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nucleon with momentum  
and long. polarization

gauge link operator

hadronic matrix elements of nonlocal operators on light-cone

essentially   nonperturbative   objects

(⇠�, 0,0T )
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World data for F2
p in DIS        

  f1(x,Q2) from fits of  thousands data

slide from H.Montgomery,  
QCD Evolution 2016

Nonperturbative object  →  1) extract from data

~ 3000  CT14, P.R.D93 (16) 033006  
~ 4000  CJ12,  P.R. D84 (11) 014008 
~ 4300  NNPDF3.0, JHEP 1504 (15) 040 

….

J. Rojo et al. (PDF4LHC), J.Phys.G42 (15) 103103

REACTION OBSERVABLE PDFS x Q

pp ! W

± +X d�(W±)/dyl q, q̄ 10�3 . x . 0.7 ⇠ MW

pp ! �

⇤
/Z +X d

2
�(�⇤

/Z)/dylldMll q, q̄ 10�3 . x . 0.7 5 GeV . Q . 2 TeV

pp ! �

⇤
/Z + jet +X d�(�⇤

/Z)/dpllT q, g 10�2 . x . 0.7 200 GeV . Q . 1 TeV

pp ! jet +X d�(jet)/dpT dy q, g 10�2 . x . 0.8 20 GeV . Q . 3 TeV

pp ! jet + jet +X d�(jet)/dMjjdyjj q, g 10�2 . x . 0.8 500 GeV . Q . 5 TeV

pp ! tt̄+X �(tt̄), d�(tt̄)/dMtt̄, .... g 0.1 . x . 0.7 350 GeV . Q . 1 TeV

pp ! cc̄+X d�(cc̄)/dpT,cdyc g 10�5 . x . 10�3 1 GeV . Q . 10 GeV

pp ! bb̄+X d�(bb̄)/dpT,cdyc g 10�4 . x . 10�2 5 GeV . Q . 30 GeV

pp ! W + c d�(W + c)/d⌘l s, s̄ 0.01 . x . 0.5 ⇠ MW

Table 1: Summary of LHC processes sensitive to PDFs. For each process, we quote the corresponding measured
distribution, the PDFs that are probed, and the approximate ranges of x and Q

2 that can be accessible using
available Run I data. These ranges have been obtained assuming the Born kinematics.

direct photon data can potentially constrain the gluon PDF in an intermediate range of x, around ⇠ 0.01,
which is the region relevant for Higgs-boson production via gluon fusion. The main obstacle for the
full inclusion of direct photon data into PDF fits is the large scale uncertainties that affect the NLO
QCD calculation. The possibility to use isolated photon production in association with additional jets
has also been explored [121], however a substantial reduction of the experimental uncertainties, with
respect to that of available measurements, would be needed before this data could be used effectively in
the PDF fits. While LHC photon data has still not been directly included in global PDF fits, a systematic
comparison between different PDF sets and direct photon data was presented by ATLAS [122].

3.3. Inclusive W and Z production and asymmetries
Inclusive production of W and Z bosons, presented in the form of total cross sections, differential distri-
butions in leptonic rapidities, and corresponding asymmetries, has been important in the global PDF fits
since the first such measurements were made at the Tevatron. As compared to inclusive DIS, where only
flavor symmetric components q + q̄ can be constrained, inclusive W and Z production provides a clean
handle on quark flavour separation. At the LHC, the kinematical range in terms of the underlying x has
substantially increased as compared to the Tevatron, reaching both smaller and larger values of x. To
pin down the PDF quark flavor separation, a number of measurements have been presented by ATLAS,
CMS and LHCb, as will be discussed in more detail in Sect. 4.. In addition, as shown by ATLAS, once
the rapidity distributions of W and Z bosons are measured simultaneously accounting for the correlated
systematics between the various distributions [123], an additional handle on the strangeness content of
the nucleon can be provided [27].
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+ many future constraints from LHC
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Figure 5: Comparison of the gluon-gluon (upper plots) and quark-antiquark (lower plots) PDF lumi-
nosities from the CT14, MMHT14 and NNNPDF3.0 NNLO sets (left plots) and from the NNPDF3.0,
ABM12 and HERAPDF2.0 NNLO sets (right plots), for a center-of-mass energy of 13 TeV, as a function
of the invariant mass of the final state MX .

certain. ABM12 is consistent with the global fits except for M
X

� 2 TeV when it becomes
rather softer.

Turning to the quark-quark and gluon-quark PDF luminosities shown in Fig. 6, we see that
for the global fits we get consistent results within uncertainties, though the agreement is not
quite as good as for the gluon-gluon luminosity, especially in the region between 100 GeV and
1 TeV. The luminosities for HERAPDF2.0 and ABM12 in the qq case are harder than those
of the global fits, by around 5% at low masses to up 15% in the TeV region, with important
phenomenological implications. For the qg luminosity, there is good agreement for the global fits
(similar to the gg luminosity) and slightly worse for the PDF sets based on reduced datasets.

4 Constructing the PDF4LHC15 combination

As discussed in Sect. 3, we are now in the rather satisfactory position where di↵erences between
PDF sets are either better understood or much reduced. However, there is still the question of
how best to combine PDF sets even if they are essentially compatible. In this section we moti-
vate and present the updated PDF4LHC prescription for the evaluation of PDF uncertainties
at the LHC Run II, discuss the general conditions that PDF sets should satisfy in order to be
included in the combination and its future updates, and list the PDF sets which will enter the
current prescription. We then describe how the construction of the combined sets based on the
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  reflects in :   - less accurate extraction of SM quantities  
                       from LHC data (H coupling, MW, sinθeff)
                    - limited sensitivity to BSM searches
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Turning to the quark-quark and gluon-quark PDF luminosities shown in Fig. 6, we see that
for the global fits we get consistent results within uncertainties, though the agreement is not
quite as good as for the gluon-gluon luminosity, especially in the region between 100 GeV and
1 TeV. The luminosities for HERAPDF2.0 and ABM12 in the qq case are harder than those
of the global fits, by around 5% at low masses to up 15% in the TeV region, with important
phenomenological implications. For the qg luminosity, there is good agreement for the global fits
(similar to the gg luminosity) and slightly worse for the PDF sets based on reduced datasets.
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Nonperturbative object  →  2) compute on lattice

Wick rotation:  Euclidean time  τ = i x0

x0

τ

light-cone distance ξ−  becomes complex! 0 ξ−
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PDFs  cannot be computed on lattice



Nonperturbative object  →  2) compute on lattice

Mellin moments of PDFs

….

where 

hadronic matrix elements 
of local operators

calculable on lattice
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Nonperturbative object  →  2) compute on lattice

Mellin moments of PDFs

….

where 

hadronic matrix elements 
of local operators

calculable on lattice

-  operator mixing  ( power divergences )  
-  discrete regulariz.   ← matching ? →   continuum renorm. scheme

limit calculations to n≤ 4

but

( for workarounds see, e.g.,  
Z. Davoudi (MITPDF Coll.) 

talk at SPIN-2016 )
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The  LaMET  approach

Can we compute the x-dependence of PDFs on lattice ?

PDF

light-cone correlation 0 ξ−

eliminate time dependence

X. Ji, P.R.L. 110 (13) 262002
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The  LaMET  approach

Can we compute the x-dependence of PDFs on lattice ?

PDF

quasi-PDF

light-cone correlation 0 ξ−

eliminate time dependence

spatial correlation 0 ξz
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The  LaMET  approach

Can we compute the x-dependence of PDFs on lattice ?

