BASICS in RADIATION BIOLOGY
(from the biological perspective)
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Radiobio

Fact: We ¢
degree

ogy
eliver a known physical dose with a high
of accuracy to similar tumors

Observation: The radiocurability of tumors varies

widely

Aim: Understand the biological factors that
Influence the sensitivity of tumors to radiation
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Radiobiology

The response to radiation is different in normal tissues
and cancer:

= at the cellular level
= at the tissue level

These differences are due to the underlying biological
properties of different tissues and cancers

What is the relevance of these differences?
How do they have to be taken into consideration?
How can we exploit them?
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Photon- and Particle-based Radiobiology:

Understand the biological factors that influence the sensitivity
to different types of ionizing radiation
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= How can we define these differences?
= How do they have to be considered?
=  Where do these differences derive from?

} see upcoming lecture, RBE
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The Therapeutic Window
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Radiation-Induced Biological Processes
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y

DNA-Repair-2

y

Complexity of Radiation-Induced Biological Processes
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Comparison of Conventional-Dose

vs High-Dose Conformal Radiation Therapy
in Clinically Localized Adenocarcinoma

of the Prostate
A Randomized Controlled Trial

(Reprinted) JAMA, September 14, 2005—Vol 294, No. 10 1233
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383 Patients Randomized

197 Assigned to Receive Conventional-Dose
Radiation
Total Dose 70.2 GyE
Proton Boost 19.8 GyE
3-D Conformal Photon 50.4 Gy

181 Received 69.8-70.2 GyE as Assigned
7 Received <69.8 GyE
8 Reoceived >70.2 GyE
1 Did Not Receive Assigned Therapys

196 Assigned to Receive High-Dose Radiation
Total Dose 79.2 GyE
Proton Boost 28.8 GYE
3-D Conformal Photon 50.4 Gy

172 Received 78.8-79.2 GyE as Assigned
18 Received <78.8 GyE
5 Received >79.2 GyE
1 Refused Treatmentt

197 Included in Analysis

1985 Included in Analysis




{5 Five compared with six fractions per week of conventional
radiotherapy of squamous-cell carcinoma of head and neck:
DAHANCA 6&7 randomised controlled trial

Jens Overgaard, Hanne Sand Hansen, Lena Specht, Marie Overgaard, Cai Grau, Elo Andersen, Jens Bentzen, Lars Bastholt,
Olfred Hansen, Jargen Johansen, Lisbeth Andersen, Jan F Evensen, on behalf of the Danish Head and Neck Cancer Study
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Defining (Personalized, Combined) Treatment Modalities
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Markers of Response
Adaptive Radiochemotherapy
during Treatment Course

Tumor Response

Change in
Radiosensitivity

Dynamic Treatment Response to
Different Treatment Modalities



FACTORS INFLUENCING LOCAL TUMOR CONTROL
(5 R's of RADIOTHERAPY: Alterations of Tumor Biology)

= Repair

= Reassortment of Cell Cycle (Redistribution)
(redistribution into more sensitive/resistant cell cycle phase)

= Repopulation
(rapid repopulation of clonogenic tumor cells during treatment)

= Reoxygenation:
(hypoxic clonogenic cells become better oxygenated after RT-fraction)

= (Intrinsic) Radiosensitivity

o _ HR. Withers, 1975
St GG Steel, 1989




«HALLMARKS OF RADIOTHERAPY»
FACTORS INFLUENCING LOCAL TUMOR CONTROL

INTRINSIC
RADIOSENSITIVITY

REPAIR and
RECOVERY

REPOPULATION

REDISTRIBUTION Systemic Effect

Radiotherapy

!

«5 R’s of Radiotherapy» HR. Withers, 1975
(local tumor effect) GG Steel, 1989



DNA Is the Major Target

Single- Double- Base mismatches,
strand strand Bulky insertions
break break adducts and deletions Base alkylation

Double-
strand
break repair
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Several DNA Damage Specific Repair Machineries

DSBin S and G2/
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crosslinks/ replication stress
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DNA Damage Response and Repair



Repair
Radiation-induced lesions in DNA

Amount

Base alteration
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Amount of DNA-damage per Cell
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crosslink ~ 30 per Cell per Gy
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DSB’s are unique forms of damage produced by
radiation and by only a few drugs

An unrepaired DSB leads to loss of genetic
Information at mitosis

DSB’s are extremely toxic. It takes only 1
unrepaired DSB to kill a cell

Evidence suggests that DSB’s are the most
Important lesions produced by ionizing radiation



High Efficacy of DNA Repair

Double strand breaks

DSB
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Repair Kinetics
e Double strand breaks
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Dikomey and Brammer 2000 Int J Radiat Biol 76, 773-781

Fast and slow repair of DSB
Repair is finished after 12 h (98% will be repaired in hormal fibroblasts)
Repair kinetics is independent of dose
CFGE: constant field gel electrophoresis



How are DNA double strand breaks repaired ?




