History of particle therapy in the Netherlands

Johannes (Hans) A. Langendijk
Department of Radiation Oncology
University Medical Center Groningen (UMCG)
UMC Groningen Comprehensive Cancer Center
UMC Groningen Proton Therapy Center (GPTC)
GRONINGEN
The Netherlands
Disclosures

• Department research agreements with:
 – RaySearch
 – Philips
 – IBA
 – Mirada

• Speaker for IBA symposium with honorarium (UMCG Research BV)

• Conference sponsorship by IBA
Milestones

<table>
<thead>
<tr>
<th>Year</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Horizon Scanning Report (Health Council)</td>
</tr>
<tr>
<td>2010-2012</td>
<td>Advisory Reports (Health Insurance Board)</td>
</tr>
<tr>
<td>2013</td>
<td>Planning Directive Proton Therapy (Ministry of Health)</td>
</tr>
<tr>
<td>2015</td>
<td>Start construction of first two Dutch Proton therapy centres</td>
</tr>
<tr>
<td>2017</td>
<td>First patient treatment planned</td>
</tr>
<tr>
<td>2020-2022</td>
<td>Full capacity available</td>
</tr>
</tbody>
</table>
• Should proton therapy be part of Specific Medical Procedures Act (WBMV)
 – Requires formal governmental license

• Considerations regarding the need for RCT and alternative evidence-based methods

• Overview of indications

• Estimation of the number of patients with an expected benefit from proton therapy
 – Which capacity is needed?
Estimation of numbers
Example (breast cancer)

<table>
<thead>
<tr>
<th>Indication group</th>
<th>Annual incidence in 2005</th>
<th>Number of patients treated with RT</th>
<th>Expected percentage with benefit from protons</th>
<th>Number of patients with benefit of protons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>12,171</td>
<td>10,102</td>
<td>5%</td>
<td>505</td>
</tr>
</tbody>
</table>

- Annual incidence based on the Dutch Cancer Registry (2005)
- Percentage and number of patients treated with radiotherapy based on CCORE Report
- Percentage and number of irradiated patients with expected benefit from protons

Horizon Scanning Report (Health Council 2009)
Estimation of numbers

Example (breast cancer)

<table>
<thead>
<tr>
<th>Indication group</th>
<th>Annual incidence in 2005</th>
<th>Number of patients treated with RT</th>
<th>Expected percentage with benefit from protons</th>
<th>Number of patients with benefit of protons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>12,171</td>
<td>10,102</td>
<td>5%</td>
<td>505</td>
</tr>
</tbody>
</table>

- Annual incidence based on the Dutch Cancer Registry (2005)
- Percentage and number of patients treated with radiotherapy based on CCORE Report
- Percentage and number of irradiated patients with expected benefit from protons
Estimation of numbers
Example (breast cancer)

<table>
<thead>
<tr>
<th>Indication group</th>
<th>Annual incidence in 2005</th>
<th>Number of patients treated with RT</th>
<th>Expected percentage with benefit from protons</th>
<th>Number of patients with benefit of protons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>12,171</td>
<td>10,102</td>
<td>5%</td>
<td>505</td>
</tr>
</tbody>
</table>

- Annual incidence based on the Dutch Cancer Registry (2005)
- Percentage and number of patients treated with radiotherapy based on CCORE Report
- Percentage and number of irradiated patients with expected benefit from protons
Horizon Scanning Report

Indication grouping

• Standard indications
• Prevention of secondary tumours
• Potential indications
• Model-based indications
Standard indications

Number of patients

<table>
<thead>
<tr>
<th>Indication group</th>
<th>Incidence in 2005</th>
<th>Number of patients treated with RT</th>
<th>Expected percentage with benefit from protons</th>
<th>Number of patients with benefit of protons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard indications</td>
<td>550</td>
<td>299</td>
<td>84%</td>
<td>252</td>
</tr>
</tbody>
</table>

- Generally accepted indications for proton therapy world wide:
 - Paediatric tumours
 - Base of skull tumours
 - Ocular melanoma
Prevention secondary tumours

