
HPC Usage in ATLAS -
Where Does XRootD fit in

Doug Benjamin
Duke University

Taylor Childers
ANL

Vakho Tsulaia
LBNL

Acknowledgments
❖ The real authors of this talk (most of the slides come

from them)

❖ Taylor Childers (ANL)

❖ Vakho Tsulaia (LBNL)

❖ Folks working on event service -

❖ D Benjamin, P Calafiura, T Childers, K De, W Guan, T
Maeno,P Nilsson, V Tsulaia, P Van Gemmeren and T
Wenaus

DOE HPC Machines used by
ATLAS

PMG Plenary Taylor Childers October 4, 2016

High Performance Computers

4

‣ 48k Nodes: 64 threads, 16GB
each

‣ 1 . 6 G H z B l u e G e n e Q

‣ 5,200 nodes: 24 cores per node
‣ 2x2.4GHz Intel Ivy Bridge
‣ 24 GB DDR3 1866 MHz
‣ 1.1B core-hours/year (Grid ~2.5B/year)

‣ 18,688 nodes: 16 CPU cores, 1
NVIDIA Kepler GPU

‣ 2.2GHz AMD Opteron with 32GB

PMG Plenary Taylor Childers October 4, 2016

High Performance Computers

5

‣ 48k Nodes: 64 threads, 16GB
each

‣ 1 . 6 G H z B l u e G e n e Q

‣ 5,200 nodes: 24 cores per node
‣ 2x2.4GHz Intel Ivy Bridge
‣ 24 GB DDR3 1866 MHz
‣ 1.1B core-hours/year (Grid ~2.5B/year)

‣ 18,688 nodes: 16 CPU cores, 1
NVIDIA Kepler GPU

‣ 2.2GHz AMD Opteron with 32GB

Currently: 10B core-hours per year on
HPCs

LHC Grid Usage ~2.5B per year

PMG Plenary Taylor Childers October 4, 2016

High Performance Computers

6

‣ 9,304 nodes: 68 cores x 4 HW
threads

‣ 272 threads/node
‣ Intel Xeon Phi (Knights Landing)

‣ 3240 nodes: 64 cores  
x 4 HW threads

‣ 256 threads/node
‣ Intel Xeon Phi (Knights Landing)
‣ 16GB on-chip memory

Coming online in the next few months

Current/Future work loads

CHEP San Francisco J. Taylor Childers October 2016

Where We Started: Alpgen, an LO Generator
‣ Alpgen is an LO parton generator

written in Fortran
‣ Every process gets a binary
‣ Most configurable settings are values

of physics constants and do not affect
program flow

‣ Ran serial Alpgen in parallel with
minimal MPI additions for random
number seeds and file I/O

‣ Used RAM-disks for intermediate data
‣ Allowed to fill Mira (6th fastest on the

Top500) with the largest generation
job ever. 1.5M parallel processes

8

This is the

Event Generation
tiny input (card deck) small output - ~ MB’s - GB’s

CHEP San Francisco J. Taylor Childers October 2016

Sherpa, a Next-to-Leading-Order Generator
‣ Sherpa is an NLO event generation framework that

supports many pluggable algorithms (both LO &
NLO)

‣ Sherpa is a much more complex code AND
framework than Alpgen.

‣ Since it supports multiple plugins and integrators it
has much more program flow, meaning the CPU
spends much of its time deciding which code is going
to be run next.

‣ Unfortunately, increased flexibility causes decreased
performance

‣ But there’s hope, Sherpa supports MPI and
supported pthreads in the past.

9

More complex Event Generator

CHEP San Francisco J. Taylor Childers October 2016

Some of the Sherpa Developments
‣ Stefan Hoche (SLAC) has been very supportive of

our efforts to run Sherpa at large scales, providing
many updates and patches to improve
performance, remove old inefficiencies.

‣ Many Framework improvements
‣ Reduced ‘fstat’ calls and file system crawling which

is slow with thousands of processes
‣ Reducing number of shared libraries to load
‣ Removing system specific code
‣ Reductions in memory consumption
‣ Instead of each process calculating N phase space

points between MPI_Allreduce, a time period can
be specified, allowing process to accomplish as
much as they can between communication steps.