PDF

quasi-PDF

light-cone correlation 0 ξ−
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spatial correlation 0 ξz
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Large Momentum Effective Field Theory

X. Ji, P.R.L. 110 (13) 262002
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The  LaMET  approach

quasi-PDF and PDF have same IR behavior → match by perturb. coeff.
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The  LaMET  approach

quasi-PDF and PDF have same IR behavior → match by perturb. coeff.

checked at 1 loop 
for non-singlet PDF
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X. Xiong et al.,  
P.R.D90 (14) 014051

Ji & Zhang, P.R.D92 (15) 034006  ;   Chen, Ji, Zhang, arXiv:1609.08102

- UV divergences renormalized at μ up to 2 loops  
- power divergences (cutoff aL) cancelled by δm at all orders



The  LaMET  approach

Z is finite for finite Pz, at most terms ~ log(Pz/μ) 
quasi-PDF calculable on lattice for finite Pz, then  

lim      quasi-PDF (x, μ2, Pz)   =   PDF (x, μ2)
Pz → ∞

But how large Pz  to have quasi-PDF ≈ PDF ?

quasi-PDF and PDF have same IR behavior → match by perturb. coeff.

- UV divergences renormalized at μ up to 2 loops  
- power divergences (cutoff aL) cancelled by δm at all orders

checked at 1 loop 
for non-singlet PDF
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quasi-PDF  on  lattice

isovector  f1u-d (x)
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FIG. 2: The physical quark distribution u(x)�d(x) extracted
from Fig. 1 after making M

n
N/P

n
z corrections and one-loop

corrections. The red, green and cyan bands correspond to
Pz 2 {1, 2, 3} 2⇡

L . The two higher-momentum distributions
are now almost identical.

from the cuto↵ scheme is correct to the leading logarithm
but not for the numerical constant. This is a compromise
that we make at the moment and will be rectified in the
future.

At low nucleon momenta, the nucleon-mass correc-
tions are as important as the one-loop correction, if
not more. Using the operator product expansion,
the nonlocal operator in Eq. 1 can be expanded asP
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dynamical higher-twist correction. As one can see, the
actual nucleon-mass correction parameter is M2
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.
After one-loop and nucleon-mass corrections, the re-

sulting distributions are shown in Fig. 2. For the nu-
clear momenta under consideration, both types of cor-
rection are important. As one can see, the corrected
distributions have much reduced P

z

dependence, partic-
ularly for the two largest momenta. This suggests that

well known that this omits important tadpole contributions [15].

As a compromise, we take ↵s = 0.20±0.04, with the central value

determined by the prescription of Ref. [15] and the uncertainty

included as a part of the theoretical systematics.
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FIG. 3: The unpolarized isovector quark distribution u(x)�
d(x) computed on the lattice after extrapolation in Pz is
shown as the purple band, compared with the global analyses
by MSTW [18] (brown dotted line), and CTEQ-JLab (CJ12,
green dashed line) [19] with medium nuclear correction near
(1.3 GeV)2. The negative x region is the sea quark distribu-
tion with q(x) = �q(�x). The lattice uncertainty band in
the plot reflects the 68% C.L. The global fit uncertainty is
not shown in the figure.

the corrections to the quasi-distributions will generate
a P

z

-independent physical distribution. The remaining
small di↵erence between the two large-momenta results
could be due to the dynamical higher-twist corrections
O(⇤2

QCD

/P 2

z

), which is expected to be smaller than the
nucleon-mass e↵ect. As for the lowest nucleon momen-
tum (430 MeV) result, the LaMET expansion might not
be very e↵ective, although the peak after corrections has
been shifted to near 0.8.

Finally, we find a P
z

-independent distribution by tak-
ing into account the O(⇤2

QCD

/P 2

z

) correction by extrap-
olating using the form a + b/P 2

z

. The final unpolarized
distribution u(x)�d(x) is shown in Fig. 3. The distribu-
tion for the |x| > 1 region is within 2 sigma of zero; thus,
we recover the correct support for the physical distribu-
tion within error.

Our result cannot be directly compared with the ex-
perimental data because other lattice systematics are not
yet under control. To obtain the physical parton distri-
butions, we need to make a number of improvements,
including reducing the quark masses to physical ones,
increasing the number of configurations to reduce statis-
tical errors, using finer lattice spacing to accommodate
larger boosted momenta and improve the resolution, and
using larger lattice volumes to access smaller x. Nonethe-
less, we hope that the present results do provide some in-
sight into the qualitative features of the parton physics.

Also shown in Fig. 3 are the parton distributions from
the global analyses by CTEQ-JLab (CJ12) [19] and NLO
MSTW08 [18] at µ ⇡ 1.3 GeV. Note that the lattice re-
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FIG. 2: The physical quark distribution u(x)�d(x) extracted
from Fig. 1 after making M
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N/P
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z corrections and one-loop

corrections. The red, green and cyan bands correspond to
Pz 2 {1, 2, 3} 2⇡

L . The two higher-momentum distributions
are now almost identical.

from the cuto↵ scheme is correct to the leading logarithm
but not for the numerical constant. This is a compromise
that we make at the moment and will be rectified in the
future.

At low nucleon momenta, the nucleon-mass correc-
tions are as important as the one-loop correction, if
not more. Using the operator product expansion,
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After one-loop and nucleon-mass corrections, the re-

sulting distributions are shown in Fig. 2. For the nu-
clear momenta under consideration, both types of cor-
rection are important. As one can see, the corrected
distributions have much reduced P
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dependence, partic-
ularly for the two largest momenta. This suggests that

well known that this omits important tadpole contributions [15].

As a compromise, we take ↵s = 0.20±0.04, with the central value

determined by the prescription of Ref. [15] and the uncertainty

included as a part of the theoretical systematics.
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FIG. 3: The unpolarized isovector quark distribution u(x)�
d(x) computed on the lattice after extrapolation in Pz is
shown as the purple band, compared with the global analyses
by MSTW [18] (brown dotted line), and CTEQ-JLab (CJ12,
green dashed line) [19] with medium nuclear correction near
(1.3 GeV)2. The negative x region is the sea quark distribu-
tion with q(x) = �q(�x). The lattice uncertainty band in
the plot reflects the 68% C.L. The global fit uncertainty is
not shown in the figure.

the corrections to the quasi-distributions will generate
a P

z

-independent physical distribution. The remaining
small di↵erence between the two large-momenta results
could be due to the dynamical higher-twist corrections
O(⇤2

QCD

/P 2

z

), which is expected to be smaller than the
nucleon-mass e↵ect. As for the lowest nucleon momen-
tum (430 MeV) result, the LaMET expansion might not
be very e↵ective, although the peak after corrections has
been shifted to near 0.8.

Finally, we find a P
z

-independent distribution by tak-
ing into account the O(⇤2
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/P 2

z

) correction by extrap-
olating using the form a + b/P 2

z

. The final unpolarized
distribution u(x)�d(x) is shown in Fig. 3. The distribu-
tion for the |x| > 1 region is within 2 sigma of zero; thus,
we recover the correct support for the physical distribu-
tion within error.

Our result cannot be directly compared with the ex-
perimental data because other lattice systematics are not
yet under control. To obtain the physical parton distri-
butions, we need to make a number of improvements,
including reducing the quark masses to physical ones,
increasing the number of configurations to reduce statis-
tical errors, using finer lattice spacing to accommodate
larger boosted momenta and improve the resolution, and
using larger lattice volumes to access smaller x. Nonethe-
less, we hope that the present results do provide some in-
sight into the qualitative features of the parton physics.

