XRootD Refresher History, Concepts & Architecture

XRootD Workshop

Tokyo November 9, 2016

Andrew Hanushevsky, SLAC

http://xrootd.org

Basic XRootD Concept

A system for scalable cluster data access

- **♯** Not a file system
- **■** Not *just* for file systems
- # If you can write a plug-in you can cluster it

Brief History of XRootD

- **#** 1997 − Objectivity, Inc. collaboration
 - Design & Development to scale Objectivity/DB
 - First attempt to use commercial DB for Physics data
 - Successful but problematical
- **♯** 2001 BaBar decides to use root framework vs Objectivity
 - Collaboration with INFN, Padova & SLAC created
 - Design & develop high performance data access system
 - Work based on what we learned with Objectivity
- **♯** 2015 Wide deployment with several implementations
 - ALICE, ATLAS, CMS, EXO, Fermi, LSST; among others
 - Protocol available in dCache, DPM, and EOS

Only One Shot To Succeed!

- # A lot of negativity floating around
 - Objectivity deemed a failure why not this?
- **♯** So, we focused on the specific problem
 - The High Energy Physics analysis regime
 - Write once read many times access mode
 - Thousands of parallel batch jobs
 - Small block sparse random I/O
 - Not enough money for hardware
 - This explains **XRootD** fundamental features
 - Why the name?

Solution: Over-Engineer It!

Minimize latency
Minimize hardware requirements
Minimize human cost
Maximize scaling

The synergistic approach made

XRootD one of the fastest cost-effective

systems even to this day

XRootD Plug-in Architecture

Super Scaling Using B⁶⁴ Trees

Routing Client To The Data

Conclusion

- **XRootD** is simple, flexible, and effective
 - Numerous plug-ins developed
 - Latest ones: Ceph, CASTOR, and mySQL
 - Others: File and block caching, Mass Storage, multiple file system (e.g. HDFS, DPM, etc)
- **♯** Scaling and latency are ideal for HPC's
 - Though that path is not obvious
- **■** We'll explore this with BNL in 2017