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TMD PDFs from Monte Carlo evolution
Motivation- why TMDs?

Why Transverse Momentum Dependent PDFs?

Goal: fU” TMD PDFS

What is Transverse Momentum Dependent (TMD) PDF?
» TMD PDF is a generalization of concept of PDF.
» TMD: depends not only on x and Q2 but also on k7: TMD(x, @2, k1)

TDMs are important in studies on:
» resummation at all orders in the QCD coupling to many observables in high-energy hadronic
collisions,
> nonperturbative information on hadron structure at very low krt,

> perturbative region where QCD evolution equations (DGLAP, BFKL, CCFM) describe
processes

> a proper and consistent simulation of parton showers,

» multi-scale problems in hadronic collisions,

Acta Physica Polonica B, Vol. 46 (2015), Transverse Momentum Dependent (TMD) Parton Distribution Functions: Status and
Prospects

Important processes: Drell-Yan hadroproduction of electroweak gauge bosons, Higgs
production...
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|—Introduction to the method- Sudakov formalism

Sudakov formalism

DGLAP evolution equation for momentum weighted parton density xf(x, uz) = 7(x, ,u,z)

dfa(x, %)

1
_Z 2 7 (X 2
dinp? 4 /x dzPap (s )’Z)fb(z’“

a, b- quark (2Ng flavours) or gluon, x- longitudinal momentum fraction of the proton carried by a parton a,

x; . . .
z= g L__ splitting variable, 1~ evolution mass scale and
i—1

a structure of a splitting function:

1
Pab (as(.u'z)vz) = Dab (as(uz)) 6(1 - Z) + Kab (as(u2)) (1 )
J 109800)4dx = J§ F()g(x)ox — Jg F(1)g(x)dx
Dap (asw )) = Sapda (as(;ﬂ))‘ Kap (@s(1?)) = Sapka (as(i?)),

) (1)

+Rap (as(4?),2) . (2)

Rap (us( Lz), z) contains logarithmic terms in In(1 — z) and has no power divergences (1 — z) ™" for z — 1
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|—Introduction to the method- Sudakov formalism

Sudakov formalism

DGLAP evolution equation for momentum weighted parton density xf(x, pz) = 7(x, ,u,z)

df;(;:: ) Z/ dzP.y (as(p?), 2) fb( ) @

a, b- quark (2Ng flavours) or gluon, x- longitudinal momentum fraction of the proton carried by a parton a,

x; . . .
z= g L__ splitting variable, 1~ evolution mass scale and
i—1

a structure of a splitting function:

1
Pap (as(l'bz)7z) = Dap (as(uz)) 6(1 - Z) + Kap (O‘S(N2)) (1 ) + Rap (O‘S(u ) ) (2)
J3 ()81 dx = J§ F(g(x)dx — [ F(1)g(x)dx
Doy (as(1?)) = 8apda (as(1?)). Kap (as(1?)) = Sapka (as(u?)).

Rap (us(pz), z) contains logarithmic terms in In(1 — z) and has no power divergences (1 — z) ™" for z — 1

dfa(x u?)

dinp? Z/ dz( ab (@s(p?)) (1 2) + Rap (as(p?), z)) fb( )+

=S i) [ e (e 0s2) s~ Dun ) 1= 2)) )
b
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Llntroduction to the method- Sudakov formalism

Sudakov formalism

1

"fjﬁj: ;/X ( ab (s(14?)) + Rap (ozs(p,2),z)) A (E,u2)+

1
(1-2)
-5 (x,ﬂz)/ dz< a6 (as(p?)) (1 =l Dap (as(12)) 5(1 —z))

b

Defining the Sudakov form factor:

In u? 1
Bs(p?) = exp (— [ dnuwn) S [ dearl (as(u’2)72)> (@)
n b

Ho

with momentum sum rule 3~ fol dzzPc, (ocs(,uz)7 z) =0:

df(X D) 2 T(X 2 7 2 1 dAa(s?)
dzPR ol =, fa (x, — ", 5
dlnp? / “ as(u )’z) b(z “)—i—a(X”)Aa(lﬁ) dln p? ®)

be (as(uz), z) = R,p (as(uz), z) + Kap (as(uz)) liz - real part of the splitting function.
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|—Introduction to the method- Sudakov formalism

Sudakov formalism

After integration:

~ _ In p2
&(x,uz)zﬂ(x,ug)Aa(u2)+/l : dln 2'23((“2,))2/ dzPR (as(p?'), 7) f,,( 2'). (6)
npg
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|—Introduction to the method- Sudakov formalism

Sudakov formalism

After integration:

- . In 12 A (2 1 .
2y _ 2VA (4,2 20 Da(p?) Z R 2/ X o
f;(xrl"’ ) - &(XJI'O) a(M )+Au% dln/J. Qa(/JfZI) - /x dZPab (as(u )72) fb (;7/"‘ ) . (6)

Sudakov: probability of evolving from ug to uz without any resolvable branching.
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|—Introduction to the method- Sudakov formalism

Sudakov formalism

After integration:

- . In u? A 2 1 .
1z X
o, 1%) = . 13) Ba 1)+ /. - dlnuz'fj((uz,)) S [ deP (s 2) B (Z) - ©)
n 0 b X

Sudakov: probability of evolving from ug to uz without any resolvable branching.

OR ' OR

Figure : Example for a= gluon.

8/21



TMD PDFs from Monte Carlo evolution

|—Introduction to the method- Sudakov formalism

Sudakov formalism

After integration:

- . In u? A 2 1 ~ /x
B0xs) = BBy [ i LD S [ 6eph (an(u2).2) o (%02
npg p VX

Aa(NZ')

Sudakov: probability of evolving from ug to uz without any resolvable branching.

Figure : Example for a= gluon.

but! ?b (f, uz') has it's own evolution history!

~ (X ~ [x In 2’ (H ) ~
fo (*7#2,) =t (*mg) Ap(p®') +/ ) dlnuz” 2 T / dz’ Pbc (uz”),Z') e (—
z z In Ky )

X

zz!

') . (6)
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|—Introduction to the method- Sudakov formalism

Sudakov formalism

After integration:

~ ~ Iny.2 A 2

fa(x,uz):fa(x,ug)Aa(uz)-l-/l i dlnpz'Aa((:Zl))Z/ dzPR (as(p?'), 7) f,,( 2’). (6)
I'I[J,O a

Sudakov: probability of evolving from ug to uz without any resolvable branching.

OR ' OR

Figure : Example for a= gluon.
but! ?b (f, uz') has it's own evolution history!

~ (X ~ [x In 2’ (y,) ~ [ x
(2o ) =T (Zod) dsten+ [ dny? ST = v /dz PE (s, ) T (5002) )
z z In 2 ) 2z

This equation has an iterative solution which can be easily implemented in the MC code.
8/21
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Results

MC code

In this presentation: MC results obtained with updated and improved [ > uPDFevoly code

> full coupled quark and gluon DGLAP evolution (gluon, sea and valence evolution),
» fixed flavour number scheme,
> LO in P(z2),
> 1-loop-as (but also 2-loop-as implemented),
> xf(x,t),
> the initial distributions for u,d, s, ..., T, d,5, ... and gluon come from QCDNum17 (but any
other parametrization can be used).
Evolution over the whole range in x, Q2 and all kinematically allowed k.

https:/ /updfevolv.hepforge.org/
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TMD PDFs from Monte Carlo evolution

Results

MC code

In this presentation: MC results obtained with updated and improved [ > uPDFevoly code

>

>

>

>

full coupled quark and gluon DGLAP evolution (gluon, sea and valence evolution),
fixed flavour number scheme,
LO in P(z),

1-loop-as (but also 2-loop-as implemented),

> xf(x,t),

the initial distributions for u,d, s, ..., T, d,5, ... and gluon come from QCDNum17 (but any
other parametrization can be used).