Also shown in Fig. 3 are the parton distributions from
the global analyses by CTEQ-JLab (CJ12) [19] and NLO
MSTW08 [18] at µ ⇡ 1.3 GeV. Note that the lattice re-
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FIG. 2: The physical quark distribution u(x)�d(x) extracted
from Fig. 1 after making M
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N/P
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z corrections and one-loop

corrections. The red, green and cyan bands correspond to
Pz 2 {1, 2, 3} 2⇡

L . The two higher-momentum distributions
are now almost identical.

from the cuto↵ scheme is correct to the leading logarithm
but not for the numerical constant. This is a compromise
that we make at the moment and will be rectified in the
future.

At low nucleon momenta, the nucleon-mass correc-
tions are as important as the one-loop correction, if
not more. Using the operator product expansion,
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After one-loop and nucleon-mass corrections, the re-

sulting distributions are shown in Fig. 2. For the nu-
clear momenta under consideration, both types of cor-
rection are important. As one can see, the corrected
distributions have much reduced P

z

dependence, partic-
ularly for the two largest momenta. This suggests that

well known that this omits important tadpole contributions [15].

As a compromise, we take ↵s = 0.20±0.04, with the central value

determined by the prescription of Ref. [15] and the uncertainty

included as a part of the theoretical systematics.
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FIG. 3: The unpolarized isovector quark distribution u(x)�
d(x) computed on the lattice after extrapolation in Pz is
shown as the purple band, compared with the global analyses
by MSTW [18] (brown dotted line), and CTEQ-JLab (CJ12,
green dashed line) [19] with medium nuclear correction near
(1.3 GeV)2. The negative x region is the sea quark distribu-
tion with q(x) = �q(�x). The lattice uncertainty band in
the plot reflects the 68% C.L. The global fit uncertainty is
not shown in the figure.

the corrections to the quasi-distributions will generate
a P

z

-independent physical distribution. The remaining
small di↵erence between the two large-momenta results
could be due to the dynamical higher-twist corrections
O(⇤2

QCD

/P 2

z

), which is expected to be smaller than the
nucleon-mass e↵ect. As for the lowest nucleon momen-
tum (430 MeV) result, the LaMET expansion might not
be very e↵ective, although the peak after corrections has
been shifted to near 0.8.

Finally, we find a P
z

-independent distribution by tak-
ing into account the O(⇤2
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/P 2

z

) correction by extrap-
olating using the form a + b/P 2

z

. The final unpolarized
distribution u(x)�d(x) is shown in Fig. 3. The distribu-
tion for the |x| > 1 region is within 2 sigma of zero; thus,
we recover the correct support for the physical distribu-
tion within error.

Our result cannot be directly compared with the ex-
perimental data because other lattice systematics are not
yet under control. To obtain the physical parton distri-
butions, we need to make a number of improvements,
including reducing the quark masses to physical ones,
increasing the number of configurations to reduce statis-
tical errors, using finer lattice spacing to accommodate
larger boosted momenta and improve the resolution, and
using larger lattice volumes to access smaller x. Nonethe-
less, we hope that the present results do provide some in-
sight into the qualitative features of the parton physics.

Also shown in Fig. 3 are the parton distributions from
the global analyses by CTEQ-JLab (CJ12) [19] and NLO
MSTW08 [18] at µ ⇡ 1.3 GeV. Note that the lattice re-
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FIG. 2: The physical quark distribution u(x)�d(x) extracted
from Fig. 1 after making M
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N/P
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z corrections and one-loop

corrections. The red, green and cyan bands correspond to
Pz 2 {1, 2, 3} 2⇡

L . The two higher-momentum distributions
are now almost identical.

from the cuto↵ scheme is correct to the leading logarithm
but not for the numerical constant. This is a compromise
that we make at the moment and will be rectified in the
future.

At low nucleon momenta, the nucleon-mass correc-
tions are as important as the one-loop correction, if
not more. Using the operator product expansion,
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After one-loop and nucleon-mass corrections, the re-

sulting distributions are shown in Fig. 2. For the nu-
clear momenta under consideration, both types of cor-
rection are important. As one can see, the corrected
distributions have much reduced P
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dependence, partic-
ularly for the two largest momenta. This suggests that

well known that this omits important tadpole contributions [15].

As a compromise, we take ↵s = 0.20±0.04, with the central value

determined by the prescription of Ref. [15] and the uncertainty

included as a part of the theoretical systematics.
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FIG. 3: The unpolarized isovector quark distribution u(x)�
d(x) computed on the lattice after extrapolation in Pz is
shown as the purple band, compared with the global analyses
by MSTW [18] (brown dotted line), and CTEQ-JLab (CJ12,
green dashed line) [19] with medium nuclear correction near
(1.3 GeV)2. The negative x region is the sea quark distribu-
tion with q(x) = �q(�x). The lattice uncertainty band in
the plot reflects the 68% C.L. The global fit uncertainty is
not shown in the figure.

the corrections to the quasi-distributions will generate
a P

z

-independent physical distribution. The remaining
small di↵erence between the two large-momenta results
could be due to the dynamical higher-twist corrections
O(⇤2

QCD

/P 2

z

), which is expected to be smaller than the
nucleon-mass e↵ect. As for the lowest nucleon momen-
tum (430 MeV) result, the LaMET expansion might not
be very e↵ective, although the peak after corrections has
been shifted to near 0.8.

Finally, we find a P
z

-independent distribution by tak-
ing into account the O(⇤2

QCD

/P 2

z

) correction by extrap-
olating using the form a + b/P 2

z

. The final unpolarized
distribution u(x)�d(x) is shown in Fig. 3. The distribu-
tion for the |x| > 1 region is within 2 sigma of zero; thus,
we recover the correct support for the physical distribu-
tion within error.

Our result cannot be directly compared with the ex-
perimental data because other lattice systematics are not
yet under control. To obtain the physical parton distri-
butions, we need to make a number of improvements,
including reducing the quark masses to physical ones,
increasing the number of configurations to reduce statis-
tical errors, using finer lattice spacing to accommodate
larger boosted momenta and improve the resolution, and
using larger lattice volumes to access smaller x. Nonethe-
less, we hope that the present results do provide some in-
sight into the qualitative features of the parton physics.

Also shown in Fig. 3 are the parton distributions from
the global analyses by CTEQ-JLab (CJ12) [19] and NLO
MSTW08 [18] at µ ⇡ 1.3 GeV. Note that the lattice re-
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FIG. 2: The physical quark distribution u(x)�d(x) extracted
from Fig. 1 after making M
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N/P
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z corrections and one-loop

corrections. The red, green and cyan bands correspond to
Pz 2 {1, 2, 3} 2⇡

L . The two higher-momentum distributions
are now almost identical.

from the cuto↵ scheme is correct to the leading logarithm
but not for the numerical constant. This is a compromise
that we make at the moment and will be rectified in the
future.
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After one-loop and nucleon-mass corrections, the re-

sulting distributions are shown in Fig. 2. For the nu-
clear momenta under consideration, both types of cor-
rection are important. As one can see, the corrected
distributions have much reduced P
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dependence, partic-
ularly for the two largest momenta. This suggests that

well known that this omits important tadpole contributions [15].
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FIG. 3: The unpolarized isovector quark distribution u(x)�
d(x) computed on the lattice after extrapolation in Pz is
shown as the purple band, compared with the global analyses
by MSTW [18] (brown dotted line), and CTEQ-JLab (CJ12,
green dashed line) [19] with medium nuclear correction near
(1.3 GeV)2. The negative x region is the sea quark distribu-
tion with q(x) = �q(�x). The lattice uncertainty band in
the plot reflects the 68% C.L. The global fit uncertainty is
not shown in the figure.

the corrections to the quasi-distributions will generate
a P

z

-independent physical distribution. The remaining
small di↵erence between the two large-momenta results
could be due to the dynamical higher-twist corrections
O(⇤2

QCD

/P 2

z

), which is expected to be smaller than the
nucleon-mass e↵ect. As for the lowest nucleon momen-
tum (430 MeV) result, the LaMET expansion might not
be very e↵ective, although the peak after corrections has
been shifted to near 0.8.

