Workshop on Resummation, Evolution, Factorization (REF 2016)

7-10 November 2016
University of Antwerp

Reconstructing PDFs at large x

Marco Radici
INFN - Pavia

in collaboration with

- A. Bacchetta (Univ. Pavia)
- B. Pasquini (Univ. Pavia)
- X. Xiong (INFN - Pavia
now Inst. Kernphysik - Juelich)

> based on the paper
> arXiv:1608.07638

Field theoretical definition of PDF

nucleon with momentum $P^{\mu}=\left[P^{-}, P^{+}, \mathbf{0}_{T}\right]$ and long. polarization $\quad P \cdot S=0 \quad S^{2}=-1$

$$
\begin{aligned}
& f_{1}(x)=\int_{-\infty}^{\infty} \frac{d \xi^{-}}{4 \pi} e^{-i \xi^{-} x P^{+}}\langle P| \bar{\psi}\left(\xi^{-}\right) \gamma^{+} U_{n_{-}}\left[\xi^{-}, 0\right] \psi(0)|P\rangle \\
& g_{1}(x)=\int_{-\infty}^{\infty} \frac{d \xi^{-}}{4 \pi} e^{-i \xi^{-} x P^{+}}\langle P S| \bar{\psi}\left(\xi^{-}\right) \gamma^{+} \gamma_{5} U_{n_{-}}\left[\xi^{-}, 0\right] \psi(0)|P S\rangle
\end{aligned}
$$

$$
\text { gauge link operator } U_{n_{-}}\left[\xi^{-}, 0\right]=\mathcal{P}\left[\exp \left(-i g \int_{0}^{\xi^{-}} d w^{-} A^{+}\left(w^{-}\right)\right)\right]
$$

hadronic matrix elements of nonlocal operators on light-cone essentially nonperturbative objects

PDF nonperturbative object

PDF nonperturbative object

factorization theorem (at some scale μ) data $=\mathrm{PDF} \otimes$ (something perturbatively

calculate them in QCD-inspired models

Nonperturbative object \rightarrow 1) extract from data

slide from H.Montgomery, QCD Evolution 2016

World data for $\mathrm{F}_{2}{ }^{\mathrm{p}}$ in DIS
 $f_{1}\left(\mathbf{x}, \mathbf{Q}^{2}\right)$ from fits of thousands data

~ 3000 CT14, P.R.D93 (16) 033006
~ 4000 CJ12, P.R. D84 (11) 014008
~ 4300 NNPDF3.0, JHEP 1504 (15) 040

+ many future constraints from LHC

REACTION	OBSERVABLE	PDFS	x	Q
$p p \rightarrow W^{ \pm}+X$	$d \sigma\left(W^{ \pm}\right) / d y_{l}$	q, \bar{q}	$10^{-3} \lesssim x \lesssim 0.7$	$\sim M_{W}$
$p p \rightarrow \gamma^{*} / Z+X$	$d^{2} \sigma\left(\gamma^{*} / Z\right) / d y_{l l} d M_{l l}$	q, \bar{q}	$10^{-3} \lesssim x \lesssim 0.7$	$5 \mathrm{GeV} \lesssim Q \lesssim 2 \mathrm{TeV}$
$p p \rightarrow \gamma^{*} / Z+$ jet $+X$	$d \sigma\left(\gamma^{*} / Z\right) / d p_{T}^{l l}$	q, g	$10^{-2} \lesssim x \lesssim 0.7$	$200 \mathrm{GeV} \lesssim Q \lesssim 1 \mathrm{TeV}$
$p p \rightarrow$ jet $+X$	$d \sigma($ jet $) / d p_{T} d y$	q, g	$10^{-2} \lesssim x \lesssim 0.8$	$20 \mathrm{GeV} \lesssim Q \lesssim 3 \mathrm{TeV}$
$p p \rightarrow$ jet + jet $+X$	$d \sigma(\mathrm{jet}) / d M_{j j} d y_{j j}$	q, g	$10^{-2} \lesssim x \lesssim 0.8$	$500 \mathrm{GeV} \lesssim Q \lesssim 5 \mathrm{TeV}$
$p p \rightarrow t \bar{t}+X$	$\sigma(t \bar{t}), d \sigma(t \bar{t}) / d M_{t \bar{t}}, \ldots$	g	$0.1 \lesssim x \lesssim 0.7$	$350 \mathrm{GeV} \lesssim Q \lesssim 1 \mathrm{TeV}$
$p p \rightarrow c \bar{c}+X$	$d \sigma(c \bar{c}) / d p_{T, c} d y_{c}$	g	$10^{-5} \lesssim x \lesssim 10^{-3}$	$1 \mathrm{GeV} \lesssim Q \lesssim 10 \mathrm{GeV}$
$p p \rightarrow b \bar{b}+X$	$d \sigma(b \bar{b}) / d p_{T, c} d y_{c}$	g	$10^{-4} \lesssim x \lesssim 10^{-2}$	$5 \mathrm{GeV} \lesssim Q \lesssim 30 \mathrm{GeV}$
$p p \rightarrow W+c$	$d \sigma(W+c) / d \eta_{l}$	s, \bar{s}	$0.01 \lesssim x \lesssim 0.5$	$\sim M_{W}$

J. Rojo et al. (PDF4LHC), J.Phys.G42 (15) 103103

Nonperturbative object \rightarrow 1) extract from data

$$
\begin{aligned}
& \begin{aligned}
\sqrt{\hat{s}} & =\text { partonic c.m. energy } \\
\sqrt{s} & =\text { collision c.m. energy } \\
& =13 \mathrm{TeV}
\end{aligned} \\
& \tau=\frac{\hat{s}}{s} \\
& \text { J. Butterworth et al. (PDF4LHC), J.Phys.G43 (16) } 023001
\end{aligned}
$$

