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High Performance Computers

4

‣ 48k Nodes: 64 threads, 16GB 
each

‣ 1 . 6 G H z B l u e G e n e Q 

‣ 5,200 nodes: 24 cores per node
‣ 2x2.4GHz Intel Ivy Bridge
‣ 24 GB DDR3 1866 MHz
‣ 1.1B core-hours/year (Grid ~2.5B/year)

‣ 18,688 nodes: 16 CPU cores, 1 
NVIDIA Kepler GPU

‣ 2.2GHz AMD Opteron with 32GB
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‣ 1 . 6 G H z B l u e G e n e Q 

‣ 5,200 nodes: 24 cores per node
‣ 2x2.4GHz Intel Ivy Bridge
‣ 24 GB DDR3 1866 MHz
‣ 1.1B core-hours/year (Grid ~2.5B/year)

‣ 18,688 nodes: 16 CPU cores, 1 
NVIDIA Kepler GPU

‣ 2.2GHz AMD Opteron with 32GB

Currently: 10B core-hours per year on 
HPCs 

LHC Grid Usage ~2.5B per year
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High Performance Computers
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‣ 9,304 nodes: 68 cores x 4 HW 
threads

‣ 272 threads/node
‣ Intel Xeon Phi (Knights Landing) 

‣ 3240 nodes: 64 cores  
x 4 HW threads 

‣ 256 threads/node
‣ Intel Xeon Phi (Knights Landing) 
‣ 16GB on-chip memory

Coming online in the next few months



Current/Future work loads
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Where We Started: Alpgen, an LO Generator
‣ Alpgen is an LO parton generator 

written in Fortran
‣ Every process gets a binary
‣ Most configurable settings are values 

of physics constants and do not affect 
program flow

‣ Ran serial Alpgen in parallel with 
minimal MPI additions for random 
number seeds and file I/O

‣ Used RAM-disks for intermediate data
‣ Allowed to fill Mira (6th fastest on the 

Top500) with the largest generation 
job ever. 1.5M parallel processes
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This is the 

Event Generation
tiny input (card deck) small output - ~ MB’s - GB’s 
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Sherpa, a Next-to-Leading-Order Generator
‣ Sherpa is an NLO event generation framework that 

supports many pluggable algorithms (both LO & 
NLO)

‣ Sherpa is a much more complex code AND 
framework than Alpgen.

‣ Since it supports multiple plugins and integrators it 
has much more program flow, meaning the CPU 
spends much of its time deciding which code is going 
to be run next.

‣ Unfortunately, increased flexibility causes decreased 
performance

‣ But there’s hope, Sherpa supports MPI and 
supported pthreads in the past.
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More complex Event Generator
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Some of the Sherpa Developments
‣ Stefan Hoche (SLAC) has been very supportive of 

our efforts to run Sherpa at large scales, providing 
many updates and patches to improve 
performance, remove old inefficiencies. 

‣ Many Framework improvements
‣ Reduced ‘fstat’ calls and file system crawling which 

is slow with thousands of processes
‣ Reducing number of shared libraries to load
‣ Removing system specific code
‣ Reductions in memory consumption
‣ Instead of each process calculating N phase space 

points between MPI_Allreduce, a time period can 
be specified, allowing process to accomplish as 
much as they can between communication steps.
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Care has to be taken w/ large shared file systems to ensure good performance
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Code improvements enable scaling on KNL
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9hr run-time matrix element
contributions

New results from two days ago… next test on Mira to see if we see 
similar improvements 

new many core architecture presents a challenge to the our payloads



Event Generators used by ATLAS in HPC sites
❖ Alpgen  - Leading Order 

❖ used extensively in Run 1 less so in Run 2

❖ Sherpa - NLO

❖ widely used in Run 2

❖ MadGraph5_aMC@NLO

❖ Very popular in Run 2

❖  Taylor Childers is working with Olivier Mattelaer from to parallelize 
MadEvent binaries. This involves having the MG5 framework 
generate MPI wrappers for these FORTRAN binaries

❖ Event Generators comprise ~20-30% of CPU time on the Grid - anything 
done on HPC’s saves Grid cycles for other uses



ATLAS MC Event simulation  
(Largest CPU usage on grid)



MC Event Simulation
❖ Input files much smaller than the output files

❖ GEANT 4 used for Detector simulation

❖ Massively Parallel (each Grid Node independent of one another)

❖ Simulation code not designed for checkpointing

❖ HPC’s nodes are designed with fast inter connects for MPI work 
loads

❖ HPC file systems are designed for massive parallel writing - used 
for checkpointing of the computation work loads

❖ Need to develop a solution to approximate checkpointing and 
make good use of MPI architecture of the HPC machines.