Evolution over the whole range in x, Q2 and all kinematically allowed k.

https:/ /updfevolv.hepforge.org/
Advantage of updfevolv:

>

the structure of the code suitable for usage in xFitter (to have full TMDs):
structure of grids — fitting method fast.
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Results

Avoiding divergences in P(z) at z — 1
Some of the splitting functions are divergent for z — 1.

To avoid divergences:

d?a(xvﬂz) _ /1 R 2 F (X 2 7 2 1 das(p?) ~
dlnu2 _Xb: . dZPab(as(H’ )vz)fb(zvu)+fa(X)M)Aa(M2) dlnp,2 ~

Zmax ~ X ~ 1 dA 2
=3[ PR i) B (50) + b)) O
b X

and the same cut off in Sudakov form factor A,(1?) and A,(p?).
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Avoiding divergences in P(z) at z — 1
Some of the splitting functions are divergent for z — 1.

To avoid divergences:

d?a(xvﬂz) _ /1 R 2 F (X 2 7 2 1 das(p?) ~
dlnu2 _Xb: . dZPab(as(H’ )vz)fb(zvlll)'i'fa(xyu’)Aa(“z) dlnu2 ~

Zmax ~ X ~ 1 dA 2
=3[ PR i) B (50) + b)) O
b X

and the same cut off in Sudakov form factor A,(1?) and A,(p?).

1

it can be shown that terms
zZmax

skipped in the integral in eq. (8) are of order O(1 — zmax)
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Results

Avoiding divergences in P(z) at z — 1
Some of the splitting functions are divergent for z — 1.

To avoid divergences:

d?a(x, 1) /1 R 2 F (X 2 7 2 1 dAa(p?)
—_— = dzP fo | — f. —_— = &
dlnu2 Xb: " ZFab (Oés([l, ),Z) b (Zvllf ) +fa (lel' ) Aa(/sz) dlnu2
1 dAa(y?)

Zmax
~ dzPR ), 2) £, i, 2) +f (x, p? 8
;/ B (s, 2) B (502) 4 F (o) i Sty (@)

and the same cut off in Sudakov form factor A,(1?) and A,(p?).

1

it can be shown that terms
zZmax

skipped in the integral in eq. (8) are of order O(1 — zmax)

Different choices of znax:

> Zmax - fixed
> Zmax - can change dynamically with the scale, for example:
angular ordering: zZmax = 1 — (%)
In this presentation: results from fixed zpax.
11/21
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Results
L PDFs from Integrated TMDs using MC method

sea quarks
QCDNum, 1 — Zmax = 1072, 1 — zmax = 1074, 1 — za¢ = 1078,
- 2 - 2 - 2
seaat u2=2 GeV sea at p2=1000 GeV: sea at p2=100000 GeV’
oeMC, 12, =107 -t oMC, 12, o MC, 12,7107
10°E . e 107 . " 10°F . s
Ve, 12,710 ] MG, 12,710 WC, 12,710
10k oM, 17,7100 WE MG 12,5100 WE e, 12,5100
— QCDNUM 10°F — QCDNUM 10°F — QCDNUM
10
0k 10°F
10° b
ok 10
SRS, e b
5 -45 -4 -35 -3 -25 -2 -15 -1 -05 5 -45 -4 -35 -3 -25 -2 -15 -1 05 5 -45 -4 -35 -3 -25 -2 -15 -1 -05
Log (4 Log;, () Log. (4
g o
MCIQCDNUM, 17,5107 1250 oo MCIQCONUM, 17,,,210° 1250 - MCIQCONUM, 17,
MC/QCDNUM, 1, =10* Lof T MCIQEDNUM, 17, 210" i s MCIQCDNUM, 12,
MCIQCDNUM, 1, =10° - MCIQCDNUM, 1, =10° i - MCIQCDNUM, 17, :
115 — QCDNUM LOIQCDNUMLO, 115 — QCDNUM LOIQCDNUM LO, ¥ 115 — QCDNUM LOIQCDNUM L :
1f | 1 :
Lo i 10 :
L L L L L L L L L L L Ll Ity L Li
5 -45 -4 -35 -3 -25 -2 -15 -1 05 5 -45 -4 35 -3 -25 -2 -15 -1 05 -5 -45 -4 35 -3 -2 -15 -1 05
Log; (x Log, (x Log, (