10

Care has to be taken w/ large shared file systems to ensure good performance

CHEP San Francisco J. Taylor Childers October 2016

Code improvements enable scaling on KNL

11

9hr run-time matrix element
contributions

New results from two days ago… next test on Mira to see if we see
similar improvements

new many core architecture presents a challenge to the our payloads

Event Generators used by ATLAS in HPC sites
❖ Alpgen - Leading Order

❖ used extensively in Run 1 less so in Run 2

❖ Sherpa - NLO

❖ widely used in Run 2

❖ MadGraph5_aMC@NLO

❖ Very popular in Run 2

❖ Taylor Childers is working with Olivier Mattelaer from to parallelize
MadEvent binaries. This involves having the MG5 framework
generate MPI wrappers for these FORTRAN binaries

❖ Event Generators comprise ~20-30% of CPU time on the Grid - anything
done on HPC’s saves Grid cycles for other uses

ATLAS MC Event simulation
(Largest CPU usage on grid)

MC Event Simulation
❖ Input files much smaller than the output files

❖ GEANT 4 used for Detector simulation

❖ Massively Parallel (each Grid Node independent of one another)

❖ Simulation code not designed for checkpointing

❖ HPC’s nodes are designed with fast inter connects for MPI work
loads

❖ HPC file systems are designed for massive parallel writing - used
for checkpointing of the computation work loads

❖ Need to develop a solution to approximate checkpointing and
make good use of MPI architecture of the HPC machines.

• Payload directly reads input files for the event data (either local or remote file access)

• Payload uses Output File Sequencer for writing intermediate outputs (one per range),
which are sent to Object Stores

• Missing Component: Event Streaming Service. Intelligent asynchronous delivery of the
input data to the worker nodes
✓ Presently in early design/prototyping phase

Event Service. Schematic

Local Disk

Object
Store

Event Service

Pilot Parallel Payload
IPC

WN

Deliver
Input

Get Input

Send Output

Get Event Ranges
 (HTTP)

Report Range Status
 (HTTP)

Store OutputAccess Output

Input  
Data

Get Input

Event 
Streaming  
Service

V Tsulaia et al, ATLAS, CHEP 201615

• Pilot delivers fine- 
grained workloads to the
running payload application in
real time
✓ Workload: Event Ranges

• Payload application: process-
parallel version of Athena
(AthenaMP)
✓ Serial initialization in the master

process
✓ Then fork worker processes
✓ Workers process the events

V.Tsulaia, ATLAS, CHEP 2016

• Lightweight versions of the conventional Event Service components
✓ Yoda - mini JEDI (Job Execution and Definition Interface)

• Yoda components communicate with each other over MPI
✓ As opposed to the HTTP-based communication implemented in the conventional Event Service

16

Yoda - Event Service on Supercomputers

Shared File System

Object
Store

Yoda

I/O

Droid
MPI Rank 1

Droid
MPI Rank 2

Droid
MPI Rank 3

Parallel Payload

Parallel Payload

Parallel Payload

MPI Application

Yoda
MPI Rank 0

IPC

IPC

IPC

WN

WN

WN

WN

P
ilo

t

Edge  
Node

Get  
Jobs

Submit

Send  
Output

Stage In Inputs 
 Collect Outputs

 Event Ranges
(MPI Send/Recv)

Output File Names
 (MPI Send/Recv)

V Tsulaia et al, ATLAS, CHEP 2016

• First use-case for the Event Service: ATLAS detector simulation with Geant4

• The supercomputers at NERSC (National Energy Research Scientific Computer
Center, LBNL, USA) have been the main platform for the commissioning of the
Event Service and for  
running production workloads
✓ Commissioning activity on  

the Grid is well underway

• Since late 2015 Yoda has been  
running ATLAS Simulation  
production on Edison HPC  
at NERSC
✓ 15M CPU-hours delivered  

to ATLAS in 2016

17

Commissioning and running in production

NERSC CPU time allocation usage by Yoda in 2016

V Tsulaia et al, ATLAS, CHEP 2016

• During the commissioning phase of Yoda we studied various factors
which can have a visible effect on the efficient usage of CPU resources
of the compute nodes