• Payload directly reads input files for the event data (either local or remote file access) 

• Payload uses Output File Sequencer for writing intermediate outputs (one per range), 
which are sent to Object Stores 

• Missing Component: Event Streaming Service. Intelligent asynchronous delivery of the 
input data to the worker nodes 
✓ Presently in early design/prototyping phase

Event Service. Schematic
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• Pilot delivers fine- 
grained workloads to the 
running payload application in 
real time 
✓ Workload: Event Ranges 

• Payload application: process-
parallel version of Athena 
(AthenaMP) 
✓ Serial initialization in the master 

process 
✓ Then fork worker processes 
✓ Workers process the events
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• Lightweight versions of the conventional Event Service components 
✓ Yoda - mini JEDI (Job Execution and Definition Interface) 

• Yoda components communicate with each other over MPI 
✓ As opposed to the HTTP-based communication implemented in the conventional Event Service

16

Yoda - Event Service on Supercomputers
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• First use-case for the Event Service: ATLAS detector simulation with Geant4 

• The supercomputers at NERSC (National Energy Research Scientific Computer 
Center, LBNL, USA) have been the main platform for the commissioning of the 
Event Service and for  
running production workloads  
✓ Commissioning activity on  

the Grid is well underway 

• Since late 2015 Yoda has been  
running ATLAS Simulation  
production on Edison HPC  
at NERSC 
✓ 15M CPU-hours delivered  

to ATLAS in 2016
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Commissioning and running in production

NERSC CPU time allocation usage by Yoda in 2016
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• During the commissioning phase of Yoda we studied various factors 
which can have a visible effect on the efficient usage of CPU resources 
of the compute nodes 

• Such factors include 

1. Initialization time of the payload application 

2. Sequential running of several instances of the payload application on a compute 
node during one MPI submission 

3. Handling of fine-grained outputs produced by the payload application

CPU efficiency

18
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• The Event Service payload (AthenaMP) reads large number of files from the disk 
during the initialization step 

• Concurrent reading of software installation from the HPC shared file system can 
lead to a serious performance bottleneck when running on many compute nodes 
simultaneously 

• Solution currently used in production: copy software release into the memory of 
compute nodes 

• On Cori Supercomputer at NERSC we also studied the scaling of AthenaMP 
initialization when installing software releases  
on different file systems 
✓ Lustre 
✓ Cori Burst Buffer 

• See the talk by W Bhimji at CHEP2016 

✓ Shifter  
• See the talk by L Gerhardt at CHEP2016

Payload initialization

AthenaMP initialization time



• PanDA jobs are building blocks of PanDA production tasks 
✓ Thousands of jobs per task 

• Yoda combines multiple PanDA jobs into single MPI submission 

• If Yoda fails to process all events from some PanDA job during MPI allocation time, then 
PanDA generates new job for the leftover events 
✓ Hence different number of events in PanDA jobs in the Event Service tasks

PanDA jobs vs MPI jobs

PanDA job management by Yoda

Production Task

Job1 

Job4 

Job2
Job3

P
ilo

t

Edge  
Node

Job1 
Job2

Job3 Yo
da

WN

WN

WN

WN

MPI Application

Get  
Jobs

Pass to  
Yoda

Spread large 
Jobs

Combine  
Small Jobs



• Examples of Yoda compute nodes with different CPU efficiency 
✓ Edison Supercomputer at NERSC, 24-core nodes 

• Example 1. Poor efficiency 
✓ One PanDA job … 
✓ But very slow initialization

V Tsulaia et al, ATLAS, CHEP 2016

CPU efficiency of HPC compute nodes

Legend. White space: core is idle 
Turquoise: core processing an event 
Red: event processing started but not finished
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• Examples of Yoda compute nodes with different CPU efficiency 
✓ Edison Supercomputer at NERSC, 24-core nodes 

• Example 1. Poor efficiency 
✓ One PanDA job … 
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✓ Several PanDA jobs on one node 
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✓ Fast initialization
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• The Event Service Payload creates intermediate outputs, which are 
sent to Object Stores (OS) 
✓ Final outputs are produced later by specialized merge jobs 
✓ Yoda currently uses OS at BNL 

• As part of Yoda commissioning at NERSC we studied the OS 
performance. Some observations/conclusions: 
✓ CEPH OS has no queuing or protection from overloading 
✓ When the clients overload CEPH OS various errors can occur 

