewenst neveneffect verwacht wordt (ΔNTCP). Het principe van deze model-based selectiemethode staat kort samengevat in Figuur 1.

NTCP-models

Minimal requirements for *high quality* modelbased selection

- Prospective data collection of toxicity
- Sufficient number of patients /events
- Multivariable analysis
- Clinical Decision Rule
 - Formula, nomogram or graph
- Internal validation (correct for overfitting)
 - Bootstrapping and/or cross-validation
- Model performance

NTCP-models

Levels of evidence (TRIPOD Statement)

TRIPOD Type	Description
Type 4	External validation of published <i>High quality NTCP-model</i> in separate dataset in other institution
Type 3	Development and validation of <i>High quality NTCP-model</i> using one data set for development and a separate dataset for validation
Type 2b	Non-random split-sample development and validation
Type 2a	Random split-sample development and validation
Type 1b	Development and validation using resampling
Type 1a	Development only

High quality refers to requirements for NTCP-models

Model-based selection

Model-based selection

Model-based approach

Rapid Learning Health Care (RLHC) system

Conclusions

- The introduction of proton therapy on a national basis is a long and time-consuming process
- The model-based approach can be used as an alternative for RCT and should be implemented within the framework of a rapid learning health care system
 - Continuous quality improvement
 - Selection of patients
 - Clinical validation

Conclusions

- Main challenges
 - Indication protocols and NTCP-model selection
 - Model-based selection work flow
 - Uniform national prospective data registration