Nonperturbative object \rightarrow 1) extract from data

still significant uncertainties among recent PDF extractions

$$
\begin{aligned}
& \text { q- } \overline{\mathrm{q}} \text { luminosity } \quad \mathcal{L}_{q \bar{q}}(\sqrt{\hat{s}})=\frac{1}{s} \int_{\tau}^{1} \frac{d x}{x} \sum_{q}\left[f_{q}(x, \hat{s}) f_{\bar{q}}\left(\frac{\tau}{x}, \hat{s}\right)+q \leftrightarrow \bar{q}\right] \\
& \sqrt{\hat{s}}=\text { partonic c.m. energy } \\
& \sqrt{s}=\text { collision c.m. energy } \\
& =13 \mathrm{TeV} \\
& \tau=\frac{\hat{s}}{s} \\
& \text { J. Butterworth et al. (PDF4LHC), J.Phys.G43 (16) } 023001
\end{aligned}
$$

reflects in : - less accurate extraction of SM quantities from LHC data (H coupling, Mw, $\sin \theta_{\text {eff }}$)

- limited sensitivity to BSM searches

PDF nonperturbative object

Nonperturbative object \rightarrow 2) compute on lattice

$$
f_{1}\left(x, \mu^{2}\right)=\int_{-\infty}^{\infty} \frac{d \xi^{-}}{4 \pi} e^{-i \xi^{-} x P^{+}}\langle P| \bar{\psi}\left(\xi^{-}\right) \gamma^{+} U_{n_{-}}\left[\xi^{-}, 0\right] \psi(0)|P\rangle
$$

Wick rotation: Euclidean time $\mathbf{T}=\mathrm{i} \mathrm{x}^{0}$

light-cone distance $\boldsymbol{\xi}^{-}$becomes complex!

Nonperturbative object \rightarrow 2) compute on lattice

Mellin moments of PDFs

$$
\begin{aligned}
& \int_{0}^{1} d x f_{1}\left(x, \mu^{2}\right)=\int_{0}^{1} d x \int_{-\infty}^{\infty} \frac{d \xi^{-}}{4 \pi} e^{-i \xi^{-} x P^{+}}\langle P| \bar{\psi}\left(\xi^{-}\right) \gamma^{+} U_{n_{-}}\left[\xi^{-}, 0\right] \psi(0)|P\rangle \\
&=\frac{1}{2}\langle P| \bar{\psi}(0) \gamma^{+} \psi(0)|P\rangle \\
& \cdots \text { hadronic matrix elements } \\
& \int_{0}^{1} d x x^{n-1} f_{1}\left(x, \mu^{2}\right)=\frac{1}{2} c^{n}\left(\mu^{2} / Q^{2}, g(\mu)\right) O^{n}(\mu) \quad \text { where local operators } \\
& \int_{0} \quad \text { calculable on lattice }
\end{aligned}
$$

Nonperturbative object \rightarrow 2) compute on lattice

Mellin moments of PDFs

$$
\int_{0}^{1} d x f_{1}\left(x, \mu^{2}\right)=\int_{0}^{1} d x \int_{-\infty}^{\infty} \frac{d \xi^{-}}{4 \pi} e^{-i \xi^{-} x P^{+}}\langle P| \bar{\psi}\left(\xi^{-}\right) \gamma^{+} U_{n_{-}}\left[\xi^{-}, 0\right] \psi(0)|P\rangle
$$

$$
=\frac{1}{2}\langle P| \bar{\psi}(0) \gamma^{+} \psi(0)|P\rangle
$$

hadronic matrix elements of local operators calculable on lattice
$\int_{0}^{1} d x x^{n-1} f_{1}\left(x, \mu^{2}\right)=\frac{1}{2} c^{n}\left(\mu^{2} / Q^{2}, g(\mu)\right) O^{n}(\mu) \quad$ where

$$
\langle P| \bar{\psi}(0) \gamma^{\left\{\mu_{1}\right.}(i \overleftrightarrow{\mathcal{D}})^{\mu_{2} \ldots}(i \overleftrightarrow{\mathcal{D}})^{\left.\mu_{n}\right\}} \psi(0)-\operatorname{Tr}^{\prime} \mathrm{s}|P\rangle=2 O^{n}\left[P^{\mu_{1}} . . P^{\mu_{n}}-M^{2} P^{\mu_{1}} . . P^{\mu_{n-2}} \ldots\right]
$$

but

- operator mixing (power divergences)
- discrete regulariz. \leftarrow matching ? \rightarrow continuum renorm. scheme

limit calculations to $n \leq 4$

(for workarounds see, e.g.,
Z. Davoudi (MITPDF Coll.) talk at SPIN-2016)

The LaMET approach

X. Ji, P.R.L. 110 (13) 262002

Can we compute the x -dependence of PDFs on lattice?

PDF

$$
f_{1}\left(x, \mu^{2}\right)=\int_{-\infty}^{\infty} \frac{d \xi^{-}}{4 \pi} e^{-i \xi^{-} x P^{+}}\langle P| \bar{\psi}\left(\xi^{-}\right) \gamma^{+} U_{n_{-}}\left[\xi^{-}, 0\right] \psi(0)|P\rangle
$$

light-cone correlation

eliminate time dependence

The LaMET approach

X. Ji, P.R.L. 110 (13) 262002

Can we compute the x -dependence of PDFs on lattice?

