Double parton scattering: evolution and matching

Maarten Buffing

In collaboration with Markus Diehl and Tomas Kasemets

Workshop on Resummation, Evolution, Factorization November 8, 2016

Content - outline

- Brief motivation
- Introduction
- Soft factor for DPDFs/DTMDs
- Evolution equations
- Writing them down for DTMDs
- Solving them
- Matching: cross section contributions for large y
- Conclusions

Our goals

- Factorization: stick to singlets in final states
- Double Drell-Yan
- Higgs + W/Z
- For perturbative $q_{T} \rightarrow$ significant predictive results
- Short distance expansion

- Motivation and goals
- Get a handle on soft factors
- Write down evolution equations
- Solve evolution equations
- Matching equations for DPDFs/DTMDs

Introduction: DPS

- Hadronic interactions of the type

$$
p p \rightarrow Y+X
$$

- Y is produced in scattering and X has to be summed over

$$
\sum_{X} \sigma(p p \rightarrow Y+X)
$$

since factorization formulae are for inclusive cross sections.

- This X cannot be ignored if it is of high-energy itself.

Introduction: DPS

- Example: $p p \rightarrow H+Z \rightarrow b \bar{b}+Z$

Figure: Diehl, talk QCD evolution workshop 2014

Introduction: like sign W-pairs

- Consider like sign W-pair production
- Small cross section but clean
- Single scattering:

$$
q q \rightarrow q q+W^{+} W^{+}
$$

suppressed by α_{s}^{2}

SPS: Drell-Yan

- Matching equation

$$
F(x, \mathbf{z} ; \mu, \zeta)=C\left(x^{\prime}, \mathbf{z} ; \mu, \mu^{2}\right) \underset{x}{\otimes} F\left(x^{\prime} ; \mu, \zeta\right)
$$

with convolution defined as

$$
C\left(x^{\prime}\right) \underset{x}{\otimes} F\left(x^{\prime}\right)=\int_{x}^{1} \frac{d x^{\prime}}{x^{\prime}} C\left(x^{\prime}\right) F\left(\frac{x}{x^{\prime}}\right)
$$

Short-distance expansion: DPS

- Differences compared to TMDs
- Two hard processes involved
- Two coefficient functions per DTMD
- Positions \mathbf{z}_{1} and \mathbf{z}_{2} (compare with \mathbf{b}_{T} for the TMD case)
- Additional distance y
- Consider the limit
- $\left|\mathbf{z}_{1}\right|,\left|\mathbf{z}_{2}\right|$ much smaller than $1 / \wedge$
$-\left|\mathbf{z}_{1}\right|,\left|\mathbf{z}_{2}\right| \ll \mathbf{y}$, with \mathbf{y} fixed

Figure: modified from Diehl, Ostermeier, Schäfer, JHEP03 (2012) 089

Wilson lines

- Wilson lines are path ordered exponentials

$$
W(\mathbf{z}, v)=\mathcal{P} \exp \left[-i g t^{a} \int_{-\infty}^{0} d \lambda v A^{a}(z+\lambda v)\right]^{z^{+}=z^{-}=0}
$$

- v is a vector associated with the rapidity
- Taken away from the light-cone to avoid rapidity divergences
- In Feynman diagram language Wilson lines are represented by Wilson line propagators and vertices, e.g. amplitude part (for quarks)

$$
\frac{i \delta_{r s}}{\ell v+i 0}
$$

$-i g v^{\mu}\left(t_{a}\right)_{s r}$
μ, a

Wilson lines

- Consider double colorless-final state production
- Wilson line structure from factorization formula.
- Every double-line is a Wilson line

Figure: Diehl, Gaunt, Ostermeier, Plößl, Schäfer, JHEP01 (2016) 076

Soft function

- Soft function: orange part in figure
- Couples the two correlators A and B with each other through soft gluons
- Evolution kernel K related to soft function S
- Nontrivial color complications. Collinear and soft factors carry color indices.