Finally, we find a P
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-independent distribution by tak-
ing into account the O(⇤2
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) correction by extrap-
olating using the form a + b/P 2

z

. The final unpolarized
distribution u(x)�d(x) is shown in Fig. 3. The distribu-
tion for the |x| > 1 region is within 2 sigma of zero; thus,
we recover the correct support for the physical distribu-
tion within error.

Our result cannot be directly compared with the ex-
perimental data because other lattice systematics are not
yet under control. To obtain the physical parton distri-
butions, we need to make a number of improvements,
including reducing the quark masses to physical ones,
increasing the number of configurations to reduce statis-
tical errors, using finer lattice spacing to accommodate
larger boosted momenta and improve the resolution, and
using larger lattice volumes to access smaller x. Nonethe-
less, we hope that the present results do provide some in-
sight into the qualitative features of the parton physics.

Also shown in Fig. 3 are the parton distributions from
the global analyses by CTEQ-JLab (CJ12) [19] and NLO
MSTW08 [18] at µ ⇡ 1.3 GeV. Note that the lattice re-
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FIG. 4: The nucleon isovector quasi-PDF (green), with one-loop correction (red), and with after one-loop and mass correction
(i.e. qII). (blue) for the quark density (left), helicity (middle) and transversity (right) as functions of x for the higher two
boosted momenta Pz = 2 (top row) and 3 (bottom row) in units of 2⇡/L.

FIG. 5: The momentum-dependence of the nucleon isovector distributions after one-loop and mass correction (i.e. qII) for quark
density (left), helicity (middle) and transversity (right) as functions of x. The orange band shows the momentum extrapolation
using the higher two momenta.

This change shifts the central value of the unpolarized and longitudinally polarized up-down quark asymmetry and
increases the estimated errors. However, the results remain consistent within the given errors.

To further reduce the remaining O(⇤2

QCD

/P 2

z

) correction due to higher-twist operators, we extrapolate to infinite
momentum using the form a + b/P 2

z

at each x point. The resulting distribution, shown in Fig. 5, has |x| > 1 region
within 2 sigma of zero; thus, we recover the correct support for the physical distribution within error. Note that the
smallest reliable region of x is related to the largest momentum on available on the lattice O(1/a), which is roughly
the inverse of length of the lattice volume in the link direction; therefore, we expect large systematic uncertainty in
the region x 2 [�0.08, 0.08]. In the case of quark density, there are also indications of momentum convergence within
2 sigma from P

z

= 2 and 3 data. In addition, the final extrapolated distribution (orange band) is consistent with the
largest momentum distribution. However, for the polarized distributions, even larger P

z

calculations are needed to
improve the convergence rate and reduce the uncertainty due to extrapolation, especially for the helicity.

There are many aspects that need to be improved to get the systematics under control, as indicated at various
points in the earlier sections. The operator renormalization also needs to be determined to one-loop level or better
in the future calculations. We intend in this work mainly to demonstrate that one can achieve light-cone quantities
with reasonable accuracy using currently available computational resources, and it opens the door for many more
lattice-QCD calculations on parton physics.
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FIG. 2: The physical quark distribution u(x)�d(x) extracted
from Fig. 1 after making M

n
N/P

n
z corrections and one-loop

corrections. The red, green and cyan bands correspond to
Pz 2 {1, 2, 3} 2⇡

L . The two higher-momentum distributions
are now almost identical.

from the cuto↵ scheme is correct to the leading logarithm
but not for the numerical constant. This is a compromise
that we make at the moment and will be rectified in the
future.

At low nucleon momenta, the nucleon-mass correc-
tions are as important as the one-loop correction, if
not more. Using the operator product expansion,
the nonlocal operator in Eq. 1 can be expanded asP

1

n=1

C
n

(z)O
n

(0), where the tree-level Wilson coe�-

cient C
n

(z) = (iz)n�1

/ (n� 1)! + O(↵
s

) and O
n

(0) =
 ̄(0)�z (iDz)n�1

 (0). The tensor O
n

is symmetric but
not traceless, so it is a mixture of a twist-2 and higher-
twist operators with the matrix element
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���O
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(0)
���~P

E
= 2a

n

Pn

z

K
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+O(⇤2
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z

) (4)

entirely expressible in terms of a
n

=
R
dx xn�1q(x), the

nth moment of the desired parton distribution, and K
n

=
1+

P
i

max
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Cn�i

i

(M2
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/4P 2

z

)i where C is the binomial func-

tion, and i
max

= n�(n mod 2)

2

. The O(⇤2

QCD

/P 2

z

) term is
dynamical higher-twist correction. As one can see, the
actual nucleon-mass correction parameter is M2

N

/4P 2

z

.
After one-loop and nucleon-mass corrections, the re-

sulting distributions are shown in Fig. 2. For the nu-
clear momenta under consideration, both types of cor-
rection are important. As one can see, the corrected
distributions have much reduced P

z

dependence, partic-
ularly for the two largest momenta. This suggests that

well known that this omits important tadpole contributions [15].

As a compromise, we take ↵s = 0.20±0.04, with the central value

determined by the prescription of Ref. [15] and the uncertainty

included as a part of the theoretical systematics.
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FIG. 3: The unpolarized isovector quark distribution u(x)�
d(x) computed on the lattice after extrapolation in Pz is
shown as the purple band, compared with the global analyses
by MSTW [18] (brown dotted line), and CTEQ-JLab (CJ12,
green dashed line) [19] with medium nuclear correction near
(1.3 GeV)2. The negative x region is the sea quark distribu-
tion with q(x) = �q(�x). The lattice uncertainty band in
the plot reflects the 68% C.L. The global fit uncertainty is
not shown in the figure.

the corrections to the quasi-distributions will generate
a P

z

-independent physical distribution. The remaining
small di↵erence between the two large-momenta results
could be due to the dynamical higher-twist corrections
O(⇤2

QCD

/P 2

z

), which is expected to be smaller than the
nucleon-mass e↵ect. As for the lowest nucleon momen-
tum (430 MeV) result, the LaMET expansion might not
be very e↵ective, although the peak after corrections has
been shifted to near 0.8.

Finally, we find a P
z

-independent distribution by tak-
ing into account the O(⇤2

QCD

/P 2

z

) correction by extrap-
olating using the form a + b/P 2

z

. The final unpolarized
distribution u(x)�d(x) is shown in Fig. 3. The distribu-
tion for the |x| > 1 region is within 2 sigma of zero; thus,
we recover the correct support for the physical distribu-
tion within error.

Our result cannot be directly compared with the ex-
perimental data because other lattice systematics are not
yet under control. To obtain the physical parton distri-
butions, we need to make a number of improvements,
including reducing the quark masses to physical ones,
increasing the number of configurations to reduce statis-
tical errors, using finer lattice spacing to accommodate
larger boosted momenta and improve the resolution, and
using larger lattice volumes to access smaller x. Nonethe-
less, we hope that the present results do provide some in-
sight into the qualitative features of the parton physics.