MC results close to the QCDNum results for values of zmnax large enough — Sudakov formalism treats non-resorvable and virtual

branchings to all orders.
The differences between MC and QCDNum at large x are an artefact of the histogram binning. 12/21
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Results
L PDFs from Integrated TMDs using MC method

gluon
QCDNum, 1 — Zmax = 1072, 1 — zmax = 1074, 1 — zpa¢ = 1078,

gluon at p2 = 1000 GeV? gluon at p2 = 100000 GeV?

gluon at p2=2 GeV?

115 — QCDNUM LO/QCDNUMLO, 115F — QCDNUM LO/QCDNUM LO,

-t MC, 12,7107 W% e 1, W M, 17,7107
1% e, 12,7100 102E o MG, 1,,510¢ w0 oM, 17,7100
P P A b MG 12,710
— QCONUM — QcoNUM . — Qconum
b w0k
10 b
10°F o
I L I L I L Il L I Il L I L L L L L L 10°E5,,,1 L L L I L L L L
5 -45 -4 35 -3 -25 2 -15 -1 05 -5 45 -4 35 -3 -25 2 -15 -1 -05 -45 -4 -35 -3 25 -2 -15 -1 -05
Log (4 Log;, () Log;,(x)
I g g
i E £
MCIQEDNUM, 12,7107 i 129 .- MCIQEDNUM, 17,7107 125 - MCIQCDNUM, 17,,10°
MCIQCDNUM, 1.7,, =10 i Lob " MCIQEDNUM, 17,,710° 4 Lob T MCIQCONUM, 17,7107
MCIQEDNUM, 12,=10° i - MCIQCDNUM, 12, =10° i - MCIQCDNUM, 12,
E £ 115 — QCDNUM LOIQCDNUMLO,
i i

T
45 4 35 3 25 2 15 -1 05
Log,(x)

L TN T T T
5 45 4 35 3 25 2 -15 -1 05
Log, ()

MC results close to the QCDNum results for values of zmnax large enough — Sudakov formalism treats non-resorvable and virtual

branchings to all orders.
The differences between MC and QCDNum at large x are an artefact of the histogram binning. 13/21
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Results

Results for TMDs

k1 dependence

MC method: for every branching Q is generated and Qx and Qy are calculated
— The information about k7 is available for every branching.

Kra

Q
Kint

Kz

two ways of defining kt :
Definition 1: k T,n= k Tn—1+ Q71n
or :
Definition 2: k1, = k71,5-1+(1— 2)8T7,, - angular ordering.
kTt contains the whole history of the evolution.
In this method k7 is treated properly from the beginning of the evolution- no extra reshuffling at
the end is required.

Krns

14/21
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Results
= Results for TMDs

TMD PDFs for Dg}inition 1 for different zmax values

Definition 1: k T.n= k T—1+ @1 p

1 — Zmax = 1074, 1 — zmax = 1075, 1 — zpay = 1078

sea, x = 0.001,p=2GeV gluon, x =0.001, p = 2 GeV

5 : . . 1 5 1
< o 1 - 3
L 1 % 3
10 1 |
107 4 t
1005 4 E
104 1
w0 i-
0 19
1075 i3 1
i
R ‘;”y,[se\}i’ L R
gluon, x = 0.001, p = 100 GeV
a g E ' !
< G
E4 £
b 10k
10°c 4
1095 4
104 E
- 10 1
b 0 1
07 N
§ £ i3
10 h|
£ iF
. o \ o e e, e
K [GeV]