Figure: Diehl, Gaunt, Ostermeier, Plößl, Schäfer, JHEP01 (2016) 076

Soft function

- Uncontracted indices in the middle
- Soft factor for DTMDs factorizes in the limit $\left|\mathbf{z}_{1}\right|,\left|\mathbf{z}_{2}\right| \ll \mathbf{y}$, as

$$
S\left(\mathbf{z}_{1}, \mathbf{z}_{\mathbf{2}}, \mathbf{y}\right)=C_{s}\left(\mathbf{z}_{\mathbf{1}}\right) C_{s}\left(\mathbf{z}_{\mathbf{2}}\right) S(\mathbf{y})
$$

- Boxed object $\mathrm{C}_{\mathrm{jj}, \mathrm{j}, \mathrm{k}}$, will appear in matching equations
- We require a simplification of the color indices.

For the expert: soft function

- Recall full Wilson line structure
- Hard scattering couples four parton lines, insert color projectors
- Examples of color projectors
- Quarks:

$$
\begin{aligned}
p_{1}^{j_{1} j_{1}^{\prime} k_{1} k_{1}^{\prime}} & =\frac{1}{N_{c}} \delta_{j_{1} j_{1}^{\prime}} \delta_{k_{1} k_{1}^{\prime}} \\
p_{8}^{j_{1} j_{1}^{\prime} k_{1} k_{1}^{\prime}} & =2 t_{j_{1} j_{1}^{\prime}}^{a} t_{k_{1} k_{1}^{\prime}}^{a}
\end{aligned}
$$

- For gluons: more possibilities, we label them p_{R}
- Mixed quark-gluon projectors also exist
- Highly nontrivial whether color structure can be factorized.

For the expert: soft function

- Color projection of fields at infinity rather than $\xi^{+}=\xi^{-}=0$.

- Allows for relating most general soft function with open indices in the middle with soft function with contracted indices in the middle.
- Fully nonperturbative statement, since it involves color algebra
- For collinear factorization case only!

For the expert: soft function

- Color projection of fields at infinity rather than $\xi^{+}=\xi^{-}=0$.

- Then, in the short-distance expansion

$$
{ }^{R R^{\prime}} S\left(\mathbf{z}_{\mathbf{1}}, \mathbf{z}_{\mathbf{2}}, \mathbf{y}\right)={ }^{R} C_{s}\left(\mathbf{z}_{\mathbf{1}}\right)^{R} C_{s}\left(\mathbf{z}_{\mathbf{2}}\right)^{R R} S(\mathbf{y}) \delta_{R R^{\prime}}
$$

where R is a color representation index (singlet, octet, etc.)

Evolution: TMDs vs DTMDs

PDF/TMDs

- Soft function not matrix valued
- Just the position of one parton
- Renormalization scale μ
- Rapidity evolution scale ζ
- One coefficient function per TMD

DPDF/DTMDs

- Soft function matrix valued
- Positions of two partons and the distance y
- Renormalization scales μ_{1}, μ_{2}
- Rapidity evolution scale ζ
- ζ dependence also for collinear distribution if $\mathrm{R} \neq 1$.
- Two coefficient functions per DTMD

Renormalization and rapidity evolution

- TMDs

$$
\begin{aligned}
\frac{\partial}{\partial \log \mu} F(x, \mathbf{z} ; \mu, \zeta) & =\gamma_{F}(\mu, \zeta) F(x, \mathbf{z} ; \mu, \zeta) \\
\frac{\partial}{\partial \log \zeta} F(x, \mathbf{z}, \mu, \zeta) & =\frac{1}{2} K(\mathbf{z} ; \mu) F(x, \mathbf{z}, \mu, \zeta)
\end{aligned}
$$

- DTMDs

$$
\begin{aligned}
& {\frac{\partial}{\partial \log \mu_{1}}}^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)=\gamma_{F}\left(\mu_{1}, x_{1} \zeta / x_{2}\right)^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right) \\
& {\frac{\partial}{\partial \log \mu_{2}}}^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)=\gamma_{F}\left(\mu_{2}, x_{2} \zeta / x_{1}\right)^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right) \\
& \frac{\partial}{\partial \log \zeta}
\end{aligned}{ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y}, \mu_{i}, \zeta\right)=\frac{1}{2} \sum_{R^{\prime}}{ }^{R R^{\prime}} K\left(\mathbf{z}_{i}, \mathbf{y} ; \mu_{i}\right)^{R^{\prime}} F\left(x_{i}, \mathbf{y}, \mu_{i}, \zeta\right), ~ l
$$

- DTMD renormalizations are independent, since they are separated.