PDF

$$
f_{1}\left(x, \mu^{2}\right)=\int_{-\infty}^{\infty} \frac{d \xi^{-}}{4 \pi} e^{-i \xi^{-} x P^{+}}\langle P| \bar{\psi}\left(\xi^{-}\right) \gamma^{+} U_{n_{-}}\left[\xi^{-}, 0\right] \psi(0)|P\rangle
$$

light-cone correlation

eliminate time dependence

> spatial correlation

quasi-PDF

$$
\begin{array}{r}
\tilde{f}_{1}\left(x, \mu^{2}, P^{z}\right)=\int_{-\infty}^{\infty} \frac{d \xi^{z}}{4 \pi} e^{i \xi^{z} x P^{z}}\langle P| \bar{\psi}\left(\xi^{z}\right) \gamma^{z} U_{z}\left[\xi^{z}, 0\right] \psi(0)|P\rangle \\
U_{z}\left[\xi^{z}, 0\right]=\mathcal{P}\left[\exp \left(-i g \int_{0}^{\xi^{z}} d w^{z} A^{z}\left(w^{z}\right)\right)\right]
\end{array}
$$

The LaMET approach

Can we compute the x-dependence of PDFs on lattice?

PDF

$$
f_{1}\left(x, \mu^{2}\right)=\int_{-\infty}^{\infty} \frac{d \xi^{-}}{4 \pi} e^{-i \xi^{-} x P^{+}}\langle P| \bar{\psi}\left(\xi^{-}\right) \gamma^{+} U_{n_{-}}\left[\xi^{-}, 0\right] \psi(0)|P\rangle
$$

light-cone correlation

eliminate time dependence
spatial correlation

quasi-PDF

$$
\begin{aligned}
\tilde{f}_{1}\left(x, \mu^{2}, P^{z}\right)=\int_{-\infty}^{\infty} \frac{d \xi^{z}}{4 \pi} e^{i \xi^{z} x P^{z}}\langle P| \bar{\psi}\left(\xi^{z}\right) \gamma^{z} U_{z}\left[\xi^{z}, 0\right] \psi(0)|P\rangle \\
U_{z}\left[\xi^{z}, 0\right]=\mathcal{P}\left[\exp \left(-i g \int_{0}^{\xi^{\xi^{z}}} d w^{z} A^{z}\left(w^{z}\right)\right)\right]
\end{aligned}
$$

Large Momentum Effective Field Theory

The LaMET approach

quasi-PDF and PDF have same IR behavior \rightarrow match by perturb. coeff.

$$
\tilde{f}_{1}\left(x, \mu^{2}, P^{z}\right)=\int_{0}^{1} \frac{d y}{y} Z\left(\frac{x}{y}, \frac{\mu}{P^{z}}, \frac{1}{a_{L} P^{z}}\right) f_{1}\left(y, \mu^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{\left(P^{z}\right)^{2}}, \frac{M^{2}}{\left(P^{z}\right)^{2}}\right)
$$

The LaMET approach

quasi-PDF and PDF have same IR behavior \rightarrow match by perturb. coeff.

$$
\begin{aligned}
& \qquad \begin{array}{r}
\tilde{f}_{1}\left(x, \mu^{2}, P^{z}\right)=\int_{0}^{1} \frac{d y}{y} Z\left(\frac{x}{y}, \frac{\mu}{P^{z}}, \frac{1}{a_{L} P^{z}}\right) f_{1}\left(y, \mu^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{\left(P^{z}\right)^{2}}, \frac{M^{2}}{\left(P^{z}\right)^{2}}\right) \\
\longrightarrow Z(\xi, . .)=\delta(1-\xi)+\frac{\alpha_{s}}{2 \pi} Z^{(1)}(\xi, . .)+\ldots \\
\text { checked at } 1 \text { loop } \\
\text { for non-singlet PDF }
\end{array} \\
& \text { - UV divergences renormalized at } \mu \text { up to } 2 \text { loops } \begin{array}{l}
\text { X. Xiong at al., } \\
\text { - power divergences (cutoff } a_{\mathrm{L}} \text {) cancelled by } \delta m \text { at all orders }
\end{array}
\end{aligned}
$$ Ji \& Zhang, P.R.D92 (15) 034006 ; Chen, Ji, Zhang, arXiv:1609.08102

The LaMET approach

quasi-PDF and PDF have same IR behavior \rightarrow match by perturb. coeff.

$$
\begin{aligned}
& \qquad \begin{array}{r}
\tilde{f}_{1}\left(x, \mu^{2}, P^{z}\right)=\int_{0}^{1} \frac{d y}{y} Z\left(\frac{x}{y}, \frac{\mu}{P^{z}}, \frac{1}{a_{L} P^{z}}\right) f_{1}\left(y, \mu^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{\left(P^{z}\right)^{2}}, \frac{M^{2}}{\left(P^{z}\right)^{2}}\right) \\
\longrightarrow Z(\xi, . .)=\delta(1-\xi)+\frac{\alpha_{s}}{2 \pi} Z^{(1)}(\xi, . .)+\ldots \\
\text { checked at } 1 \text { loop } \\
\text { for non-singlet PDF }
\end{array} \\
& \text { - UV divergences renormalized at } \mu \text { up to } 2 \text { loops } \\
& \text { - power divergences (cutoff aL) cancelled by } \delta m \text { at all orders }
\end{aligned}
$$