Also shown in Fig. 3 are the parton distributions from
the global analyses by CTEQ-JLab (CJ12) [19] and NLO
MSTW08 [18] at µ ⇡ 1.3 GeV. Note that the lattice re-
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Fig. 4. The unpolarized quasi-PDFs x f̃1(x, P z) are plotted as a function of x for u (left) and d (right) quark, respectively. Different lines are shown for P z = 1 GeV (purple), 
2 GeV (green), 3 GeV (blue), and 4 GeV (red), respectively. The standard PDF f1(x) (black dashed) is also shown for comparison. (For interpretation of the references to color 
in this figure, the reader is referred to the web version of this article.)

Fig. 5. The helicity quasi-PDFs xg̃1(x, P z) are plotted as a function of x for u (left) and d (right) quark, respectively. Different lines are shown for P z = 1 GeV (purple), 2 GeV 
(green), 3 GeV (blue), and 4 GeV (red), respectively. The standard helicity distribution g1(x) (black dashed) is also shown for comparison. (For interpretation of the references 
to color in this figure, the reader is referred to the web version of this article.)

Fig. 6. The transversity quasi-PDFs xh̃1(x, P z) are plotted as a function of x for u (left) and d (right) quark, respectively. Different lines are shown for P z = 1 GeV (purple), 
2 GeV (green), 3 GeV (blue), and 4 GeV (red), respectively. The standard helicity distribution h1(x) (black dashed) is also shown for comparison. (For interpretation of the 
references to color in this figure, the reader is referred to the web version of this article.)

panel) and down quark (right panel) at different values of P z =
1 GeV (purple), 2 GeV (green), 3 GeV (blue), and 4 GeV (red), re-
spectively. For comparison, the standard unpolarized distribution 
xf1(x) is also shown (black dashed curve). It is important to re-
alize that the quasi-PDFs have support for −∞ < x < +∞ [11,12,
16], and thus quasi-PDFs do not vanish for x > 1 at finite P z . This 
is clearly seen in the figures: while f1(x) → 0 as x → 1 for both u
and d quarks, at finite P z , f̃1(x, P z) remains finite when x → 1. It 
is evident that f̃1(x, P z) has different behavior as compared with 
the standard distribution f1(x) for relatively small P z = 1 GeV, as 
shown by the purple curves in Fig. 4. However, once one increases 
P z ≥ 2 GeV, the shape of the quasi-PDFs approaches those of the 
standard PDFs.

In Figs. 5 and 6, we plot the quasi-helicity distribution
xg̃1(x, P z) and transversity distribution xh̃1(x, P z), respectively. 
We find very similar features to the unpolarized case. For small 
P z = 1 GeV, the quasi-PDFs are different from the standard PDFs, 
but again, increasing P z ≥ 2 GeV, they become similar to the 
standard PDFs. To further study the relative difference between 
quasi-PDFs and standard PDFs quantitatively, we define the follow-
ing ratios:

Rq
f (x, P z) = f̃ q

1 (x, P z)

f q
1 (x)

, Rq
g(x, P z) = g̃q

1(x, P z)

gq
1(x)

,

Rq
h(x, P z) = h̃q

1(x, P z)

hq
1(x)

, (74)

(spectator-diquark) model calculations of quasi-PDF  x f1
~

up down
Pz=1 GeV

2
3

4

true model  x f1

Gamberg et al., P.L.B743 (15) 112

Bacchetta, Conti, Radici,  
P.R.D78 (08) 074010
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Fig. 4. The unpolarized quasi-PDFs x f̃1(x, P z) are plotted as a function of x for u (left) and d (right) quark, respectively. Different lines are shown for P z = 1 GeV (purple), 
2 GeV (green), 3 GeV (blue), and 4 GeV (red), respectively. The standard PDF f1(x) (black dashed) is also shown for comparison. (For interpretation of the references to color 
in this figure, the reader is referred to the web version of this article.)

Fig. 5. The helicity quasi-PDFs xg̃1(x, P z) are plotted as a function of x for u (left) and d (right) quark, respectively. Different lines are shown for P z = 1 GeV (purple), 2 GeV 
(green), 3 GeV (blue), and 4 GeV (red), respectively. The standard helicity distribution g1(x) (black dashed) is also shown for comparison. (For interpretation of the references 
to color in this figure, the reader is referred to the web version of this article.)

Fig. 6. The transversity quasi-PDFs xh̃1(x, P z) are plotted as a function of x for u (left) and d (right) quark, respectively. Different lines are shown for P z = 1 GeV (purple), 
2 GeV (green), 3 GeV (blue), and 4 GeV (red), respectively. The standard helicity distribution h1(x) (black dashed) is also shown for comparison. (For interpretation of the 
references to color in this figure, the reader is referred to the web version of this article.)

panel) and down quark (right panel) at different values of P z =
1 GeV (purple), 2 GeV (green), 3 GeV (blue), and 4 GeV (red), re-
spectively. For comparison, the standard unpolarized distribution 
xf1(x) is also shown (black dashed curve). It is important to re-
alize that the quasi-PDFs have support for −∞ < x < +∞ [11,12,
16], and thus quasi-PDFs do not vanish for x > 1 at finite P z . This 
is clearly seen in the figures: while f1(x) → 0 as x → 1 for both u
and d quarks, at finite P z , f̃1(x, P z) remains finite when x → 1. It 
is evident that f̃1(x, P z) has different behavior as compared with 
the standard distribution f1(x) for relatively small P z = 1 GeV, as 
shown by the purple curves in Fig. 4. However, once one increases 
P z ≥ 2 GeV, the shape of the quasi-PDFs approaches those of the 
standard PDFs.

In Figs. 5 and 6, we plot the quasi-helicity distribution
xg̃1(x, P z) and transversity distribution xh̃1(x, P z), respectively. 
We find very similar features to the unpolarized case. For small 
P z = 1 GeV, the quasi-PDFs are different from the standard PDFs, 
but again, increasing P z ≥ 2 GeV, they become similar to the 
standard PDFs. To further study the relative difference between 
quasi-PDFs and standard PDFs quantitatively, we define the follow-
ing ratios:
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quasiPDF ≈ PDF  for x ≲ 0.2   only if  Pz ~ (4÷5) M
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our matching procedure

Definition for  u ≡ f1u   (similarly for f1d
  and g1

u,d)

reconstructed  PDF

x
x0 

matching point

�
u(x, P z) =

(
ũ(x, P z) 0  x  x0

û (x; {pi}) x0 < x  1

quasi-PDF parametric PDF
û (x, {pi}) = x

p1 (1� x)p2

⇣
1 + p3 x

1/2 + p4 x+ p5 x
3/2

⌘
ũ (x, P z)

Bacchetta et al.,  
arXiv:1608.07638



our matching procedure

Definition for  u ≡ f1u   (similarly for f1d
  and g1

u,d)

reconstructed  PDF

x
x0 

matching point

�
u(x, P z) =

(
ũ(x, P z) 0  x  x0

û (x; {pi}) x0 < x  1

quasi-PDF parametric PDF
û (x, {pi}) = x

p1 (1� x)p2

⇣
1 + p3 x

1/2 + p4 x+ p5 x
3/2

⌘
ũ (x, P z)

matching
ũ (x0, P

z) = û (x0; {pi})
d

dx

ũ (x, P z)
���
x=x0

=
d

dx

û (x; {p
i

})
���
x=x0

only 3 parameters 
{p1, p2, p5}

constraint #1
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our matching procedure

Definitions for  u ≡ f1u   (similarly for f1d
  and g1
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Definitions for  u ≡ f1u   (similarly for f1d
  and g1
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u

n =

Z 1

0
dx x

n�1
u(x)

ũ
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(truncated) Mellin  
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constraint #2 fix parameters {p1,p2,p5} by minimizing 
squared distance χ2 for n=2,3,4

�2 ({p1, p2, p5}) =
4X

n=2

⇥
ûn ({p1, p2, p5}) + ũn(P z)� un

⇤2
⇥
ũn(P z)� un

⇤2
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our matching procedure

Bacchetta et al.,  
arXiv:1608.07638

constraints #1 (matching at x0) and #2 (χ2
min)  

are valid at any scale μ2

In principle, each step is possible on lattice.  
At present, it’s not.

