# TMD PDFs from Monte Carlo evolution

• Ola Lelek <sup>1</sup> Francesco Hautmann <sup>2</sup> Hannes Jung <sup>1</sup>

 $^{1}$  Deutsches Elektronen-Synchrotron (DESY)

 $^2$ University of Oxford

08.11.2016 REF 2016, Antwerp



### Table of Contents

Motivation- why TMDs?

Introduction to the method- Sudakov formalism

## Results

PDFs from Integrated TMDs using MC method Results for TMDs First fit of full integrated TMDs to HERA DIS data with xFitter

Summary

Motivation- why TMDs?

# Why Transverse Momentum Dependent PDFs?

# Goal: full TMD PDFs

What is Transverse Momentum Dependent (TMD) PDF?

- ▶ TMD PDF is a generalization of concept of PDF.
- ▶ TMD: depends not only on x and  $Q^2$  but also on  $k_T$ :  $TMD(x, Q^2, k_T)$

# TDMs are important in studies on:

- resummation at all orders in the QCD coupling to many observables in high-energy hadronic collisions,
- nonperturbative information on hadron structure at very low k<sub>T</sub>,
- perturbative region where QCD evolution equations (DGLAP, BFKL, CCFM) describe processes
- a proper and consistent simulation of parton showers,
- multi-scale problems in hadronic collisions,
- **•** ...

Acta Physica Polonica B, Vol. 46 (2015), Transverse Momentum Dependent (TMD) Parton Distribution Functions: Status and Prospects

Important processes: Drell-Yan hadroproduction of electroweak gauge bosons, Higgs production...

| Introduction to the method- Sudakov formalism |  |
|-----------------------------------------------|--|
| Introduction to the method- Sudakov formalism |  |
|                                               |  |

TMD PDFs from Monte Carlo evolution

DGLAP evolution equation for momentum weighted parton density  $xf(x,\mu^2)=\widetilde{f}(x,\mu^2)$ 

$$\frac{d\widetilde{f}_{a}(x,\mu^{2})}{d\ln\mu^{2}} = \sum_{b} \int_{x}^{1} dz P_{ab} \left(\alpha_{s}(\mu^{2}), z\right) \widetilde{f}_{b} \left(\frac{x}{z}, \mu^{2}\right) \tag{1}$$

a, b- quark ( $2N_f$  flavours) or gluon, x- longitudinal momentum fraction of the proton carried by a parton a,

 $z = \frac{x_i}{x_{i-1}}$  - splitting variable,  $\mu$ - evolution mass scale and

a structure of a splitting function:

$$P_{ab}\left(\alpha_s(\mu^2),z\right) = D_{ab}\left(\alpha_s(\mu^2)\right)\delta(1-z) + K_{ab}\left(\alpha_s(\mu^2)\right)\frac{1}{(1-z)_+} + R_{ab}\left(\alpha_s(\mu^2),z\right), \tag{2}$$

$$\int_{0}^{1} f(x)g(x)_{+} dx = \int_{0}^{1} f(x)g(x)dx - \int_{0}^{1} f(1)g(x)dx$$

$$D_{ab}\left(\alpha_s(\mu^2)\right) = \delta_{ab}d_a\left(\alpha_s(\mu^2)\right), K_{ab}\left(\alpha_s(\mu^2)\right) = \delta_{ab}k_a\left(\alpha_s(\mu^2)\right),$$

$$R_{ab}\left(lpha_{\it S}(\mu^2),z
ight)$$
 contains logarithmic terms in  $\ln(1-z)$  and has no power divergences  $(1-z)^{-n}$  for  $z o 1$  .