Ji \& Zhang, P.R.D92 (15) 034006 ; Chen, Ji, Zhang, arXiv:1609.08102
Z is finite for finite P^{z}, at most terms $\sim \log \left(P^{z} / \mu\right)$ quasi-PDF calculable on lattice for finite P^{Z}, then \lim quasi-PDF $\left(x, \mu^{2}, P^{z}\right)=\operatorname{PDF}\left(x, \mu^{2}\right)$
Pz $\rightarrow \infty$
But how large P^{z} to have quasi-PDF \approx PDF ?

quasi-PDF on lattice

quasi-PDF on lattice

isovector $\mathrm{f}_{1} \mathrm{u-d}(\mathrm{x})$
extending $\int_{-1}^{1} d y$

$$
\bar{q}(x)=-q(-x)
$$

antiquark $\overline{\mathrm{d}}(\mathrm{x})>\overline{\mathrm{u}}(\mathrm{x})$

$$
5
$$

Lin et al., P.R.D91 (15) 054510

quasi-PDF \tilde{f}_{1}

extrapolation to large P^{z} from

$$
\mathrm{P}^{z}=0.42 \mathrm{GeV}
$$

$$
=0.84 \quad \text { " }
$$

$$
=1.26
$$

quasi-PDF on lattice

isovector $f_{1}{ }^{\mathbf{u}-\mathrm{d}}(\mathrm{x})$

but also

quasi-PDF on lattice

$P^{z} \sim M$ nucleon mass

lattice $24^{3} \times 64$
isovector $\mathrm{f}_{1}{ }^{\mathbf{u}-\mathrm{d}}(\mathrm{x})$

$$
\begin{gathered}
a_{L} \sim 0.12 \mathrm{fm} \\
\mathrm{~m}_{\pi} \sim 310 \mathrm{MeV} \\
\mu=2 \mathrm{GeV}
\end{gathered}
$$

confirmed also by
Alexandrou et al. (ETMC), P.R.D92 (15) 014502
with $\mathrm{P}^{\mathrm{z}}=0.98 \& 1.47 \mathrm{GeV}$

$$
\begin{gathered}
\text { lattice } 32^{3} \times 64 \\
a_{L} \sim 0.08 \mathrm{fm} \\
\mathrm{~m}_{\pi} \sim 370 \mathrm{MeV} \\
\mu=\Lambda=1 / \mathrm{a}_{L} \sim 2.5 \mathrm{GeV}
\end{gathered}
$$

quasi-PDF on lattice

present lattice calculations of quasi-PDF at $\mathrm{P}^{\mathbf{z}} \sim \mathrm{M}$

$$
\tilde{f}_{1}\left(x, \mu^{2}, P^{z}\right)=\int_{0}^{1} \frac{d y}{y} Z\left(\frac{x}{y}, \frac{\mu}{P^{z}}, \frac{1}{a_{L} P^{z}}\right) f_{1}\left(y, \mu^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{\left(P^{z}\right)^{2}}, \frac{M^{2}}{\left(P^{z}\right)^{2}}\right)
$$

quasi-PDF on lattice

present lattice calculations of quasi-PDF at $\mathrm{P}^{\mathbf{z}} \sim \mathrm{M}$

$$
\tilde{f}_{1}\left(x, \mu^{2}, P^{z}\right)=\int_{0}^{1} \frac{d y}{y} Z\left(\frac{x}{y}, \frac{\mu}{P^{z}}, \frac{1}{a_{L} P^{z}}\right) f_{1}\left(y, \mu^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{Q D}^{2}}{\left.\left(P^{z}\right)^{2}\right)^{2}}, \frac{M^{2}}{\left(P^{z}\right)^{2}}\right)
$$

recent attempts to compute power corrections at finite P^{z}
Lin et al., P.R.D91 (15) 054510

Chen et al., N.P.B911 (16) 246

final
$\mathrm{P}^{\mathrm{z}}=1.26 \mathrm{GeV}$

quasi-PDF on lattice

present lattice calculations of quasi-PDF at $\mathrm{P}^{\mathbf{z}} \sim \mathrm{M}$

$$
\tilde{f}_{1}\left(x, \mu^{2}, P^{z}\right)=\int_{0}^{1} \frac{d y}{y} Z\left(\frac{x}{y}, \frac{\mu}{P^{z}}, \frac{1}{a_{L} P^{z}}\right) f_{1}\left(y, \mu^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{\text {ald }}^{2}}{\left.\left(P^{z}\right)^{2}\right)^{2}}, \frac{M^{2}}{\left(P^{z}\right)^{2}}\right)
$$

recent attempts to compute power corrections at finite P^{z} Lin et al., P.R.D91 (15) 054510

$\mathrm{P}^{\mathrm{z}}=1.26 \mathrm{GeV}$

quasi-PDF in models

quasi-PDF \approx PDF ?

(spectator-diquark) model calculations of quasi-PDF $\times \tilde{f}_{1}$

Gamberg et al., P.L.B743 (15) 112

quasi-PDF \approx PDF ?