• Such factors include

1. Initialization time of the payload application

2. Sequential running of several instances of the payload application on a compute
node during one MPI submission

3. Handling of fine-grained outputs produced by the payload application

CPU efficiency

18

V Tsulaia et al, ATLAS, CHEP 2016

• The Event Service payload (AthenaMP) reads large number of files from the disk
during the initialization step

• Concurrent reading of software installation from the HPC shared file system can
lead to a serious performance bottleneck when running on many compute nodes
simultaneously

• Solution currently used in production: copy software release into the memory of
compute nodes

• On Cori Supercomputer at NERSC we also studied the scaling of AthenaMP
initialization when installing software releases  
on different file systems
✓ Lustre
✓ Cori Burst Buffer

• See the talk by W Bhimji at CHEP2016

✓ Shifter
• See the talk by L Gerhardt at CHEP2016

Payload initialization

AthenaMP initialization time

• PanDA jobs are building blocks of PanDA production tasks
✓ Thousands of jobs per task

• Yoda combines multiple PanDA jobs into single MPI submission

• If Yoda fails to process all events from some PanDA job during MPI allocation time, then
PanDA generates new job for the leftover events
✓ Hence different number of events in PanDA jobs in the Event Service tasks

PanDA jobs vs MPI jobs

PanDA job management by Yoda

Production Task

Job1

Job4

Job2
Job3

P
ilo

t

Edge  
Node

Job1
Job2

Job3 Yo
da

WN

WN

WN

WN

MPI Application

Get  
Jobs

Pass to  
Yoda

Spread large 
Jobs

Combine  
Small Jobs

• Examples of Yoda compute nodes with different CPU efficiency
✓ Edison Supercomputer at NERSC, 24-core nodes

• Example 1. Poor efficiency
✓ One PanDA job …
✓ But very slow initialization

V Tsulaia et al, ATLAS, CHEP 2016

CPU efficiency of HPC compute nodes

Legend. White space: core is idle
Turquoise: core processing an event
Red: event processing started but not finished

9

• Examples of Yoda compute nodes with different CPU efficiency
✓ Edison Supercomputer at NERSC, 24-core nodes

• Example 1. Poor efficiency
✓ One PanDA job …
✓ But very slow initialization

• Example 2. Poor efficiency
✓ Several PanDA jobs on one node

V Tsulaia et al, ATLAS, CHEP 2016

CPU efficiency of HPC compute nodes

Legend. White space: core is idle
Turquoise: core processing an event
Red: event processing started but not finished

9

• Examples of Yoda compute nodes with different CPU efficiency
✓ Edison Supercomputer at NERSC, 24-core nodes

• Example 1. Poor efficiency
✓ One PanDA job …
✓ But very slow initialization

• Example 2. Poor efficiency
✓ Several PanDA jobs on one node

• Example 3. Good efficiency
✓ One PanDA job
✓ Fast initialization

V Tsulaia et al, ATLAS, CHEP 2016

CPU efficiency of HPC compute nodes

Legend. White space: core is idle
Turquoise: core processing an event
Red: event processing started but not finished

9

V Tsulaia et al, ATLAS, CHEP 2016

• The Event Service Payload creates intermediate outputs, which are
sent to Object Stores (OS)
✓ Final outputs are produced later by specialized merge jobs
✓ Yoda currently uses OS at BNL

• As part of Yoda commissioning at NERSC we studied the OS
performance. Some observations/conclusions:
✓ CEPH OS has no queuing or protection from overloading
✓ When the clients overload CEPH OS various errors can occur

• Authentication errors

• Inability to connect to bucket

• Inability to write object

• Longer running writes

✓ Client software must have retry and perhaps queuing capabilities. Otherwise
we should use a system that can regulate the OS writes

Handling of fine-grained outputs using Object Stores

10

V Tsulaia et al, ATLAS, CHEP 2016

• Achieved ~7.2GiB/sec writing speed from ANL to BNL

OS Performance. Bandwidth vs Object Size

~ 950 MB/s

1 event/object
(object size 0.68 MB)