Number of patients

<table>
<thead>
<tr>
<th>Indication group</th>
<th>Incidence in 2005</th>
<th>Number of patients treated with RT</th>
<th>Expected percentage with benefit from protons</th>
<th>Number of patients with benefit of protons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevention secondary tumours</td>
<td>15,867</td>
<td>11,289</td>
<td>7%</td>
<td>807</td>
</tr>
</tbody>
</table>

- Young patients (18-40 years) with tumours with favourable prognosis:
 - Early stage breast cancer
 - Hodgkin lymphoma
 - Seminoma testis
Potential indications
Number of patients

<table>
<thead>
<tr>
<th>Indication group</th>
<th>Incidence in 2005</th>
<th>Number of patients treated with RT</th>
<th>Expected percentage with benefit from protons</th>
<th>Number of patients with benefit of protons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential indications</td>
<td>21,061</td>
<td>14,471</td>
<td>8%</td>
<td>1,215</td>
</tr>
</tbody>
</table>

- Target dose escalation
 - Individual:
 - when the required dose cannot be given without exceeding the threshold dose for critical structures (e.g. spinal cord)
 - Within framework of RCT
Model-based indications

Number of patients

<table>
<thead>
<tr>
<th>Indication group</th>
<th>Incidence in 2005</th>
<th>Number of patients treated with RT</th>
<th>Expected percentage with benefit from protons</th>
<th>Number of patients with benefit of protons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model-based indications</td>
<td>52,305</td>
<td>34,578</td>
<td>14%</td>
<td>4,824</td>
</tr>
</tbody>
</table>

- Proton therapy indicated based on expected benefit in terms of clinically relevant risk reduction of radiation-induced side effects
- Model-based selection and validation

Horizon Scanning Report (Health Council 2009)
Step 1: NTCP-model
Example: Tube feeding dependence (n=350)
Step 2: Dose comparison
Assessment ΔDose (individual patient)

- **Standard IMRT (parotid glands)**
 - Dmean superior PCM: 66 Gy

- **Swallowing sparing IMRT (parotid glands and superior)**
 - Dmean superior PCM: 60 Gy

- **Swallowing sparing IMPT (parotid glands and superior PCM)**
 - Dmean superior PCM: 50 Gy

Van der Laan et al, Acta Oncol 2012
Step 3: Clinical benefit
Translate ΔDose into ΔNTCP

Risk tube feeding dependence (NTCP)

Chemoradiation

Photon

Protons

Mean dose superior PCM

Translation from Δdose to ΔNTCP

Langendijk et al, Radiother Oncol 2013
Step 3: Clinical benefit
Translate ΔDose into ΔNTCP

Translation from Δdose to ΔNTCP

Langendijk et al, Radiother Oncol 2013
Step 3: Clinical benefit
Translate ΔDose into ΔNTCP

Translation from Δdose to ΔNTCP

Langendijk *et al.*, Radiother Oncol 2013
Step 3: Selection
Which threshold should be used?

ΔNTCP varies widely among individual patients with apparently similar tumour characteristics

Langendijk et al, Work in Progress
NVRO consensus
Thresholds for ΔNTCP

<table>
<thead>
<tr>
<th>CTCAE Grade</th>
<th>Threshold for ΔNTCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No indication</td>
</tr>
<tr>
<td>II</td>
<td>≥ 10%</td>
</tr>
<tr>
<td>III</td>
<td>≥ 5%</td>
</tr>
<tr>
<td>IV-V</td>
<td>≥ 2%</td>
</tr>
</tbody>
</table>

NOTE:
Separate algorithms in case of multiple complications
Step 3: Selection
Which threshold should be used?