DNA Damage Response & Repair

Activated ATM phosphorylates Histone H2AX

N

% @X‘ MANS

FOCI formation

Phosphorylation of histone H2AX
Form within minutes at every DSB in the cell

Opening up of DNA to allow access of other
repair factors; recruits repair proteins

Phosphorylated H2AX (yH2AX)
often used as a marker for DSBs




DNA Damage Response & Repair

\ v
BER/SSBR  NHEJ

NHEJ: Non-homologous end joining
HR: Homologous recombination



DNA Damage Response & Repair

double-strand
4 break
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> resection of single
strands by exonuclease

--------------------------------------- > DNA strands brought together
............................................. possible limited base pairing between them

.............................. Strands fI“ed In
..... N joined by ligation

AN LN NNV TAN N N

l double helix reconstruction
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DNA Damage Response & Repair

Non-homologous endjoining defects affect radiosensitivity
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DNA Damage Response & Repair

dsDNA break
N 1 b

base-pairing with unwound
7 DNA of sister chromatid
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DNA of undamaged
sister chromatid
l strand extension
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l disengage and pair

fill in gaps,
restore wild-type helix

ROV




DNA Damage Response & Repair

Homologous recombination defects affect radiosensitivity

Fox 1990
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Kurimasa A et al PNAS 1999 Erami A et al NAR 1998



DNA Damage Response & Repair

NHEJ:

erepairs DSBs

estrongly determines radiosensitivity in cells, animals and humans
eacts throughout the cell cycle

HR:

erepairs DSBsin S and G2

edetermines radiosensitivity in S and G2

eerror-free since using the sisterchromatid as template
ealso relevant for replication associated DSB repair

SSBR:
*Repairs SSBs

eDetermines radosensitivity
probably due to the conversion of SSBs to DSBs

v
NHEJ



Chromosomal aberrations by Ionizing Radiation
— Loss of clonogenicity (Inactivation)

Acentric fragment

lDicentric + 4R

I ——— Mitotic catastrophe ——
cell death

—— Survival

Reciprocal
translocation

= Formation of anaphase bridges and azentric fragments

= Azentric fragments are removed via micronuclei : loss of DNA :: Loss of essential

proteins

= Dicentric fragments/anaphase bridges will lead to mitotic catastrophe



Chromosomal aberrations
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CHROMATID-TYPE
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Examples of 2-lesion Chromosome-type aberrations
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o VS "
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= a2 >
ip peri inversion paracentric inversion

http://atlasgeneticsoncology.org/Deep/Chromaber.html

Examples of 2-lesion Chromatid-type aberrations
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Chromatid-type where the breaks and re-joins affect only one of the sister-chromatids, at any one locus

Chromosome-type where the breaks and re-joins always affect both sister-chromatids at any one locus




.
Early and Late Cell Death

Early cell death
(apoptosis, senescence
autophagy necrosis)

\ Clon.ogenic
@ —»M /% l l l > survival

><% o ® >«
DNA damage
response ( Mitotic Catastrophe >

@ — @b Late cell death
(apoptosis, senescence

autophagy, necrosis)

1) IR-induced DNA damage elicits activation of DNA damage response

2) In certain rare cells: induction of apoptosis and other forms of cell death

3) In most cases, cells die after attempting mitosis

4) Improperly repaired damage causes mitotic catastrope, which can take place
after the first attempt at cell division or after several rounds of proliferation

» late cell death



«HALLMARKS OF RADIOTHERAPY»
FACTORS INFLUENCING LOCAL TUMOR CONTROL

INTRINSIC
RADIOSENSITIVITY

REPAIR and
RECOVERY

REPOPULATION

REDISTRIBUTION

!