• Authentication errors 

• Inability to connect to bucket 

• Inability to write object 

• Longer running writes 

✓ Client software must have retry and perhaps queuing capabilities. Otherwise 
we should use a system that can regulate the OS writes 

Handling of fine-grained outputs using Object Stores

10
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• Achieved ~7.2GiB/sec writing speed from ANL to BNL 

OS Performance. Bandwidth vs Object Size

~ 950 MB/s

1 event/object 
(object size 0.68 MB)

~ 125 MB/s

10 events/object 
(object size - 6.8MB)

10-50 events/object (object 
size - 6.8-34 MB)

11
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• Primary causes of sub-optimal usage of HPC compute nodes by Yoda: 
✓ Slow initialization of the payload 
✓ Combining multiple PanDA jobs into single MPI submission 

• Large number of small transfers can saturate Object Stores 
✓ Initially Yoda was sending outputs one at a time directly from the compute 

nodes 
✓ Fixed this by asynchronous sending of pre-merged outputs (tar-balls) 

• Prefer few large transfers to the Object Store to many small transfers 

• Data stage-out has to be decoupled from the event processing 
✓ On HPC use  DTN (Data Transfer Nodes) for stage-out

Lessons learned
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• Avoid fragmentation of PanDA jobs in the Event Service tasks by implementing the 
new concept of a Jumbo Job in PanDA 
✓ 1 Jumbo Job = 1 PanDA task 

• Implement specialized I/O processes for AthenaMP 
✓ Shared reader: optimizes data reading on worker nodes, saves memory, also an 

important step towards the implementation of the Event Streaming Service 
✓ Shared writer: reduce the number of outputs produced by Event Service payloads 

• Design and implement the Event Streaming Service 

• Extend Event Service functionality to other ATLAS workflows beyond Simulation 
✓ Reconstruction, Analysis 

• Make Event Service a unified workflow architecture across all ATLAS computing 
platforms

Outlook and Future Work

Grid Clouds HPC Volunteer Computing 
ATLAS@Home
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How Does XRootD fit into all of the 
this?



XRootD on the  DOE HPC machines
❖ Not likely going to be allowed

❖ HPC compute nodes typically do not have TCP/IP code stack 
and are not connected to WAN

❖ NERSC is an exception - Edison has some outbound 
connectivity not very performant. 

❖ HPC storage system High performance parallel file system by 
design (typically Lustre or GPFS)

❖ Storage (except for tape) is short term - for the life of the CPU 
allocation. Disk are not for archival - think storage Cache

❖ Data Transfer Nodes (DTN’s) are used for WAN data traffic. They 
see the shared file systems



WAN data transfers at DOE HPC’s
❖ Data transfer nodes - are to be used for WAN transfers of data (into and out of the 

HPC machines)

❖ These have gridftp servers running on them.

❖ What about third party managed transfers?

Yes - Globus 
Connect



Is there any way for XRootD to be used at the large HPC sites?

❖ Yes… 

❖ Use Case -  Have the data transfer nodes act as XRootD data servers

❖ Pro’s :

❖ Efficient protocol for wide area transfers

❖ used by LHC collaborations and ultimately LSST

❖ Con’s :

❖  limited user base. More people use gridftp than XRootD. 

❖ Authentication. 

❖ HPC centers have limited experience with XRootD (too niche)

❖ But ….



Issues to Solve
❖ Size of User base

❖ hard one to solve.. most users of XRootD are not HPC users.  Some exceptions (LHC)

❖ XRootD knowledge at HPC centers.

❖ Possible solution - use friendly centers - NERSC (very user forward policies) and 
OLCF. (ALICE important user of OLCF)

❖ Authentication

❖ no VOMS extensions on grid credentials 

❖ ALCF and OLCF only recognize their own CA

❖ NERSC - allows CERN CA, ALCF and OLCF do not

❖  Two factor authentication - On time passwords at ALCF and OLCF, NERSC is likely 
going to two factor authentication

❖ Federated identity - already solved by Globus. HPC’s accept Globus



Conclusions
❖ Over the past few years ATLAS has begun to use  the largest HPC’s in the US 

(and the world)

❖ These machines come with unique challenges.

❖ ATLAS codes and work flows have had to change

❖ things are looking good

❖ There is a place for XRootD in the HPC centers 

❖ We the XRootD community have to convince the HPC operators this 
technology is worth it to them

❖ Need to solve some of the issues outlined previously

❖ Likely need to collaborate with Globus (especially on federated identity)



Backup



Event Service. Workflow