Threshold for grade III or higher side effects: 5%

Langendijk et al, Work in Progress
Model-based indications

Four major examples

<table>
<thead>
<tr>
<th>Indication group</th>
<th>Incidence in 2005</th>
<th>Number of patients treated with RT</th>
<th>Expected percentage with benefit from protons</th>
<th>Number of patients with benefit of protons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>12,171</td>
<td>10,102</td>
<td>5%</td>
<td>505</td>
</tr>
<tr>
<td>Prostate cancer</td>
<td>8,773</td>
<td>5,264</td>
<td>10%</td>
<td>526</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>9,801</td>
<td>5,264</td>
<td>15%</td>
<td>1,118</td>
</tr>
<tr>
<td>Head and neck cancer</td>
<td>2,487</td>
<td>2,288</td>
<td>45%</td>
<td>1,069</td>
</tr>
</tbody>
</table>
Horizon Scanning Report

Indications for proton therapy (4 categories)

- Prevention of complications: 4,824 patients per year
- Target dose escalation: 1,215 patients per year
- Prevention secondary tumours: 807 patients per year
- Standard indications: 252 patients per year

Total number with expected benefit: 7,098 patients per year (based on Cancer Registry in 2005)
Advice: Keep initial capacity below 4,000 patients per year
Milestones

<table>
<thead>
<tr>
<th>Year</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Horizon Scanning Report (Health Council)</td>
</tr>
<tr>
<td>2009-2012</td>
<td>Advisory Reports (Health Insurance Board)</td>
</tr>
<tr>
<td>2013</td>
<td>Planning Directive Proton Therapy (Ministry of Health)</td>
</tr>
<tr>
<td>2015</td>
<td>Start construction of first two Dutch Proton therapy centres</td>
</tr>
<tr>
<td>2017</td>
<td>First patient treatment planned</td>
</tr>
<tr>
<td>2020-2022</td>
<td>Full capacity available</td>
</tr>
</tbody>
</table>
Health Insurance Board
Introduction

• Main task:
 – Review scientific evidence to accept a new treatment modality / drug / technology to be part of the Basic Health Insurance Package
 • If YES, all patients will be reimbursed
 • If NO, reimbursement depends on individual Health Insurance Company

• Main problem in 2010:
 – Only level I-II evidence accepted as evidence-based medicine
Health Insurance Board
Reports

 – Recognition of the model-based approach

 – Positive advice
 – Insured care (252 patients per year)

 – Positive advice
 – 3,218 patients per year
 • requires indication protocols per tumour site
Milestones

<table>
<thead>
<tr>
<th>Year</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Horizon Scanning Report (Health Council)</td>
</tr>
<tr>
<td>2009-2012</td>
<td>Advisory Reports (Health Insurance Board)</td>
</tr>
<tr>
<td>2013</td>
<td>Planning Directive Proton Therapy (Ministry of Health)</td>
</tr>
<tr>
<td>2015</td>
<td>Start construction of first two Dutch Proton therapy centres</td>
</tr>
<tr>
<td>2017</td>
<td>First patient treatment planned</td>
</tr>
<tr>
<td>2020-2022</td>
<td>Full capacity available</td>
</tr>
</tbody>
</table>
Planning Directive PT
Ministry of Health

• Based on reports from:
 – Health Council (2009)
 – Health Insurance Board (2009-2012)
 – Consensus with all proton therapy initiatives

• Main issues:
 – Specific Medical Procedures Act (WBMV)
 – Maximum license for 2,200 patients per year
 – 4 centres
 • Optimal geographic distribution
 • Optimal accessibility for patients
 – Re-evaluation after full capacity reached
Proton therapy facilities

Geographic distribution

Groningen (GPTC)
- Treatment rooms: 2
- Capacity: 600 patients
- Vendor: IBA
- Operational: Q4-2017

Amsterdam (APTC)
- Treatment rooms: 3
- Capacity: 600 patients
- Set on hold

Delft (HollandPTC)
- Treatment rooms: 3
- Capacity: 600 patients
- Vendor: Varian
- Operational: Q3-2017

Maastricht (ZonPTC)
- Treatment rooms: 1 gantry
- Capacity: 400 patients
- Vendor: Mevion
- Operational: Q4-2018
Planning Directive PT
Background and license conditions