Renormalization and rapidity evolution

- TMDs

$$
\frac{\partial}{\partial \log \mu} F(x, \mathbf{z} ; \mu, \zeta)=\gamma_{F}(\mu, \zeta) F(x, \mathbf{z} ; \mu, \zeta)
$$

$$
F=\text { DTMDs }
$$

$$
\frac{\partial}{\partial \log \zeta} F(x, \mathbf{z}, \mu, \zeta)=\frac{1}{2} K(\mathbf{z} ; \mu) F(x, \mathbf{z}, \mu, \zeta)
$$

- DTMDs

$$
\begin{aligned}
& {\frac{\partial}{\partial \log \mu_{1}}}^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)=\gamma_{F}\left(\mu_{1}, x_{1} \zeta / x_{2}\right)^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right) \\
& \frac{\partial}{\partial \log \mu_{2}}
\end{aligned}
$$

- DTMD renormalizations are independent, since they are separated.

Collins, Foundations of perturbative QCD, (2011); Aybat, Rogers, PRD 83 (2011) 114042

Renormalization and rapidity evolution

- TMDs

$$
\begin{aligned}
& \frac{\partial}{\partial \log \mu} F(x, \mathbf{z} ; \mu, \zeta)=\gamma_{F}(\mu, \zeta) F(x, \mathbf{z} ; \mu, \zeta) \\
& \left.\frac{\partial}{\partial \log \zeta} F(x, \mathbf{z}, \mu, \zeta)=K_{\mathbf{z}} ; \mu\right) F(x, \mathbf{z}, \mu, \zeta)
\end{aligned}
$$

- DTMDs

$$
\frac{\partial}{\partial \log \mu_{1}}
$$

$$
{ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)=\gamma_{F}\left(\mu_{1}, x_{1} \zeta / x / 2\right)^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)
$$

$$
\frac{\partial}{\partial \log \mu_{2}}{ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)=\gamma_{F}\left(\mu_{2}, x_{2} \zeta / x_{1}\right)^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)
$$

$$
\frac{\partial}{\partial \log \zeta}^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y}, \mu_{i}, \zeta\right)=\frac{1}{2} \sum_{R^{\prime}}^{R r^{\prime}} K\left(\mathbf{z}_{i}, \mathbf{y} ; \mu_{i}\right)^{R^{\prime}} F\left(x_{i}, \mathbf{y}, \mu_{i}, \zeta\right)
$$

- DTMD renormalizations are independent, since they are separated.

Collins, Foundations of perturbative QCD, (2011); Aybat, Rogers, PRD 83 (2011) 114042

Renormalization and rapidity evolution

- TMDs

$$
\begin{aligned}
& \frac{\partial}{\partial \log \mu} F(x, \mathbf{z} ; \mu, \zeta)=\gamma_{F}(\mu, \zeta) F(x, \mathbf{z} ; \mu, \zeta) \\
& \frac{\partial}{\partial \log \zeta} F(x, \mathbf{z}, \mu, \zeta)=\frac{1}{2} K(\mathbf{z} ; \mu) F(x, \mathbf{z}, \mu, \zeta)
\end{aligned}
$$

$F=$ DTMDs
$K=$ Collins Soper evolution kernel
$\gamma_{F}=$ anomalous dimension of F

- DTMDs

$$
\begin{aligned}
& \left.\frac{\partial}{\frac{\partial T M D s}{\partial \log \mu_{1}}}{ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)=\gamma_{F} \mu_{1} \mu_{1} \zeta / x_{2}\right)^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right) \\
& \frac{\partial}{\partial \log \mu_{2}} \\
& \left.{ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)=\gamma_{F} \mu_{2}, x_{2} \zeta / x_{1}\right)^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right) \\
& \frac{\partial}{\partial \log \zeta}{ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y}, \mu_{i}, \zeta\right)=\frac{1}{2} \sum_{R^{\prime}}{ }^{R R^{\prime}} K\left(\mathbf{z}_{i}, \mathbf{y} ; \mu_{i}\right)^{R^{\prime}} F\left(x_{i}, \mathbf{y}, \mu_{i}, \zeta\right)
\end{aligned}
$$

- DTMD renormalizations are independent, since they are separated.