«5 R’s of Radiotherapy» HR. Withers, 1975
(local tumor effect) GG Steel, 1989



«HALLMARKS OF RADIOTHERAPY»

FACTORS INFLUENCI QCAL TUMOR CONTROL

N N

INTRINSIC
RADIOSENSITIVITY

REPAIR and
RECOVERY

REPOPULATION

REDISTRIBUTION Systemic Effect
Radiotherapy
(abscopal efect)
|
«5 R’s of Radiotherapy» HR. Withers, 1975

(local tumor effect) GG Steel, 1989



Cure = min kill of 10° cells

Doublings Cells Grams
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Summary

The classic 5 R's of Radiotherapy are nowadays
understood on the molecular level

RT-induced DNA-damage is (still) the most relevant
RT-induced insult

RT-induced processes on the molecular, cellular,
tumor microenvironment level act as targets for
combined treatment modalities

Is Rejection of neoplastic lesions by immune system
a novel «R»?



Irradiated Tumor: In Situ Individualized Vaccine ?

Before RT | After RT Draining Lymphnode
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Demaria; Formenti et al. 2012,

» Immunogenic Cell Death




. Therapeutic effects of ablative radiation on local tumor require CD8* T cells:
changing strategies for cancer treatment

*Youjin Lee,! *Sogyong L. Auh,! Yugang Wang,! Byron Burnette,! Yang Wang,! Yuru Meng,? Michael Beckett,?
Rohit Sharma,® Robert Chin,! Tony Tu,! Ralph R. Weichselbaum,? and Yang-Xin Fu'
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Immunogenic Cell Death induced by RT

ICD
/ Therapy-
Therapy-sensitive Ins(:?ecsesd
Sofe tumor cells
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Therapy-resistant Tumc
tumor cells ly:

Properties of Immunogenic Cell Death:
a) Exposure of calreticulin, secretion of ATP, release of HMGB1

b) Recruitment of DCs into tumor bed, optimal antigen presentation to T cells
C) Followed by potent immune-response



Immunogenic Cell Death induced by RT

Dying Immature DC
tumor cell
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Properties of Immunogenic Cell Death:
a) Exposure of calreticulin, secretion of ATP, release of HMGB1

b) Recruitment of DCs into tumor bed, optimal antigen presentation to T cells
C) Followed by potent immune-response



Immunogenic Cell Death induced by RT

Dying Immature DC
tumor cell [N Mature DC
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Properties of Immunogenic Cell Death:
a) Exposure of calreticulin, secretion of ATP, release of HMGB1

b) Recruitment of DCs into tumor bed, optimal antigen presentation to T cells
C) Followed by potent immune-response



Immunogenic Cell Death induced by RT
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Properties of Immunogenic Cell Death:
a) Exposure of calreticulin, secretion of ATP, release of HMGB1
b) Recruitment of DCs into tumor bed, optimal antigen presentation to T cells

C) Followed by potent immune-response



Immunogenic Cell Death induced by RT
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Properties of Immunogenic Cell Death:
a) Exposure of calreticulin, secretion of ATP, release of HMGB1
b) Recruitment of DCs into tumor bed, optimal antigen presentation to T cells

C) Followed by potent immune-response
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Abscopal effect

Collimated radiation field

Unirradiated
s.c. glioma tumor Y
s.c. glioma tumor

= Pre-treatment Post-treatment

Pre and 1y post-treatment PET:

lung cancer patient treated for single intrahepatic metastasis
(RT plus ipilimumab)

CXCR6°/CD8*
Tcell
Recruitment

Secondary
Tumor

| NKG2D @ CXCL16 LAl T TCR ATP
7 \7 \
s icaM-1 [ CTLA-4 CXCR6 ff MHC-| @ HMGB1
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Summary

The classic 5 R's of Radiotherapy are nowadays
understood on the molecular level

RT-induced DNA-damage is (still) the most relevant
RT-induced insult

RT-induced processes on the molecular, cellular,
tumor microenvironment level act as targets for
combined treatment modalities

Is Rejection of neoplastic lesions by immune system
a novel «R»?
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Major Challenge: Personalized Treatment

Adenocarcinoma

Mutually exclusive?
EGFR T790M with KRAS
ALK Translokation rd
ROS

RE] ~EGFR

PIBK < ™

FGFRa —_/ l \ SEML4-ALK

EK BRAF
HER2

Biology-based
Personalized Protocols

The integral dose difference Stratification not only based
between protons and IMRT on Clinical Parameters