We observe k7 tails, which can be larger than the evolution scale.
Different z,ax values give different large kt tails: the bigger the value of zy,x the larger the k1 tail:
Larger zmax — Sudakov form factor smaller — the probability of evolving without any resolvable branching smaller — more
branchings (soft gluons!), larger kT accumulated during the evolution process. 15/21
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Results
= Results for TMDs

TMD PDFs for angular ordering for different zpmax values
Definition 2: k 7, = k7 51+ (1 — 2) Q1 ,- angular ordering.

1= zmax = 10741 — zpax = 1075, 1 — zpax = 1078
sea, x = 0.001, p =2 GeV gluon, x = 0.001, p = 2 GeV
3 . . 3 : .
PRt =
R E:
H H
£ §
L . 2 L 2
10" 1 10 107 w‘k‘[Ga\;r 107 W‘K[GS\;IV‘
sea, x = 0.001, p = 100 GeV gluon, x = 0.001, p = 100 GeV
= X . - 3 .
e E < wor
2w E £ or
L 3 !
0 E o
10°%) !; 10°2)
10 5 10
104 E 104
10 10 =
10 10°¢] N
107 107 §
: s
10 107 1 10 T
° kicelf’

We observe k7 tails, which can be larger than the evolution scale.
Different zmax values give the same large kt tails!
When zpax large 1 — zpmay small so the contribution from large z suppressed- soft gluons suppressed by angular ordering!

16 /21
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Results
= Results for TMDs

Comparison of different TMD sets
Definition 2: k7, = k1 -1+ (1~ 2)87—’"- angular ordering.
updfevolv for DGLAP with angular ordering, 1 — zmax = 10_4, ccfm-JH-2013-set2

gluon, x = 0.001, p =5 GeV gluon, x = 0.001, p = 50 GeV
T T

T T T T

XA(xkP)
XAk, P)

‘TMDplotter 2.1.1
TMOpltter 21.1

107 10" 1 10" 1 10 10° 10° 1
K GoV" celf’

gluon, x = 0.001, p = 100 GeV' gluon, x = 0.001, p = 500 GeV
T T T d T 4 T T

XA(xKp)
2

XA(xK )

10

il und o il

TMOpltter 2.1.1
g
1
"
TMOpltter 21.1

f ‘ o R .
10" 1 10 107 10° 1 10" 1 10 107 100 10t 100
K GoV" Ricelf’

ccfm-JH-2013-set2 for small scales gives very simillar results to DGLAP with angular ordering.
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Results
First fit of full integrated TMDs to HERA DIS data with xFitter

First fit of full integrated TMDs to HERA H1 and Zeus data

Integrated TMDs for gluon, valence and sea from MC code were used in xFitter to fit Fp.
QCDNum convolution of integrated TMDs with collinear ME was used to obtain the structure function.