Collins, Foundations of perturbative QCD, (2011); Aybat, Rogers, PRD 83 (2011) 114042

Solving evolution equations for DTMDs

DTMDs: μ_{1} and μ_{2} scale evolution

- μ_{1} scale evolution governed by an equation of the form

$$
{\frac{\partial}{\partial \log \mu_{1}}}^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)=\gamma_{F}\left(\mu_{1}, x_{1} \zeta / x_{2}\right)^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)
$$ and similarly for μ_{2}.

- For the starting values:
- Starting scales μ_{10} and μ_{20} for μ_{1} and μ_{2}.
- We define the ζ value as the geometric mean
- We get the result

$$
\begin{aligned}
{ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right) & ={ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{0 i}, \zeta\right) \\
& \times \exp \left\{\int_{\mu_{01}}^{\mu_{1}} \frac{d \mu}{\mu} \gamma_{F}\left(\mu, x_{1} \zeta / x_{2}\right)+\int_{\mu_{02}}^{\mu_{2}} \frac{d \mu}{\mu} \gamma_{F}\left(\mu, x_{2} \zeta / x_{1}\right)\right\}
\end{aligned}
$$

- Note the additive structure

Solving evolution equations for DTMDs

DTMDs: μ_{1} and μ_{2} scale evolution and ζ evolution

- ζ evolution governed by

$$
\frac{\partial}{\partial \log \zeta}^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y}, \mu_{i}, \zeta\right)=\frac{1}{2} \sum_{R^{\prime}}{ }^{R R^{\prime}} K\left(\mathbf{z}_{i}, \mathbf{y} ; \mu_{i}\right)^{R^{\prime}} F\left(x_{i}, \mathbf{y}, \mu_{i}, \zeta\right)
$$

- Solving for rapidity dependence, we then get the result

$$
{ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{i}, \zeta\right)={ }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{0 i}, \zeta\right)
$$

$$
\begin{aligned}
& \times \exp \left\{\int_{\mu_{01}}^{\mu_{1}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, x_{1} \zeta / x_{2}\right)-\gamma_{K}(\mu) \log \frac{\sqrt{x_{1} \zeta / x_{2}}}{\mu}\right]\right. \\
& \quad+\int_{\mu_{02}}^{\mu_{2}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, x_{2} \zeta / x_{1}\right)-\gamma_{K}(\mu) \log \frac{\sqrt{x_{2} \zeta / x_{1}}}{\mu}\right] \\
& \left.\quad+\left[{ }^{R} K\left(\mathbf{z}_{1}, \mu_{01}\right)+{ }^{R} K\left(\mathbf{z}_{2}, \mu_{02}\right)+{ }^{R} J\left(\mathbf{y}, \mu_{0 i}\right)\right] \log \frac{\sqrt{\zeta}}{\sqrt{\zeta_{0}}}\right\}
\end{aligned}
$$

- The K-kernel splitting in three separate contributions is crucial, but only true in limit where we can do the DTMD \rightarrow DPDF matching.

DTMD/DPDF matching

- The matching equation is given by

$$
{ }^{R} F\left(x_{i}, \mathbf{z}_{\mathbf{i}}, \mathbf{y} ; \mu_{i}, \zeta\right)={ }^{R} C\left(x_{1}^{\prime}, \mathbf{z}_{\mathbf{1}} ; \mu_{1}, \mu_{1}^{2}\right) \otimes_{x_{1}}^{R} C\left(x_{2}^{\prime}, \mathbf{z}_{\mathbf{2}} ; \mu_{2}, \mu_{2}^{2}\right) \otimes_{x_{2}}^{R} F\left(x_{i}^{\prime}, \mathbf{y} ; \mu_{i}, \zeta\right)
$$

- Convolution defined as

$$
C\left(x^{\prime}\right) \underset{x}{\otimes} F\left(x^{\prime}\right)=\int_{x}^{1} \frac{d x^{\prime}}{x^{\prime}} C\left(x^{\prime}\right) F\left(\frac{x}{x^{\prime}}\right)
$$