~ 125 MB/s

10 events/object
(object size - 6.8MB)

10-50 events/object (object
size - 6.8-34 MB)

11

V Tsulaia et al, ATLAS, CHEP 2016

• Primary causes of sub-optimal usage of HPC compute nodes by Yoda:
✓ Slow initialization of the payload
✓ Combining multiple PanDA jobs into single MPI submission

• Large number of small transfers can saturate Object Stores
✓ Initially Yoda was sending outputs one at a time directly from the compute

nodes
✓ Fixed this by asynchronous sending of pre-merged outputs (tar-balls)

• Prefer few large transfers to the Object Store to many small transfers

• Data stage-out has to be decoupled from the event processing
✓ On HPC use DTN (Data Transfer Nodes) for stage-out

Lessons learned

12

• Avoid fragmentation of PanDA jobs in the Event Service tasks by implementing the
new concept of a Jumbo Job in PanDA
✓ 1 Jumbo Job = 1 PanDA task

• Implement specialized I/O processes for AthenaMP
✓ Shared reader: optimizes data reading on worker nodes, saves memory, also an

important step towards the implementation of the Event Streaming Service
✓ Shared writer: reduce the number of outputs produced by Event Service payloads

• Design and implement the Event Streaming Service

• Extend Event Service functionality to other ATLAS workflows beyond Simulation
✓ Reconstruction, Analysis

• Make Event Service a unified workflow architecture across all ATLAS computing
platforms

Outlook and Future Work

Grid Clouds HPC Volunteer Computing
ATLAS@Home

13

How Does XRootD fit into all of the
this?

XRootD on the DOE HPC machines
❖ Not likely going to be allowed

❖ HPC compute nodes typically do not have TCP/IP code stack
and are not connected to WAN

❖ NERSC is an exception - Edison has some outbound
connectivity not very performant.

❖ HPC storage system High performance parallel file system by
design (typically Lustre or GPFS)

❖ Storage (except for tape) is short term - for the life of the CPU
allocation. Disk are not for archival - think storage Cache

❖ Data Transfer Nodes (DTN’s) are used for WAN data traffic. They
see the shared file systems

WAN data transfers at DOE HPC’s
❖ Data transfer nodes - are to be used for WAN transfers of data (into and out of the

HPC machines)

❖ These have gridftp servers running on them.

❖ What about third party managed transfers?

Yes - Globus
Connect

Is there any way for XRootD to be used at the large HPC sites?

❖ Yes…

❖ Use Case - Have the data transfer nodes act as XRootD data servers

❖ Pro’s :

❖ Efficient protocol for wide area transfers

❖ used by LHC collaborations and ultimately LSST

❖ Con’s :

❖ limited user base. More people use gridftp than XRootD.

❖ Authentication.

❖ HPC centers have limited experience with XRootD (too niche)

❖ But ….

Issues to Solve
❖ Size of User base

❖ hard one to solve.. most users of XRootD are not HPC users. Some exceptions (LHC)

❖ XRootD knowledge at HPC centers.

❖ Possible solution - use friendly centers - NERSC (very user forward policies) and
OLCF. (ALICE important user of OLCF)

❖ Authentication

❖ no VOMS extensions on grid credentials

❖ ALCF and OLCF only recognize their own CA

❖ NERSC - allows CERN CA, ALCF and OLCF do not

❖ Two factor authentication - On time passwords at ALCF and OLCF, NERSC is likely
going to two factor authentication

❖ Federated identity - already solved by Globus. HPC’s accept Globus

Conclusions
❖ Over the past few years ATLAS has begun to use the largest HPC’s in the US

(and the world)

❖ These machines come with unique challenges.

❖ ATLAS codes and work flows have had to change

❖ things are looking good

❖ There is a place for XRootD in the HPC centers

❖ We the XRootD community have to convince the HPC operators this
technology is worth it to them

❖ Need to solve some of the issues outlined previously

❖ Likely need to collaborate with Globus (especially on federated identity)

Backup

Event Service. Workflow