1.6Fe'p -5 e'X (NC) e 3 2fe'P X (NO) Jeer 3 1.5~ e'X (NC) skiter
© 14E : © & o X
128 1.5 i
=
o8 L 0.5
o6f
05k
0.4 . HERA142 Data G* =65 e HERA1+2 Data Q" = 45 Of - HERA142 Data G* - 500
0.2F ¢ duncorrelated + Suncorrelated + Buncorrelated
o Stotal
OF — Theory — MonteCarloMethod Theory — MonteCarloMethod 0.5 — Theory — MonteCarloMethod
.2 - --Theary +shifts  —QCOmm o5k --- Theory +shifs  — QCDnum --- Theory + shifts  — QCD:
s PRE s . g - -
5105 3 g "
2 1 = 1 =4
8 095 g § 09
£ ol 2, £ o8
0.0001 0.001 0.01 Lalhe 0.001 0.01 F 0.01 0.1
X X X
[ e 0.6¢p - e*X (NC) &'p - "X (NC) )
B LOPoC (NO) dtter 3 r bg 0.2(°P Amter
o8 04 0.15F
osf F ot
0.4 0.2
0of F 0.05F-
O . HERAt:2 Data g - 1500 |~ HERA1.2 Data G - 8000 OF + HERA142 Data 0 = 20000
~0.2F 4+ 5uncorrelated [ ¢ &uncorrelated 0.0sf * 2 uncorrelated
odf  owml [ 5 total -0. 5 total
-0. Theory — MonteCarioMethod . Theory — MonteCarloMethod Theory — MonteCarloMethod
_0.6F - --Theory +shifts  — QCDnum eory + shifts  — QCDnum ~0.1F ... Theory + shifts  — QCDnum
n
s g £ 14
11 1.1 %
%, R P %. S S ¥ { ] % 2 e ]
2 Nt i = ™ N = T —
& o9f g oe 2 o6l
= 002 97 0203 .080.1 02 03 0405 F 03 04 05 06 O

Fits work reasonably well for the whole x range and Q® > 5GeV? (x?/ndf = 1). 18 /21



R
TMD PDFs from Monte Carlo evolution

Summary

Summary

19/21



TMD PDFs from Monte Carlo evolution

L summary

Summary

New approach to solve coupled gluon and quark DGLAP evolution equation with MC method
was shown.
Advantages:

> a full TMD pdf evolution including gluon, sea and valence quarks over the full range in x
and Q? with the k1 dependence in the whole kinematically available range (not limited to
the small k7),

> reproduce semi-analytical solution (results consistent with QCDNum),

> direct usage in PS matched calculation.
TMDs are implemented in the preliminary version of xFitter.

New results of fitting integrated TMD pdfs to F, with xFitter were shown:
gluon and quark are fitted for @2 > 5GeV? for all x with x?/ndf ~ 1

20/21
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Summary

Thank you!
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Back up
Results for integrated TMDs

up
QCDNum, 1-zmax=10"*%

up at p2=2 GeV?

up at p2 = 1000 GeV?

up at p2 = 100000 GeV?

= = 10F
2 g
= =
1
10'F 101
TUMe, 17,,710¢ T Me, 1,210 M, 17,710
~ qeonuM 1% T QeoNuM W0 qoonum
107
10°F
10°E
L L IO TR T I
45 -4 -35 -3 25 2 -15 105 5 45 -4 -35 3 25 2 -15 -1 05 5 -45 -4 35 3 25 -2 15 -1 05
Log, (x) Log, () Log; (x)
g1 gl ol
® g g
1255 125 125F
T MCIQCDNUM, 1, 77 MCIQCDNUM, 12,,,=10* "7 MCIQCDNUM, 12,210
12F 12} 12F
115 QCDNUM LOIQCDNUM LO, 115 QCDNUM LO/QCDNUM LO, 11sf  QCDNUM LO/QCDNUM LO,
1f uf 1aF
10
L Lt
5 45 -4 -35 -3 25 2 -15 -1 -05 105
oG, (x L0g, (¥

MC results close to the QCDNum results.

The differences between MC and QCDNum at large x are an artefact of the histogram binning.
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Back up
Results for integrated TMDs

down
QCDNum, 1-zmax=10"*%

= 2 - 2 — 2
down at p2=2 GeV: down at p2=1000 GeV: down at p2 = 100000 GeV:
P R CEEE LS il i TMe 17, =10 st TTMC, 17,510
T Qconum 1%k QCDNUM 10° T QCDNUM
10°F
10t
10'F
L ITOTV T TP TN TR TVTV TP P TTIL
54353 25 2 15 -1 08 545 4 35 -3 25 2 15 1,05 5 -45 4 -35 -3 25 -2 15 -1 08
1660 fode L6, (o
ol ol ol -
B E B H
125f 125 125F §
77 MCIQDNUM, 1, "7 MCIQCDNUM, 12,,,510* 77 MCIQEDNUM, 17,710
12f 12) 12f
LisE T QCDNUM LOIQCONUM LO, 11 T QCDNUMLOIQCDNUM LO, 1150 QCDNUMLOIQCDNUM LO,
11 11 11
1osF
L L
5 a5 435 28 2 15 08 545 4 353 25 2 15 108
Log, (x) Log, (x)