- The coefficient functions C are the same as for TMD/PDF matching
- Splitting kernels from PDF/TMDs can largely be recycled

$$
C_{q / g}\left(x^{\prime}, \mathbf{z} ; \mu_{0}, \mu_{0}^{2}\right) \quad C_{g / g}\left(x^{\prime}, \mathbf{z} ; \mu_{0}, \mu_{0}^{2}\right) \quad C_{g / \delta g}\left(x^{\prime}, \mathbf{z} ; \mu_{0}, \mu_{0}^{2}\right) \quad \text { etc. }
$$

Collins, Foundations of perturbative QCD, (2011); Aybat, Rogers, PRD 83 (2011) 114042; Bacchetta, Prokudin, NPB 875 (2013) 536; Echevarría, Kasemets, Mulders, Pisano, JHEP 1507 (2015) 158; MGAB, Diehl, Kasemets, work in progress.

Combining matching and evolution

- The evolution of DTMDs is in the short-distance matching given by

$$
\begin{aligned}
& { }^{R} F\left(x_{i}, \mathbf{z}_{i}, \mathbf{y} ; \mu_{1}, \mu_{2}, \zeta\right) \\
& =\exp \left\{\int_{\mu_{01}}^{\mu_{1}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, \mu^{2}\right)-\gamma_{K}(\mu) \log \frac{\sqrt{x_{1} \zeta / x_{2}}}{\mu}\right]+{ }^{R} K\left(\mathbf{z}_{1}, \mu_{01}\right) \log \frac{\sqrt{x_{1} \zeta / x_{2}}}{\mu_{01}}\right. \\
& +\int_{\mu_{02}}^{\mu_{2}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, \mu^{2}\right)-\gamma_{K}(\mu) \log \frac{\sqrt{x_{2} \zeta / x_{1}}}{\mu}\right]+{ }^{R} K\left(\mathbf{z}_{2}, \mu_{02}\right) \log \frac{\sqrt{x_{2} \zeta / x_{1}}}{\mu_{02}} \\
& \left.+{ }^{R} J\left(\mathbf{y}, \mu_{01}, \mu_{02}\right) \log \frac{\sqrt{\zeta}}{\sqrt{\zeta_{0}}}\right\} \\
& \times{ }^{R} C\left(x_{1}^{\prime}, \mathbf{z}_{1} ; \mu_{01}, \mu_{01}^{2}\right){ }_{x_{1}}^{{ }^{R}} C\left(x_{2}^{\prime}, \mathbf{z}_{2} ; \mu_{02}, \mu_{02}^{2}\right){ }_{x_{2}}{ }^{R} F\left(x_{i}^{\prime}, \mathbf{y} ; \mu_{01}, \mu_{02}, \zeta_{0}\right)
\end{aligned}
$$

- From additive structure of the Collins-Soper evolution kernel we have the sum for the two contributions for the μ_{1} and μ_{2} dependences.
- $K\left(\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{y}\right)$-kernel splits in three separate contributions: $K\left(\mathbf{z}_{1}, \mu_{01}\right), K\left(\mathbf{z}_{2}, \mu_{02}\right)$ and $J\left(\mathbf{y}, \mu_{01}, \mu_{02}\right)$ when collinear soft function becomes diagonal.