(spectator-diquark) model calculations of $x \tilde{f}_{1}$

Gamberg et al., P.L.B743 (15) 112

quasiPDF $\approx \mathrm{PDF}$ for $x \leqslant 0.2$ only if $\mathrm{Pz} \sim(4 \div 5) \mathrm{M}$

quasi-PDF in spectator-diquark model

analytic calculation of quasi-TMD
verify that TMD are recovered

analytic expressions in Appendix of Bacchetta et al., arXiv:1608.07638

quasi-PDF in spectator-diquark model

analytic calculation of quasi-TMD

$$
\left\{\begin{array}{l}
\tilde{f}_{1}^{\mathrm{D}=5, \mathrm{a}, \mathrm{a}^{\prime}}\left(\mathrm{x}, \mathbf{p}_{\mathrm{T}}, \mathrm{P}^{\mathrm{Z}}\right) \\
\tilde{\mathrm{g}}_{1}^{\mathrm{D}=5, \mathrm{a}, \mathrm{a}^{\prime}}\left(\mathrm{x}, \mathbf{p}_{\mathrm{T},}, \mathrm{P}^{\mathrm{z}}\right)
\end{array} \Rightarrow\left\{\begin{array}{l}
\tilde{\mathrm{f}}_{1}^{\mathrm{u}, \mathrm{~d}\left(\mathrm{x}, \mathbf{p}_{\mathrm{T}}, \mathrm{P}^{\mathrm{z}}\right)} \\
\tilde{\mathrm{g}}_{1}^{\mathrm{u}, \mathrm{~d}}\left(\mathrm{x}, \mathbf{p}_{\mathrm{T}}, \mathrm{P}^{\mathrm{z}}\right)
\end{array}\right\rangle\right.
$$

verify that TMD are recovered

$$
\begin{aligned}
& \left\{\lim \tilde{f}_{1}{ }^{u, d}\left(x, \mathbf{p}_{\mathrm{T}}, \mathrm{P}^{\mathrm{z}}\right)=\mathrm{f}_{1}^{\mathrm{u}, \mathrm{~d}}\left(\mathrm{x}, \mathbf{p}_{\mathrm{T}}\right)\right. \\
& \lim _{\mathrm{P} \rightarrow \rightarrow \infty} \tilde{g}_{1}^{u, d}\left(\mathrm{x}, \mathbf{p}_{\mathrm{T}}, \mathrm{P}^{z}\right)=\mathrm{g}_{1}^{\mathrm{u}, \mathrm{~d}}\left(\mathrm{x}, \mathbf{p}_{\mathrm{T}}\right) \\
& \text { from } \begin{array}{l}
\text { Bacchetta, Conti, Radici, } \\
\text { P.R.D78 (08) } 074010
\end{array}
\end{aligned}
$$

same for quasi-PDF

analytic expressions in Appendix of Bacchetta et al., arXiv:1608.07638

our matching procedure

Bacchetta et al., arXiv:1608.07638

Definition for $u \equiv f_{1}{ }^{u} \quad$ (similarly for $\mathrm{f}_{1}{ }^{\mathrm{d}}$ and $\mathrm{g}_{1}{ }^{\mathrm{u}, \mathrm{d}}$)
reconstructed PDF $\quad \stackrel{\circ}{u}\left(x, P^{z}\right)= \begin{cases}\tilde{u}\left(x, P^{z}\right) & 0 \leq x \leq x_{0} \\ \hat{u}\left(x ;\left\{p_{i}\right\}\right) & x_{0}<x \leq 1\end{cases}$

our matching procedure

Bacchetta et al., arXiv:1608.07638

Definition for $u \equiv f_{1}{ }^{u} \quad$ (similarly for $\mathrm{f}_{1}{ }^{\mathrm{d}}$ and $\mathrm{g}^{1}{ }^{\mathrm{u}, \mathrm{d}}$)
reconstructed PDF $\quad \stackrel{\circ}{u}\left(x, P^{z}\right)= \begin{cases}\tilde{u}\left(x, P^{z}\right) & 0 \leq x \leq x_{0} \\ \hat{u}\left(x ;\left\{p_{i}\right\}\right) & x_{0}<x \leq 1\end{cases}$

constraint \#1

our matching procedure

Bacchetta et al., arXiv: 1608.07638

Definitions for $u \equiv f_{1}{ }^{u} \quad$ (similarly for $f_{1}{ }^{\mathrm{d}}$ and $g_{1}{ }^{u, d}$)
(truncated) Mellin n-moment

$$
\begin{aligned}
u^{n} & =\int_{0}^{1} d x x^{n-1} u(x) \\
\tilde{u}^{n}\left(P^{z}\right) & =\int_{0}^{x_{0}} d x x^{n-1} \tilde{u}\left(x, P^{z}\right) \\
\hat{u}^{n}\left(\left\{p_{1}, p_{2}, p_{5}\right\}\right) & =\int_{x_{0}}^{1} d x x^{n-1} \hat{u}\left(\left\{p_{1}, p_{2}, p_{5}\right\}\right)
\end{aligned}
$$

our matching procedure

Bacchetta et al., arXiv:1608.07638

Definitions for $u \equiv f_{1}{ }^{u} \quad$ (similarly for $f_{1}{ }^{\mathrm{d}}$ and $g_{1}{ }^{u, d}$)
(truncated) Mellin

$$
\begin{aligned}
u^{n} & =\int_{0}^{1} d x x^{n-1} u(x) \\
\tilde{u}^{n}\left(P^{z}\right) & =\int_{0}^{x_{0}} d x x^{n-1} \tilde{u}\left(x, P^{z}\right) \\
\hat{u}^{n}\left(\left\{p_{1}, p_{2}, p_{5}\right\}\right) & =\int_{x_{0}}^{1} d x x^{n-1} \hat{u}\left(\left\{p_{1}, p_{2}, p_{5}\right\}\right)
\end{aligned}
$$

constraint \#2 fix parameters $\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{5}\right\}$ by minimizing squared distance X^{2} for $n=2,3,4$

$$
\chi^{2}\left(\left\{p_{1}, p_{2}, p_{5}\right\}\right)=\sum_{n=2}^{4} \frac{\left[\hat{u}^{n}\left(\left\{p_{1}, p_{2}, p_{5}\right\}\right)+\tilde{u}^{n}\left(P^{z}\right)-u^{n}\right]^{2}}{\left[\tilde{u}^{n}\left(P^{z}\right)-u^{n}\right]^{2}}
$$

our matching procedure

Bacchetta et al.,

arXiv:1608.07638

> constraints \#1 (matching at $\left.x_{0}\right)$ and \#2 $\left(\mathrm{X}^{2}\right.$ min $)$ are valid at any scale μ^{2}

In principle, each step is possible on lattice. At present, it's not.