DGLAP evolution equation for momentum weighted parton density  $xf(x,\mu^2)=\widetilde{f}(x,\mu^2)$ 

$$\frac{d\widetilde{f}_{a}(x,\mu^{2})}{d\ln\mu^{2}} = \sum_{b} \int_{x}^{1} dz P_{ab} \left(\alpha_{s}(\mu^{2}), z\right) \widetilde{f}_{b} \left(\frac{x}{z}, \mu^{2}\right) \tag{1}$$

a, b- quark ( $2N_f$  flavours) or gluon, x- longitudinal momentum fraction of the proton carried by a parton a,

 $z=rac{x_i}{x_{i-1}}$  - splitting variable,  $\mu$ - evolution mass scale and

a structure of a splitting function:

$$P_{ab}\left(\alpha_s(\mu^2),z\right) = D_{ab}\left(\alpha_s(\mu^2)\right)\delta(1-z) + K_{ab}\left(\alpha_s(\mu^2)\right)\frac{1}{(1-z)_+} + R_{ab}\left(\alpha_s(\mu^2),z\right), \tag{2}$$

$$\int_{0}^{1} f(x)g(x)_{+} dx = \int_{0}^{1} f(x)g(x)dx - \int_{0}^{1} f(1)g(x)dx$$

$$D_{ab}\left(\alpha_s(\mu^2)\right) = \delta_{ab}d_a\left(\alpha_s(\mu^2)\right), K_{ab}\left(\alpha_s(\mu^2)\right) = \delta_{ab}k_a\left(\alpha_s(\mu^2)\right),$$

 $R_{ab}\left(lpha_{\rm S}(\mu^2),z
ight)$  contains logarithmic terms in  $\ln(1-z)$  and has no power divergences  $(1-z)^{-n}$  for z o 1 .

$$\frac{d\widetilde{f}_{a}(x,\mu^{2})}{d\ln\mu^{2}} = \sum_{b} \int_{x}^{1} dz \left( K_{ab} \left( \alpha_{s}(\mu^{2}) \right) \frac{1}{(1-z)} + R_{ab} \left( \alpha_{s}(\mu^{2}), z \right) \right) \widetilde{f}_{b} \left( \frac{x}{z}, \mu^{2} \right) + \\
- \sum_{b} \widetilde{f}_{b} \left( x, \mu^{2} \right) \int_{0}^{1} dz \left( K_{ab} \left( \alpha_{s}(\mu^{2}) \right) \frac{1}{(1-z)} - D_{ab} \left( \alpha_{s}(\mu^{2}) \right) \delta(1-z) \right) \quad (3)$$

$$\begin{split} \frac{d\widetilde{f}_{a}(x,\mu^{2})}{d\ln\mu^{2}} &= \sum_{b} \int_{x}^{1} dz \left( K_{ab} \left( \alpha_{s}(\mu^{2}) \right) \frac{1}{(1-z)} + R_{ab} \left( \alpha_{s}(\mu^{2}), z \right) \right) \widetilde{f}_{b} \left( \frac{x}{z}, \mu^{2} \right) + \\ &- \sum_{b} \widetilde{f}_{b} \left( x, \mu^{2} \right) \int_{0}^{1} dz \left( K_{ab} \left( \alpha_{s}(\mu^{2}) \right) \frac{1}{(1-z)} - D_{ab} \left( \alpha_{s}(\mu^{2}) \right) \delta(1-z) \right) \end{split}$$

Defining the Sudakov form factor:

$$\Delta_{a}(\mu^{2}) = \exp\left(-\int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d\left(\ln \mu'^{2}\right) \sum_{b} \int_{0}^{1} dz z P_{ba}^{R}\left(\alpha_{s}(\mu'^{2}), z\right)\right) \tag{4}$$

with momentum sum rule  $\sum_c \int_0^1 dz z P_{ca} \left(\alpha_s(\mu^2), z\right) = 0$ :

$$\frac{d\widetilde{f}_{a}(x,\mu^{2})}{d\ln\mu^{2}} = \sum_{b} \int_{x}^{1} dz P_{ab}^{R} \left(\alpha_{s}(\mu^{2}),z\right) \widetilde{f}_{b}\left(\frac{x}{z},\mu^{2}\right) + \widetilde{f}_{a}\left(x,\mu^{2}\right) \frac{1}{\Delta_{a}(\mu^{2})} \frac{d\Delta_{a}(\mu^{2})}{d\ln\mu^{2}}, \tag{5}$$

$$P_{ab}^{R}\left(lpha_{\mathcal{S}}(\mu^{2}),z
ight)=R_{ab}\left(lpha_{\mathcal{S}}(\mu^{2}),z
ight)+K_{ab}\left(lpha_{\mathcal{S}}(\mu^{2})
ight)\frac{1}{1-z}$$
 - real part of the splitting function.