Combining matching and evolution

- Cross section contribution given by

$$
\begin{aligned}
W_{\text {large } \mathbf{y}}= & \sum_{R} \exp \left\{\int_{\mu_{01}}^{\mu_{1}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, \mu^{2}\right)-\gamma_{K}(\mu) \log \frac{Q_{1}^{2}}{\mu^{2}}\right]+{ }^{R} K\left(\mathbf{z}_{1}, \mu_{01}\right) \log \frac{Q_{1}^{2}}{\mu_{01}^{2}}\right. \\
& \left.+\int_{\mu_{0}}^{\mu_{2}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, \mu^{2}\right)-\gamma_{K}(\mu) \log \frac{Q_{2}^{2}}{\mu^{2}}\right]+{ }^{R} K\left(\mathbf{z}_{2}, \mu_{02}\right) \log \frac{Q_{2}^{2}}{\mu_{02}^{2}}\right\} \\
& \times{ }^{R} C\left(\bar{x}_{1}^{\prime}, \mathbf{z}_{1} ; \mu_{01}, \mu_{01}^{2}\right) \otimes_{\bar{x}_{1}}^{R} C\left(\bar{x}_{2}^{\prime}, \mathbf{z}_{2} ; \mu_{02}, \mu_{02}^{2}\right) \stackrel{\otimes}{\bar{x}_{2}} \\
& \times{ }^{R} C\left(x_{1}^{\prime}, \mathbf{z}_{1} ; \mu_{01}, \mu_{01}^{2}\right) \otimes_{x_{1}}^{R} C\left(x_{2}^{\prime}, \mathbf{z}_{2} ; \mu_{02}, \mu_{02}^{2}\right) \stackrel{\otimes}{x_{2}} \\
& \times[\Phi(\nu \mathbf{y})]^{2} \exp \left[{ }^{R} J\left(\mathbf{y}, \mu_{0 i}\right) \log \frac{\sqrt{Q_{1}^{2} Q_{2}^{2}}}{\zeta_{0}}\right]{ }^{R} F\left(\bar{x}_{i}, \mathbf{y} ; \mu_{0 i}, \zeta_{0}\right)^{R} F\left(x_{i}, \mathbf{y} ; \mu_{0 i}, \zeta_{0}\right)
\end{aligned}
$$

- The $\mathbf{z}_{1}, \mathbf{z}_{2}$ and \mathbf{y} contributions nicely factorize.
- There is ζ - dependence for color non-singlet DPDFs, even if there is no transverse momenta anymore

Combining matching and evolution

- Cross section contribution given by

$$
\begin{aligned}
W_{\text {large } \mathbf{y}}= & \sum_{R} \exp \left\{\int_{\mu_{0}}^{\mu_{1}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, \mu^{2}\right)-\gamma_{K}(\mu) \log \frac{Q_{1}^{2}}{\mu^{2}}\right]+{ }^{R} K\left(\mathbf{z}_{1}, \mu_{01}\right) \log \frac{Q_{1}^{2}}{\mu_{01}^{2}}\right. \\
& \left.+\int_{\mu_{0}}^{\mu_{2}} \frac{d \mu}{\mu}\left[\gamma_{F}\left(\mu, \mu^{2}\right)-\gamma_{K}(\mu) \log \frac{Q_{2}^{2}}{\mu^{2}}\right]+{ }^{R} K\left(\mathbf{z}_{2}, \mu_{02}\right) \log \frac{Q_{2}^{2}}{\mu_{02}^{2}}\right\} \\
& \times{ }^{R} C\left(\bar{x}_{1}^{\prime}, \mathbf{z}_{1} ; \mu_{01}, \mu_{01}^{2}\right) \otimes_{\bar{x}_{1}}^{R} C\left(\bar{x}_{2}^{\prime}, \mathbf{z}_{2} ; \mu_{02}, \mu_{02}^{2}\right) \stackrel{\otimes}{\bar{x}_{2}} \\
& \times{ }^{R} C\left(x_{1}^{\prime}, \mathbf{z}_{1} ; \mu_{01}, \mu_{01}^{2}\right) \otimes_{x_{1}}^{R} C\left(x_{2}^{\prime}, \mathbf{z}_{2} ; \mu_{02}, \mu_{02}^{2}\right) \stackrel{\otimes}{x_{2}} \\
& \times[\Phi(\nu \mathbf{y})]^{2} \exp \left[{ }^{R} J\left(\mathbf{y}, \mu_{0 i}\right) \log \frac{\sqrt{Q_{1}^{2} Q_{2}^{2}}}{\zeta_{0}}\right]{ }^{R} F\left(\bar{x}_{i}, \mathbf{y} ; \mu_{0 i}, \zeta_{0}\right)^{R} F\left(x_{i}, \mathbf{y} ; \mu_{0 i}, \zeta_{0}\right)
\end{aligned}
$$

- Sudakov suppression for everything other than color singlet configur.
- Similar Sudakov suppressions for collinear DPDFs

Manohar, Waalewijn, PRD 85 (2012) 114009; Mekhfi, Artru, PRD 37 (1988) 2618.