> Proof of concept: use spectator-diquark model for PDF and quasi-PDF to test the method

explore arbitrary choices of $\mathrm{P}^{\mathrm{z}}, \mathrm{x}_{0}$

results (at model scale $\mathrm{Q}_{0}{ }^{2}=0.3 \mathrm{GeV}^{2}$)

Bacchetta et al.,
arXiv:1608.07638 \quad matching $\mathrm{X}_{0}=0.2 ; \mathrm{P}^{\mathrm{z}}=1.47 \mathrm{GeV}$ arXiv:1608.07638

true u quasi ũ reconstructed ů

results (at model scale $\mathrm{Q}_{0}{ }^{2}=0.3 \mathrm{GeV}^{2}$)

Bacchetta et al.,
arXiv:1608. matching $\mathrm{X}_{0}=0.2 ; \mathrm{P}^{z}=1.47 \mathrm{GeV}$ arXiv:1608.07638

true u quasi ũ reconstructed ů

u much better $\begin{gathered}\text { un } \\ \text { than }\end{gathered}$ but still problems for $\mathrm{f}_{1}{ }^{\mathrm{u}} \& \mathrm{~g}_{1}{ }^{\mathrm{u}}$

results (at model scale $\mathrm{Q}_{0}{ }^{2}=0.3 \mathrm{GeV}^{2}$)

Bacchetta et al., matching $\mathrm{x}_{0}=0.2 ; \mathrm{P}^{z}=2.94 \mathrm{GeV}$

 arXiv:1608.07638u

u

d

true u quasi ũ reconstructed ů
increasing P^{2}
beneficial for ũ
still ů is better

quantitative comparison

matching $\mathrm{x}_{0}=0.2$
Definitions for $u \equiv f_{1}{ }^{u} \quad$ (similarly for $f_{1}{ }^{d}$ and $\left.g_{1}{ }^{u, d}\right)$
relative distance with respect to true u

$$
\text { reconstructed } \stackrel{\circ}{\mathrm{u}} \quad \stackrel{\circ}{r}[u]=\frac{\int_{0}^{1} d x\left[\stackrel{\circ}{u}\left(x, P^{z}\right)-u(x)\right]^{2}}{\int_{0}^{1} d x u(x)^{2}}
$$

$$
\text { quasi ũ } \quad \tilde{r}[\tilde{u}]=\frac{\int_{0}^{1} d x\left[\tilde{u}\left(x, P^{z}\right)-u(x)\right]^{2}}{\int_{0}^{1} d x u(x)^{2}}
$$

quantitative comparison

matching $\mathrm{x}_{0}=0.2$
Definitions for $u \equiv f_{1}{ }^{u} \quad$ (similarly for $f_{1}{ }^{\mathrm{d}}$ and $g_{1}{ }^{u, d}$)
relative distance with respect to true u
reconstructed $\stackrel{\circ}{\mathrm{u}} \quad \stackrel{\circ}{r}[\mathrm{i}]=\frac{\left.\int_{0}^{1} d x\left[\begin{array}{l}(u) \\ \int_{0}^{1} d x u(x)^{z}\end{array}\right)-u(x)\right]^{2}}{\int_{0}^{1}}$
quasi ũ $\tilde{r}[\tilde{u}]=\frac{\int_{0}^{1} d x\left[\tilde{u}\left(x, P^{z}\right)-u(x)\right]^{2}}{\int_{0}^{1} d x u(x)^{2}}$

quantitative comparison

matching $\mathrm{x}_{0}=0.2$

Definitions for $u \equiv f_{1}{ }^{u}$ (similarly for $f_{1}{ }^{\mathrm{d}}$ and $\mathrm{g}_{1}{ }^{\mathrm{u}, \mathrm{d}}$)

relative distance with respect to true u

quasi ũ $\tilde{r}[\tilde{u}]=\frac{\int_{0}^{1} d x\left[\tilde{u}\left(x, P^{z}\right)-u(x)\right]^{2}}{\int_{0}^{1} d x u(x)^{2}}$

Bacchetta et al., arXiv:1608.07638
on average, $\dot{\mathrm{u}} \leftrightarrow \mathrm{u}$ closer than $\tilde{\mathrm{u}} \leftrightarrow \mathrm{u}$ by a factor 10 already at $\mathrm{Pz} \sim 1.5 \mathrm{M}$

stability check

$$
\text { check for } \left.u \equiv f_{1} u \quad \text { (similarly for } f_{1}{ }^{d} \text { and } g_{1}{ }^{u, d}\right)
$$

1. shift by δ the matching

$$
\begin{aligned}
\tilde{u}\left(x_{0}, P^{z}\right) & \rightarrow(1+\delta) \tilde{u}\left(x_{0}, P^{z}\right) \\
\left.\frac{d}{d x} \tilde{u}\left(x, P^{z}\right)\right|_{x=x_{0}} & \left.\rightarrow(1+\delta) \frac{d}{d x} \tilde{u}\left(x, P^{z}\right)\right|_{x=x_{0}}
\end{aligned}
$$