• High accessibility for patients ➔ optimal geographic distribution

• Realistic business cases regarding maximum capacity:
 – Limited experience with PBS + image-guidance + real time adaptation
 – Maximum capacity: 600 patients

• Existing radiotherapy department:
 – Efficient use of existing experience/infrastructure
 – Better integration with existing multidisciplinary pathways
Planning Directive PT
Background and license conditions

- Direct involvement of University Medical Centre:
 - Strong clinical scientific track record
 - Research plan
 - Clinical validation of benefits of protons
 - Cost effectiveness

- Uniform national prospective data registration
 - Involvement of 7 university departments ➔ optimal environment for clinical studies with high patient accrual
Planned capacity
In relation to expected future indications

Horizon Scanning Report
All standard and model-based indications
Planned capacity

Assumed ramp up of 30%-60%-90%-100%
Planned capacity
In relation to total number of RT treatments

Number of photon therapy treatment per year

Assumed ramp up of 30%-60%-90%-100%
Next steps
NVRO consensus
Thresholds for ΔNTCP

Thresholds for 1 complication

<table>
<thead>
<tr>
<th>CTCAE Grade</th>
<th>Threshold for ΔNTCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>No indication</td>
</tr>
<tr>
<td>II</td>
<td>≥ 10%</td>
</tr>
<tr>
<td>III</td>
<td>≥ 5%</td>
</tr>
<tr>
<td>IV-V</td>
<td>≥ 2%</td>
</tr>
</tbody>
</table>

NOTE:
Separate algorithms in case of multiple complications

Which NTCP models should be used for model-based selection?
NTCP-models

Minimal requirements for high quality model-based selection

• Prospective data collection of toxicity
• Sufficient number of patients/events
• Multivariable analysis
• Clinical Decision Rule
 – Formula, nomogram or graph
• Internal validation (correct for overfitting)
 – Bootstrapping and/or cross-validation
• Model performance

NTCP-models

Levels of evidence (TRIPOD Statement)

<table>
<thead>
<tr>
<th>TRIPOD Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 4</td>
<td>External validation of published High quality NTCP-model in separate dataset in other institution</td>
</tr>
<tr>
<td>Type 3</td>
<td>Development and validation of High quality NTCP-model using one data set for development and a separate dataset for validation</td>
</tr>
<tr>
<td>Type 2b</td>
<td>Non-random split-sample development and validation</td>
</tr>
<tr>
<td>Type 2a</td>
<td>Random split-sample development and validation</td>
</tr>
<tr>
<td>Type 1b</td>
<td>Development and validation using resampling</td>
</tr>
<tr>
<td>Type 1a</td>
<td>Development only</td>
</tr>
</tbody>
</table>

High quality refers to requirements for NTCP-models

Model-based selection
Decision support system

\[\Delta \text{NTCP} \text{ criteria fulfilled?} \]

\[\text{IMRT} \]

\[\text{IMPT} \]

\[\Delta \text{NTCP-profile} \]

- Hypothyroidism
- Sticky saliva
- Xerostomia
- Dysphagia
- Tube feeding

\[0\% \quad -5\% \quad -10\% \quad -15\% \]
Model-based selection
Decision support system

IMRT

NO

ΔNTCP criteria fulfilled?

IMPT
Model-based approach
Rapid Learning Health Care (RLHC) system

Knowledge stage
- NTCP-model
- NTCP-optimisation
- Model-based validation

Data stage
- Prospective data registration
- IMPT protons
- IMRT photons

Application stage
- IMPT dose optimisation
- IMRT dose optimisation

Evaluation stage
- Indication protocol
- NTCP-model library

Most relevant dose
Volume factors

Conclusions

• The introduction of proton therapy on a national basis is a long and time-consuming process

• The model-based approach can be used as an alternative for RCT and should be implemented within the framework of a rapid learning health care system
 – Continuous quality improvement
 – Selection of patients
 – Clinical validation
Conclusions

• Main challenges
 – Indication protocols and NTCP-model selection
 – Model-based selection work flow
 – Uniform national prospective data registration