Polarizations

- Including parton labels in equations for DTMDs and cross section. E.g.

$$
\begin{aligned}
&{ }^{R} F_{a_{1} a_{2}}\left(x_{i}, \mathbf{z}_{i}, \mathbf{y}\right.\left.; \mu_{1}, \mu_{2}, \zeta\right) \\
&=\sum_{b_{1} b_{2}} \exp \left\{\int_{\mu_{0}}^{\mu_{1}} \frac{d \mu}{\mu}\left[\gamma_{F, a_{1}}\left(\mu, \mu^{2}\right)-\gamma_{K, a_{1}}(\mu) \log \frac{\sqrt{x_{1} \zeta / x_{2}}}{\mu}\right]+{ }^{R} K_{a_{1}}\left(\mathbf{z}_{1}, \mu_{01}\right) \log \frac{\sqrt{x_{1} \zeta / x_{2}}}{\mu_{01}}\right. \\
&+\int_{\mu_{02}}^{\mu_{2}} \frac{d \mu}{\mu}\left[\gamma_{F, a_{2}}\left(\mu, \mu^{2}\right)-\gamma_{K, a_{2}}(\mu) \log \frac{\sqrt{x_{2} \zeta / x_{1}}}{\mu}\right]+{ }^{R} K_{a_{2}}\left(\mathbf{z}_{2}, \mu_{02}\right) \log \frac{\sqrt{x_{2} \zeta / x_{1}}}{\mu_{02}} \\
&\left.+{ }^{R} J\left(\mathbf{y}, \mu_{01}, \mu_{02}\right) \log \frac{\sqrt{\zeta}}{\sqrt{\zeta_{0}}}\right\} \\
& \times{ }^{R} C_{a_{1} b_{1}}\left(x_{1}^{\prime}, \mathbf{z}_{1} ; \mu_{01}, \mu_{01}^{2}\right) \otimes \otimes_{x_{1}}^{R} C_{a_{2} b_{2}}\left(x_{2}^{\prime}, \mathbf{z}_{2} ; \mu_{02}, \mu_{02}^{2}\right) \otimes_{x_{2}}^{R} F_{b_{1} b_{2}}\left(x_{i}^{\prime}, \mathbf{y} ; \mu_{01}, \mu_{02}, \zeta_{0}\right)
\end{aligned}
$$

- Parton labels like a_{1} not only q, \bar{q} and g, but also $\delta q, \Delta q, \delta g, \Delta g$, etc.
- Splitting kernels from PDF/TMDs can largely be recycled

$$
C_{q / g}\left(x^{\prime}, \mathbf{z} ; \mu_{0}, \mu_{0}^{2}\right) \quad C_{g / g}\left(x^{\prime}, \mathbf{z} ; \mu_{0}, \mu_{0}^{2}\right) \quad C_{g / \delta g}\left(x^{\prime}, \mathbf{z} ; \mu_{0}, \mu_{0}^{2}\right) \quad \text { etc. }
$$

Collins, Foundations of perturbative QCD, (2011); Aybat, Rogers, PRD 83 (2011) 114042; Bacchetta, Prokudin, NPB 875 (2013) 536; Echevarría, Kasemets, Mulders, Pisano, JHEP 1507 (2015) 158; MGAB, Diehl, Kasemets, work in progress.

Conclusions

- We use short-distance expansion
- $\left|\mathbf{z}_{1}\right|,\left|\mathbf{z}_{2}\right|$ much smaller than $1 / \wedge$
- $\left|\mathbf{z}_{1}\right|,\left|\mathbf{z}_{2}\right|<\mathbf{y}$
although part of our results are also valid outside this region.
- Description for soft function
- Separation in a \mathbf{y}-dependent contribution and two pieces depending on either \mathbf{z}_{1} or \mathbf{z}_{2}.
- Matching equations for DPDs
- Evolution equations for DTMDs.
- Expression for matching at level of individual DTMDs/DPDFs and cross section.
- Explicit expressions for matching of all polarization-modes: results from TMD/PDF matching can in part be recycled.