MC results close to the QCDNum results.
The differences between MC and QCDNum at large x are an artefact of the histogram binning. 4/6
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Back up

MC solution of the evolution equation

MC solution - forward evolution

Goal: to solve DGLAP with MC method

2 2
_ _ In Da(u?) 1 _
2 2 2 H 2 alk R 2 2 2
fa(x, p%) = falx, pg)da(n)+ [ dxj_q dinp?’ —2 L E dzzPy, (as(u ", z) fp (x;_l, Hg) Ap(p ')5(zx‘_1—x)+.m
In ug Da(u2') b X

Forward evolution: at the beginning of the evolution we don't know what we will have at the end — is a a gluon or a quark?
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Back up

MC solution of the evolution equation

MC solution - forward evolution

Goal: to solve DGLAP with MC method

2 2
- ~ In Da(pc) 1 -
2 2 2 H 2 a R 2 2 2
fa(x, n%) = falx, pg)Ba(n)+ [ d_q dinp?’ 2L E dzzP), (as(u ’),Z) fp (f(X,-_l), “0) Ap(p ,)5(zxi_1—X)+uu
In 2 Da(pu2’) G Ix

Forward evolution: at the beginning of the evolution we don't know what we will have at the end — is a a gluon or a quark?

Example:
Initial parton is a gluon: b =gluon :

— ?b (X/'fl’ “S) =g (Xiflv ug) and we don't have >_4:

2 2
- 2y = 2 2 In 27 Ba(w?) 1 p 2 . 2 2
falx, n2) = Falx, ud)Ba(p®) + [ d_q dinp? =252 [T PR (as(u?'),2) & (xi1 1d) Bg ()31 — )+ .
In 3 Ba(u2') Ix ¢
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Back up

MC solution of the evolution equation

MC solution - forward evolution

Goal: to solve with MC method

27 Aa(ﬂz)

Aa(HZ,)

2
~ . 1
falx, 12) = Falx, 13)a(112) /dx,_/ dinp /dzzpfg (as(u®),2) @ (-1 113 Bg ()3 (ax 1 — ) + ..
«

Forward evolution: at the beginning of the evolution we don’t know what we will have at the end — is a a gluon or a quark?

> Generate [_L2, according to Ag(y,ZI) =Ry
where Ry- random number in the interval (0, 1) .
Check:

If uZ, > u2 then x; _1 = x, a =gluon we put to the grid g (x, ;L%) Ag(uz) and we don't have any branching.

If u2’ < p? (and let's assume it is this case) then we have the branching and we don't consider any more
falx, 1d)Ba(p?).
P Generate z according to
z P (B (Y4B () — Zmax gy (B (') 4 P (2!
JZ . d2' (Pegle!) + Pag(z))) = Ry 5o de' (Pgg(z') + Pag(e"))
where Rp- random number in the interval (0, 1) .
Calculate x; = 2x;__1 — fulfil 5(zx; 1 — x)!

2
In g 2, Dalp ) 2 21
:/dx,-_l /|an dinp Aa(7/ dzzPR (as(u ). z) (%1 15)Bg(W®) + e
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Back up

MC solution of the evolution equation

MC solution - forward evolution

Goal: to solve with MC method

2

~ In s Ba(n?)

ra(x,MZ):/dx,_l/lwz dinp Z/A / dezPR (as(u?'),2) & (v 10 13) Bg ) + ...
0

Moreover! if in the next step:

> u2” > ;Lz the evolution will be stopped with only one branching,

> MZ// < uz than evolution will continue with second branching (we will be in the "..." piece).