Proof of concept:  use spectator-diquark model           
for PDF   and   quasi-PDF   to test the method

explore arbitrary choices of  Pz, x0
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FIG. 2. The �(n)
q (P z) of Eq. (41) as a function of the nucleon

longitudinal momentum P

z, in multiples of the proton mass
MP . Upper panel for the up quark, lower panel for the down
quark. From top to bottom, long-dashed line for the n = 1
Mellin moment, medium-dashed for the n = 2, short-dashed
for the n = 3, solid for the n = 4. The unpolarized quasi-PDF
q̃(x, P z) ⌘ f̃

q
1 (x, P

z) is evaluated at the diquark spectator
model scale µ

2 = Q

2
0 = 0.3 GeV2.

IV. RESULTS OF THE RECONSTRUCTION
PROCEDURE

In this section, we present the results of our recon-
struction procedure for both unpolarized and helicity
PDFs. We compare the results for the standard PDF
q(x), computed in the diquark spectator model (as de-
scribed in Sec. II B for q(x) ⌘ f

q

1

(x) and in Sec. II C for
q(x) ⌘ g

q

1

(x), respectively) for q = u, d at the model scale
Q

2

0

, for the corresponding quasi-PDF q̃(x, P z) (similarly,
described in Sec. II B for q̃(x, P z) ⌘ f̃

q

1

(x, P z) and in
Sec. II C for q̃(x, P z) ⌘ g̃

q

1

(x, P z)), and for our recon-

structed PDF
�

q(x, P z), defined in Sec. III as

�

q(x, P z) =

(
q̃(x, P z) 0  x  x

0

q̂ (x; {p
i

}) x

0

< x  1
, (42)

where the parametric expression q̂ (x; {p
i

}) is defined in
Eq. (35), subject to the constraints of Eqs. (37) and (40).

In all cases, we consider the PDFs multiplied by the
fractional momentum x. The matching point is fixed to

x

0

= 0.2 or 0.3. The reconstructed PDF
�

q(x, P z) depends
on three parameters that can be fixed by minimizing the
�

2 function defined in Eq. (38).
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FIG. 3. Comparison among the standard PDF xq(x) (black
solid line), the quasi-PDF xq̃(x, P z) (dashed line), and the

reconstructed PDF x

�

q(x, P z) (lighter solid line) at x0 = 0.2
for P

z = 1.47 GeV. Upper panels for q(x) ⌘ f

q
1 (x), lower

panels for q(x) ⌘ g

q
1(x). Left panels for q = u, right panels

for q = d.

In Fig. 3, the comparison is shown at x

0

= 0.2 for
P

z = 1.47 GeV. The upper panels refer to the unpolar-
ized PDF, the lower panels to the helicity PDF; the left
panels show the results for the up quark, the right panels
for the down quark. The standard PDFs are represented
by black solid lines, the quasi-PDFs by dashed (blue)
lines, the reconstructed PDFs by lighter (red) solid lines.
The quasi-PDFs xq̃(x) are a reliable reproduction of the
PDFs xq(x) only for x  x

0

: at higher x, they largely de-
viate and do not show the correct asymptotic behaviour
for x ! 1. Nevertheless, our parametric expressions
xq̂(x) follow quite closely the PDFs xq(x) at very large
x. Though, some conspicuous oscillations around xq(x)
appear at intermediate x & x

0

, in particular for the up
quark, suggesting that the overall agreement is not opti-
mal.
In Fig. 4, the same situation is reconsidered for P z =

2.94 GeV. It is evident that increasing P

z improves our
reconstruction procedure because the quasi-PDF is al-
ready much closer to the standard PDF over a signifi-

cant range of x values. The reconstructed PDF x

�

q(x, P z)
looks like a close approximation to the standard PDF
xq(x) over the entire range 0  x  1 for both un-
polarized and helicity PDFs, with some minor oscilla-
tions around xq(x) in the unpolarized up-quark channel
at x & x

0

.
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FIG. 2. The �(n)
q (P z) of Eq. (41) as a function of the nucleon

longitudinal momentum P

z, in multiples of the proton mass
MP . Upper panel for the up quark, lower panel for the down
quark. From top to bottom, long-dashed line for the n = 1
Mellin moment, medium-dashed for the n = 2, short-dashed
for the n = 3, solid for the n = 4. The unpolarized quasi-PDF
q̃(x, P z) ⌘ f̃

q
1 (x, P

z) is evaluated at the diquark spectator
model scale µ

2 = Q

2
0 = 0.3 GeV2.

IV. RESULTS OF THE RECONSTRUCTION
PROCEDURE

In this section, we present the results of our recon-
struction procedure for both unpolarized and helicity
PDFs. We compare the results for the standard PDF
q(x), computed in the diquark spectator model (as de-
scribed in Sec. II B for q(x) ⌘ f

q

1

(x) and in Sec. II C for
q(x) ⌘ g

q

1

(x), respectively) for q = u, d at the model scale
Q

2

0

, for the corresponding quasi-PDF q̃(x, P z) (similarly,
described in Sec. II B for q̃(x, P z) ⌘ f̃

q

1

(x, P z) and in
Sec. II C for q̃(x, P z) ⌘ g̃

q

1

(x, P z)), and for our recon-

structed PDF
�

q(x, P z), defined in Sec. III as

�

q(x, P z) =

(
q̃(x, P z) 0  x  x

0

q̂ (x; {p
i

}) x

0

< x  1
, (42)

where the parametric expression q̂ (x; {p
i

}) is defined in
Eq. (35), subject to the constraints of Eqs. (37) and (40).

In all cases, we consider the PDFs multiplied by the
fractional momentum x. The matching point is fixed to

x

0

= 0.2 or 0.3. The reconstructed PDF
�

q(x, P z) depends
on three parameters that can be fixed by minimizing the
�

2 function defined in Eq. (38).
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FIG. 3. Comparison among the standard PDF xq(x) (black
solid line), the quasi-PDF xq̃(x, P z) (dashed line), and the

reconstructed PDF x

�

q(x, P z) (lighter solid line) at x0 = 0.2
for P

z = 1.47 GeV. Upper panels for q(x) ⌘ f

q
1 (x), lower

panels for q(x) ⌘ g

q
1(x). Left panels for q = u, right panels

for q = d.