2. shift by δ the distance of its Mellin moments

$$
\tilde{u}^{n}\left(P^{z}\right)-u^{n} \rightarrow(1+\delta)\left(\tilde{u}^{n}\left(P^{z}\right)-u^{n}\right)
$$

stability check

$$
\text { check for } \left.u \equiv f_{1}{ }^{u} \quad \text { (similarly for } f_{1}{ }^{d} \text { and } g_{1}{ }^{u, d}\right)
$$

1. shift by δ the matching

$$
\begin{aligned}
\tilde{u}\left(x_{0}, P^{z}\right) & \rightarrow(1+\delta) \tilde{u}\left(x_{0}, P^{z}\right) \\
\left.\frac{d}{d x} \tilde{u}\left(x, P^{z}\right)\right|_{x=x_{0}} & \left.\rightarrow(1+\delta) \frac{d}{d x} \tilde{u}\left(x, P^{z}\right)\right|_{x=x_{0}}
\end{aligned}
$$

2. shift by δ the distance of its Mellin moments

$$
\tilde{u}^{n}\left(P^{z}\right)-u^{n} \rightarrow(1+\delta)\left(\tilde{u}^{n}\left(P^{z}\right)-u^{n}\right)
$$

3. minimize $\mathbf{X}^{2} \rightarrow$ get new $\left\{\mathrm{p}^{\prime}{ }_{1}, \mathrm{p}^{\prime}{ }_{2}, \mathrm{p}^{\prime}{ }_{5}\right\} \rightarrow$ new $\hat{u}(x, \delta)=\hat{u}\left(x,\left\{p_{1}^{\prime}, p_{2}^{\prime}, p_{5}^{\prime}\right\}\right)$ unperturbed $\hat{u}(x, 0)=\hat{u}\left(x,\left\{p_{1}, p_{2}, p_{5}\right\}\right)$

stability check

$$
\text { check for } \left.u \equiv f_{1} \mathrm{u} \quad \text { (similarly for } \mathrm{f}_{1}{ }^{\mathrm{d}} \text { and } \mathrm{g}_{1}{ }^{\mathrm{u}, \mathrm{~d}}\right)
$$

1. shift by δ the matching

$$
\begin{aligned}
\tilde{u}\left(x_{0}, P^{z}\right) & \rightarrow(1+\delta) \tilde{u}\left(x_{0}, P^{z}\right) \\
\left.\frac{d}{d x} \tilde{u}\left(x, P^{z}\right)\right|_{x=x_{0}} & \left.\rightarrow(1+\delta) \frac{d}{d x} \tilde{u}\left(x, P^{z}\right)\right|_{x=x_{0}}
\end{aligned}
$$

2. shift by δ the distance of its Mellin moments

$$
\tilde{u}^{n}\left(P^{z}\right)-u^{n} \rightarrow(1+\delta)\left(\tilde{u}^{n}\left(P^{z}\right)-u^{n}\right)
$$

3. minimize $\mathbf{X}^{2} \rightarrow$ get new $\left\{\mathrm{p}^{\prime}{ }_{1}, \mathrm{p}^{\prime}{ }_{2}, \mathrm{p}^{\prime}{ }_{5}\right\} \rightarrow$ new $\hat{u}(x, \delta)=\hat{u}\left(x,\left\{p_{1}^{\prime}, p_{2}^{\prime}, p_{5}^{\prime}\right\}\right)$ unperturbed $\hat{u}(x, 0)=\hat{u}\left(x,\left\{p_{1}, p_{2}, p_{5}\right\}\right)$
4. define relative distance $\quad \mathrm{r}(\delta)=\frac{\int_{x_{0}}^{1} d x[\hat{u}(x, \delta)-\hat{u}(x, 0)]^{2}}{\int_{x_{0}}^{1} d x[\hat{u}(x, 0)]^{2}}$

stability check

$$
\text { check for } \left.u \equiv f_{1}{ }^{u} \quad \text { (similarly for } f_{1}{ }^{d} \text { and } g_{1}{ }^{u, d}\right)
$$

1. shift by δ the matching

$$
\begin{aligned}
\tilde{u}\left(x_{0}, P^{z}\right) & \rightarrow(1+\delta) \tilde{u}\left(x_{0}, P^{z}\right) \\
\left.\frac{d}{d x} \tilde{u}\left(x, P^{z}\right)\right|_{x=x_{0}} & \left.\rightarrow(1+\delta) \frac{d}{d x} \tilde{u}\left(x, P^{z}\right)\right|_{x=x_{0}}
\end{aligned}
$$

2. shift by δ the distance of its Mellin moments

$$
\tilde{u}^{n}\left(P^{z}\right)-u^{n} \rightarrow(1+\delta)\left(\tilde{u}^{n}\left(P^{z}\right)-u^{n}\right)
$$

3. minimize $\mathbf{X}^{2} \rightarrow$ get new $\left\{\mathrm{p}^{\prime}{ }_{1}, \mathrm{p}^{\prime}{ }_{2}, \mathrm{p}^{\prime}{ }_{5}\right\} \rightarrow$ new $\hat{u}(x, \delta)=\hat{u}\left(x,\left\{p_{1}^{\prime}, p_{2}^{\prime}, p_{5}^{\prime}\right\}\right)$ unperturbed $\hat{u}(x, 0)=\hat{u}\left(x,\left\{p_{1}, p_{2}, p_{5}\right\}\right)$
4. define relative distance $\quad \mathrm{r}(\delta)=\frac{\int_{x_{0}}^{1} d x[\hat{u}(x, \delta)-\hat{u}(x, 0)]^{2}}{\int_{x_{0}}^{1} d x[\hat{u}(x, 0)]^{2}}$
$|\boldsymbol{\delta}| \leq 0.1 \rightarrow \mathrm{r}(\boldsymbol{\delta}) \leq 0.01$ change of input by $10 \% \rightarrow$ change of reconstructed $\mathrm{u} \leqslant 1 \%$