— ‘((2—)) fulfilled by constraction!

2

_ In 1

2 Iz 2 R 2 ~ 2 2

fa(x, n) = /dx,-_l/l , dinp ’/ dzzPfY, (as(,L ’),z)g (Xi_l,[L0>Ag([.t DR
npg x
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TMD PDFs from Monte Carlo evolution

Back up
MC solution of the evolution equation
:

MC solution - forward evolution

Goal: to solve with MC method

2

~ In 1

2 = 2 R 2 . 2 2

Talx, n2) = /dx,-_l/l , dinp ’/ dzzPfY, (as(p. ’),z)g (x,-,l,uo)Ag(u DR
n ug X

Decision about the splitting using R- random number in interval (0, 1)
if

3 ’
[} azpl (as(u?’),z)

= Fazs rE (astn?).2)

continue as gluon — now we know that o gluon

2
2 In 2 1 R 2 . 2 2
g(x, u°) :/dx,-71/ 2 dlinp ,E / dzzPCg (as(u /),z)g (x,v,l,uo)Ag(u /)+.m
In 2 < JIx
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MC solution of the evolution equation

Goal: to solve with MC method

when we generate z: weight,

2
In 1 2 1 R 2 _ 2 2/
E0x, 1) :/dx,-_l/l , dnu®’S :/ dzzPf (as(u ’),z)g (xi—1 o) Ag(u®yweight
nug T JIx

2 In 2 1 _
2) = /dx,-_l /In 1y din ;F’Z/X dzzPR (as(n?'), 2)8 (-1, 1d) Bg (1) + ...
0 c
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Back up

MC solution of the evolution equation

Goal: to solve with MC method

> In u2 1 _
) = /dx,-_l /In 1y din H”Z/X dzzPR (as(n?'), 2)8 (-1, 1d) Bg (1) + ...
0 c

when we generate z: weight,

2
In 1 2/ 1 R 2/ N\~ 2 27y
Jv:/dx,-_I/ , dinp }:/ dzzPl, (asm ),z)g (x,-,l,uo)Ag(M Yweight,
Inu,0 T JIx

Now the procedure starts from beginning.
The starting distribution: g(x, t).

Generate p.2” according to Ag(p
If HZH

2//yu2/)_

> 1 — only one branching & put to the grid:
. 1 R 2/7 V= 2 27
Ex, ) = Z/ dzzP Ly (as(u ),z)g (x,-il, HO)Ag(“ Yweight,
= Jx

if uz” < }_LZ — we have second branching, we are in ... piece.



TMD PDFs from Monte Carlo evolution
Back up

MC solution of the evolution equation

Goal: to solve with MC method

2
2 In g 2/ 1 R 2/ - 2 2/
Z(x, 1 w:/dx-_l/ , dinp?’S / 2P (as(p, ),z)g (X,‘_l,}to)Ag([J, T
In 13 = Jx

when we generate z: weight,
2
In e 2/ 1 R 2/7 V= 2 27y
g0 Jw:/dx,-71/| L dinu }:/ dzzPR (as(n?'), 2)8 (—1, 13) Bg (w2 weishez
nug T JIx

Now the procedure starts from beginning.
The starting distribution: g(x, t).

Generate p.2” according to Ag(p
If u2//

2”7}L2l)-

> 1 — only one branching & put to the grid:
1 R 27y s 2 27y
Ex, ) = Z/ dzzP Ly (as(u ),z)g (x,-il, HO)Ag(“ Yweight,
= Jx

if uz” < }_LZ — we have second branching, we are in ... piece.

2
integrals [ dxj_7 and flln uz dln ;42' solved by MC integration method:
n 1

0

b 1 N
[ rax = b =2 3 ) ©
a Nz
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