In Fig. 3, the comparison is shown at x

0

= 0.2 for
P

z = 1.47 GeV. The upper panels refer to the unpolar-
ized PDF, the lower panels to the helicity PDF; the left
panels show the results for the up quark, the right panels
for the down quark. The standard PDFs are represented
by black solid lines, the quasi-PDFs by dashed (blue)
lines, the reconstructed PDFs by lighter (red) solid lines.
The quasi-PDFs xq̃(x) are a reliable reproduction of the
PDFs xq(x) only for x  x

0

: at higher x, they largely de-
viate and do not show the correct asymptotic behaviour
for x ! 1. Nevertheless, our parametric expressions
xq̂(x) follow quite closely the PDFs xq(x) at very large
x. Though, some conspicuous oscillations around xq(x)
appear at intermediate x & x

0

, in particular for the up
quark, suggesting that the overall agreement is not opti-
mal.
In Fig. 4, the same situation is reconsidered for P z =

2.94 GeV. It is evident that increasing P

z improves our
reconstruction procedure because the quasi-PDF is al-
ready much closer to the standard PDF over a signifi-

cant range of x values. The reconstructed PDF x

�

q(x, P z)
looks like a close approximation to the standard PDF
xq(x) over the entire range 0  x  1 for both un-
polarized and helicity PDFs, with some minor oscilla-
tions around xq(x) in the unpolarized up-quark channel
at x & x

0

.
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x0 = 0.2

P

z = 1.47 GeV
p1 p2 p3 p4 p5 �

2 �

r r̃

f

u
1 -3.1067 1.4196 -6.0771 11.543 -6.1836 0.08493 4.0408 ⇥10�3 0.059932

f

d
1 -3.0189 2.8007 -5.9664 11.096 -5.8289 2.7040 ⇥10�4 9.9305 ⇥10�4 0.031524

g

u
1 -3.2055 0.92359 -5.4828 9.4143 -4.7444 2.8147 ⇥10�5 6.1713 ⇥10�3 0.064530

g

d
1 2.0946 1.0255 -4.9812 7.5169 -3.5011 9.6247 ⇥10�5 1.1900 ⇥10�3 0.072382

x0 = 0.2

P

z = 2.94 GeV
p1 p2 p3 p4 p5 �

2 �

r r̃

f

u
1 -2.7310 1.1102 -6.0771 12.308 -6.6960 3.1037 ⇥10�5 9.1975 ⇥10�4 9.0825 ⇥10�3

f

d
1 -2.8954 2.8391 -6.0526 11.436 -6.0637 8.605 ⇥10�4 5.3361 ⇥10�4 2.7550 ⇥10�3

g

u
1 -2.7305 1.1882 -5.5531 9.5354 -4.5168 1.8665 ⇥10�8 6.7572 ⇥10�4 0.010776

g

d
1 -1.7285 2.1573 -4.1638 3.9141 -0.055601 3.3523 ⇥10�6 4.7192 ⇥10�4 6.2346 ⇥10�3

TABLE I. Numerical values of the reconstruction parameters in Eq. (35) and of the �

2 in Eq. (38) for all channels at the

matching point x0 = 0.2. Upper columns for P z = 1.47 GeV, lower columns for P z = 2.94 GeV. The
�

r and r̃ values represent

the relative distance of the reconstructed PDFs
�

q(x, P z) and quasi-PDFs q̃(x, P z) with respect to the standard PDFs q(x), as
defined in Eqs. (43) and (44), respectively.

The qualitative comments about the results of
Figs. 3, 4 can be made more quantitative by looking at
Tab. I. In this table, we list the values of the parame-
ters of q̂(x, {p

i

}) in Eq. (35) and of �2 in Eq. (38) for all
cases at x

0

= 0.2. In the last two columns, we show the
numeric results for

�

r[
�

q] =

´
1

0

dx [
�

q(x, P z)� q(x)]2´
1

0

dx q(x)2
, (43)

r̃[q̃] =

´
1

0

dx [q̃(x, P z)� q(x)]2´
1

0

dx q(x)2
, (44)

namely for the relative distances
�

r and r̃ of the recon-

structed PDF
�

q(x, P z) and quasi-PDF q̃(x, P z) with re-
spect to the standard PDF q(x), respectively. The values
of r̃ quantify the level of agreement between the dashed
lines (quasi-PDFs) and black solid lines (standard PDFs)
shown in Figs. 3, 4. When increasing P

z, the relative
distance drops approximately by one order of magnitude
except for the helicity g

u

1

of up quarks. The quality of
our reconstruction procedure can be assessed through the

definition of the relative distance
�

r. We notice that the
values of

�

r are systematically lower by one order of mag-
nitude than the ones of r̃, sometimes by more as in the
case g̃

u

1

(x, P z = 2.94 GeV). Moreover, we can specify
how much our procedure becomes more reliable when in-

creasing P

z by comparing the di↵erent values of
�

r for
P

z = 1.47 GeV and P

z = 2.94 GeV: the reduction factor
in the distance is larger than 2, and reaches one order of
magnitude for the ĝ

u

1

channel.
In Fig. 5, we analyze in more detail the behaviour of

the relative distance
�

r for di↵erent P

z at the matching
point x

0

= 0.2. In the left panel, filled diamonds con-
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FIG. 4. Same notation and conventions as in the previous
figure but for P z = 2.94 GeV.

nected by a dark (black) solid line represent
�

r for the un-
polarized PDF of up quarks f

u

1

, filled circles connected
by a lighter (blue) solid line correspond to f

d

1

, open di-
amonds connected by a long-dashed (black) line corre-
spond to the helicity PDF of up quarks g

u

1

, open circles
connected by a short-dashed (blue) line correspond to

g

d

1

. In the right panel, the ratio between the distance
�

r of

the reconstructed PDF
�

q(x, P z) and the distance r̃ of the
quasi-PDF q̃(x, P z) is shown as a function of P z with the
same notation and in the same conditions as in the left
panel. In terms of absolute values, the relative distance
�

r of the various reconstructed PDFs
�

q(x, P z) is always

ů

ũ

still    is better

increasing Pz 
beneficial for 
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Definitions for  u ≡ f1u   (similarly for f1d
  and g1

u,d)

�
r[

�
u] =

R 1
0 dx [

�
u(x, P z)� u(x)]2
R 1
0 dxu(x)2
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R 1
0 dx [ũ(x, P z)� u(x)]2

R 1
0 dxu(x)2

relative distance 
with respect to true u
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quasi  ũ
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r̃[ũ] =

R 1
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very small, below 1%, and for P

z & 2 GeV it improves
by almost one order of magnitude reaching the 0.1% level
for all channels. We note that for the down quark this
very good level of accuracy is practically achieved for all
the explored P

z values. From the right panel, we de-
duce that for moderate P

z the level of accuracy reached
by our reconstruction procedure is more than ten times

higher than for the quasi-PDFs. But when P

z increases
above 2 GeV, the quasi-PDFs become a good approxima-
tion to the standard PDFs (see also Fig. 1): the relative

distance r̃[q̃] becomes smaller, and the ratio
�

r[
�

q]/r̃[q̃] in-
creases. This is particularly evident for fd

1

, described by
the solid circles connected by the lighter (blue) solid line.

FIG. 5. Left panel: relative distances
�

r for the various reconstructed PDFs
�

q(x, P z) as functions of P z at x0 = 0.2. Right

panel: ratio of the
�

r distance with respect to the r̃ distance for the corresponding quasi-PDFs q̃(x, P z) as functions of P z.
Filled diamonds for the unpolarized PDF f

u
1 , filled circles for fd

1 , open diamonds for the helicity PDF g

u
1 , open circles for gd1 .