Conclusions

- reconstruct PDF over $x \in[0,1]$ by matching at point x_{0} quasi-PDF for $0 \leq x \leq x_{0}$ with parametric form fitted to $\mathrm{n}=2,3,4$ Mellin moments of PDF for $\mathrm{x}_{0}<\mathrm{x} \leq 1$
- in principle, procedure works on lattice. At present, quasi-PDF available only for $\mathrm{P}^{z} \sim \mathrm{M} \rightarrow$ test it using the spectator-diquark model

Conclusions

- reconstruct PDF over $x \in[0,1]$ by matching at point x_{0} quasi-PDF for $0 \leq x \leq x_{0}$ with parametric form fitted to $\mathrm{n}=2,3,4$ Mellin moments of PDF for $\mathrm{x}_{0}<\mathrm{x} \leq 1$
- in principle, procedure works on lattice. At present, quasi-PDF available only for $\mathrm{P}^{z} \sim \mathrm{M} \rightarrow$ test it using the spectator-diquark model
- in model, quasi-PDF $\approx \mathrm{PDF}$ for $\mathrm{x} \leqslant 0.2$ at $\mathrm{P}^{z} \approx 2 \mathrm{GeV} \rightarrow \mathrm{x}_{0}=0.2-0.3$

Conclusions

- reconstruct PDF over $x \in[0,1]$ by matching at point x_{0} quasi-PDF for $0 \leq x \leq x_{0}$ with parametric form fitted to $n=2,3,4$ Mellin moments of PDF for $x_{0}<x \leq 1$
- in principle, procedure works on lattice. At present, quasi-PDF available only for $\mathrm{P}^{z} \sim \mathrm{M} \rightarrow$ test it using the spectator-diquark model
- in model, quasi-PDF $\approx \mathrm{PDF}$ for $\mathrm{x} \leqslant 0.2$ at $\mathrm{P}^{z} \approx 2 \mathrm{GeV} \rightarrow \mathrm{x}_{0}=0.2-0.3$
- at $\mathrm{x}_{0}=0.2$ and $\mathrm{P}^{\mathrm{z}} \sim 2 \mathrm{GeV}$, reconstructed PDF is closer to PDF with respect to quasi-PDF by a factor $10 \div 20$. At $\mathrm{P}^{z} \sim 3 \mathrm{GeV}$ by $5 \div 10$
- at $\mathrm{x}_{0}=0.3$, situation is worse. Only for $\mathrm{P}^{z} \gtrsim 3 \mathrm{GeV}$ distance from PDF is similar to $\mathrm{x}_{0}=0.2$ case

Conclusions

- reconstruct PDF over $x \in[0,1]$ by matching at point x_{0} quasi-PDF for $0 \leq x \leq x_{0}$ with parametric form fitted to $\mathrm{n}=2,3,4$ Mellin moments of PDF for $\mathrm{x}_{0}<\mathrm{x} \leq 1$
- in principle, procedure works on lattice. At present, quasi-PDF available only for $\mathrm{P}^{z} \sim \mathrm{M} \rightarrow$ test it using the spectator-diquark model
- in model, quasi-PDF $\approx \mathrm{PDF}$ for $\mathrm{x} \leqslant 0.2$ at $\mathrm{P}^{z} \approx 2 \mathrm{GeV} \rightarrow \mathrm{x}_{0}=0.2-0.3$
- at $\mathrm{x}_{0}=0.2$ and $\mathrm{P}^{z} \sim 2 \mathrm{GeV}$, reconstructed PDF is closer to PDF with respect to quasi-PDF by a factor $10 \div 20$. At $\mathrm{P}^{z} \sim 3 \mathrm{GeV}$ by $5 \div 10$
- at $\mathrm{x}_{0}=0.3$, situation is worse. Only for $\mathrm{P}^{z} \gtrsim 3 \mathrm{GeV}$ distance from PDF is similar to $x_{0}=0.2$ case
when lattice will get (good) quasi-PDF at Pz $\sim 2 \mathrm{GeV}$, our method can reconstruct PDF 10 times better than quasi-PDF

backup slides

caveat

why neglect the $\mathrm{n}=\mathrm{I}$ (truncated) Mellin moment ?

because lattice calculation of quasi-PDF not reliable at small x

lattice can simulate the minimum x as

$$
x_{\min }=\frac{P_{\min }^{z}}{P_{\max }^{z}}=\frac{\left[a_{L} L_{z}\right]^{-1}}{a_{L}^{-1}}=\frac{1}{L_{z}}=\frac{1}{32} \sim 0.03 \quad 32^{3} \times 64
$$

$$
\Delta_{u}^{(n)}\left(P^{z}\right)=\frac{\int_{0}^{x_{\min }} d x x^{n-1} \tilde{u}\left(x, P^{z}\right)}{\int_{0}^{1} d x x^{n-1} \tilde{u}\left(x, P^{z}\right)}
$$

\% importance of "neglected" moment

$$
\begin{gathered}
n=1 \text { as large as } 10 \% \\
n \geq 2 \text { irrelevant }
\end{gathered}
$$

Bacchetta et al.,