In Fig. 6, we display the comparison between standard
PDFs, quasi-PDFs, and reconstructed PDFs, in the same
conditions and notation as in Fig. 3 but for the matching
point x

0

= 0.3. It is evident that moving x

0

to higher
values produces a worse situation: large oscillations in

the reconstructed PDF
�

q(x, P z) deteriorate the agree-
ment with the standard PDF q(x), particularly for the
q(x) ⌘ g

u

1

(x) case. This qualitative impression is con-
firmed by checking the numerical values at P

z = 1.47
GeV of the relative distances r̂ against r̃ in Tab. II. While
the r̃ are very similar to the corresponding numbers in

Tab. I, the
�

r are almost one order of magnitude larger
(except for the f

u

1

channel).
The overall accuracy of the reconstruction improves by

moving to P

z = 2.94 GeV as displayed in Fig. 7, where
the comparison is depicted again in the same conditions
and notation as in Fig. 4 but for the matching point
x

0

= 0.3. This is confirmed by the values in Tab. II for
P

z = 2.94 GeV: the r̂ values are now similar or slightly
larger than the ones in Tab. I, except for the fd

1

channel.
We deduce that increasing P

z is beneficial in various
respects, but the best accuracy of our reconstruction pro-
cedure is reached for the lowest matching point x

0

= 0.2
because for x . x

0

the quasi-PDFs are a very good ap-
proximation to the standard PDFs. Although in this
work we have computed the PDFs at the scale of the di-
quark spectator model, there is no restriction on applying
the reconstruction procedure at higher scales provided
that the weighted quasi-PDFs x

n�1

q̃(x, P z) are a good

FIG. 6. Same content, notation and conventions, as in Fig. 3
but for x0 = 0.3.

approximation to the corresponding weighted standard
PDFs xn�1

q(x).
We conclude the section by testing how robust is our

reconstruction procedure. To this aim, we perturb the
various inputs to our procedure and we check how much
the reconstructed PDF changes with respect to the un-
perturbed solution. More specifically, we shift by a cer-

matching x0 = 0.2
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approximation to the corresponding weighted standard
PDFs xn�1

q(x).
We conclude the section by testing how robust is our

reconstruction procedure. To this aim, we perturb the
various inputs to our procedure and we check how much
the reconstructed PDF changes with respect to the un-
perturbed solution. More specifically, we shift by a cer-

on average,  ů↔u   closer than   ũ↔u 
by a factor 10 already at Pz ~ 1.5 M  

matching x0 = 0.2
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• reconstruct PDF over x ϵ [0,1] by matching at point x0                   
quasi-PDF for 0 ≤ x ≤ x0 with                                                    
parametric form fitted to n=2,3,4 Mellin moments of PDF for x0 < x ≤ 1

• in principle, procedure works on lattice. At present, quasi-PDF available 
only for Pz~M → test it using the spectator-diquark model
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• at x0 = 0.3, situation is worse. Only for Pz ≳ 3 GeV distance from PDF 
is similar to x0 = 0.2 case



Conclusions

• reconstruct PDF over x ϵ [0,1] by matching at point x0                   
quasi-PDF for 0 ≤ x ≤ x0 with                                                    
parametric form fitted to n=2,3,4 Mellin moments of PDF for x0 < x ≤ 1
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• at x0 = 0.2 and Pz ~ 2 GeV, reconstructed PDF is closer to PDF with 
respect to quasi-PDF by a factor 10÷20.   At Pz ~ 3 GeV  by 5÷10

• at x0 = 0.3, situation is worse. Only for Pz ≳ 3 GeV distance from PDF 
is similar to x0 = 0.2 case

when lattice will get (good) quasi-PDF at Pz ~ 2 GeV, 
our method can reconstruct PDF 10 times better than quasi-PDF
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caveat

why  neglect  the n =1  (truncated) Mellin moment ?
because lattice calculation of quasi-PDF  

not reliable at small x
lattice can simulate  
the minimum x as

Alexandrou et al. (ETMC),  
P.R.D92 (15) 014502

323 x 64
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FIG. 2. The �(n)
q (P z) of Eq. (41) as a function of the nucleon

longitudinal momentum P

z, in multiples of the proton mass
MP . Upper panel for the up quark, lower panel for the down
quark. From top to bottom, long-dashed line for the n = 1
Mellin moment, medium-dashed for the n = 2, short-dashed
for the n = 3, solid for the n = 4. The unpolarized quasi-PDF
q̃(x, P z) ⌘ f̃

q
1 (x, P

z) is evaluated at the diquark spectator
model scale µ

2 = Q

2
0 = 0.3 GeV2.

IV. RESULTS OF THE RECONSTRUCTION
PROCEDURE

In this section, we present the results of our recon-
struction procedure for both unpolarized and helicity
PDFs. We compare the results for the standard PDF
q(x), computed in the diquark spectator model (as de-
scribed in Sec. II B for q(x) ⌘ f

q

1

(x) and in Sec. II C for
q(x) ⌘ g

q

1

(x), respectively) for q = u, d at the model scale
Q

2

0

, for the corresponding quasi-PDF q̃(x, P z) (similarly,
described in Sec. II B for q̃(x, P z) ⌘ f̃

q

1

(x, P z) and in
Sec. II C for q̃(x, P z) ⌘ g̃

q

1

(x, P z)), and for our recon-

structed PDF
�

q(x, P z), defined in Sec. III as

�

q(x, P z) =

(
q̃(x, P z) 0  x  x

0

q̂ (x; {p
i

}) x

0

< x  1
, (42)

where the parametric expression q̂ (x; {p
i

}) is defined in
Eq. (35), subject to the constraints of Eqs. (37) and (40).

In all cases, we consider the PDFs multiplied by the
fractional momentum x. The matching point is fixed to

x

0

= 0.2 or 0.3. The reconstructed PDF
�

q(x, P z) depends
on three parameters that can be fixed by minimizing the
�

2 function defined in Eq. (38).
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FIG. 3. Comparison among the standard PDF xq(x) (black
solid line), the quasi-PDF xq̃(x, P z) (dashed line), and the

reconstructed PDF x

�

q(x, P z) (lighter solid line) at x0 = 0.2
for P

z = 1.47 GeV. Upper panels for q(x) ⌘ f

q
1 (x), lower

panels for q(x) ⌘ g

q
1(x). Left panels for q = u, right panels

for q = d.

In Fig. 3, the comparison is shown at x

0

= 0.2 for
P

z = 1.47 GeV. The upper panels refer to the unpolar-
ized PDF, the lower panels to the helicity PDF; the left
panels show the results for the up quark, the right panels
for the down quark. The standard PDFs are represented
by black solid lines, the quasi-PDFs by dashed (blue)
lines, the reconstructed PDFs by lighter (red) solid lines.
The quasi-PDFs xq̃(x) are a reliable reproduction of the
PDFs xq(x) only for x  x

0

: at higher x, they largely de-
viate and do not show the correct asymptotic behaviour
for x ! 1. Nevertheless, our parametric expressions
xq̂(x) follow quite closely the PDFs xq(x) at very large
x. Though, some conspicuous oscillations around xq(x)
appear at intermediate x & x

0

, in particular for the up
quark, suggesting that the overall agreement is not opti-
mal.
In Fig. 4, the same situation is reconsidered for P z =

2.94 GeV. It is evident that increasing P

z improves our
reconstruction procedure because the quasi-PDF is al-
ready much closer to the standard PDF over a signifi-

cant range of x values. The reconstructed PDF x

�

q(x, P z)
looks like a close approximation to the standard PDF
xq(x) over the entire range 0  x  1 for both un-
polarized and helicity PDFs, with some minor oscilla-
tions around xq(x) in the unpolarized up-quark channel
at x & x

0

.

% importance of “neglected” moment

n = 1 as large as 10%
n ≥ 2  irrelevant
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