After integration:

$$\widetilde{f}_{a}(x,\mu^{2}) = \widetilde{f}_{a}(x,\mu_{0}^{2})\Delta_{a}(\mu^{2}) + \int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu^{2} \frac{\Delta_{a}(\mu^{2})}{\Delta_{a}(\mu^{2})} \sum_{b} \int_{x}^{1} dz P_{ab}^{R} \left(\alpha_{s}(\mu^{2}),z\right) \widetilde{f}_{b}\left(\frac{x}{z},\mu^{2}\right).$$
 (6)

After integration:

$$\widetilde{f}_{a}(x,\mu^{2}) = \widetilde{f}_{a}(x,\mu_{0}^{2})\Delta_{a}(\mu^{2}) + \int_{\ln\mu_{0}^{2}}^{\ln\mu^{2}} d\ln\mu^{2\prime} \frac{\Delta_{a}(\mu^{2})}{\Delta_{a}(\mu^{2\prime})} \sum_{b} \int_{x}^{1} dz P_{ab}^{R} \left(\alpha_{s}(\mu^{2\prime}),z\right) \widetilde{f}_{b}\left(\frac{x}{z},\mu^{2\prime}\right).$$
 (6)

Sudakov: probability of evolving from  $\mu_0^2$  to  $\mu^2$  without any resolvable branching.



After integration:

$$\widetilde{f}_{a}(x,\mu^{2}) = \widetilde{f}_{a}(x,\mu_{0}^{2})\Delta_{a}(\mu^{2}) + \int_{\ln\mu_{0}^{2}}^{\ln\mu^{2}} d\ln\mu^{2\prime} \frac{\Delta_{a}(\mu^{2})}{\Delta_{a}(\mu^{2\prime})} \sum_{b} \int_{x}^{1} dz P_{ab}^{R} \left(\alpha_{s}(\mu^{2\prime}),z\right) \widetilde{f}_{b}\left(\frac{x}{z},\mu^{2\prime}\right). \tag{6}$$

Sudakov: probability of evolving from  $\mu_0^2$  to  $\mu^2$  without any resolvable branching.



Figure: Example for a= gluon.

Introduction to the method- Sudakov formalism

## Sudakov formalism

After integration:

$$\widetilde{f}_{a}(x,\mu^{2}) = \widetilde{f}_{a}(x,\mu_{0}^{2})\Delta_{a}(\mu^{2}) + \int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d \ln \mu^{2\prime} \frac{\Delta_{a}(\mu^{2})}{\Delta_{a}(\mu^{2\prime})} \sum_{b} \int_{x}^{1} dz P_{ab}^{R} \left(\alpha_{s}(\mu^{2\prime}),z\right) \widetilde{f}_{b}\left(\frac{x}{z},\mu^{2\prime}\right).$$
(6)

Sudakov: probability of evolving from  $\mu_0^2$  to  $\mu^2$  without any resolvable branching.



 $\label{eq:Figure:Example for a = gluon.} Figure: Example for a = gluon.$ 

but!  $\widetilde{f}_b\left(\frac{x}{z},\mu^2{}'\right)$  has it's own evolution history!

$$\widetilde{f}_{b}\left(\frac{x}{z},\mu^{2\prime}\right) = \widetilde{f}_{b}\left(\frac{x}{z},\mu_{0}^{2}\right)\Delta_{b}(\mu^{2\prime}) + \int_{\ln\mu_{0}^{2}}^{\ln\mu^{2\prime}} d\ln\mu^{2\prime\prime}\frac{\Delta_{a}(\mu^{2\prime})}{\Delta_{a}(\mu^{2\prime\prime})} \sum_{c} \int_{x}^{1} dz' P_{bc}^{R}\left(\alpha_{s}(\mu^{2\prime\prime}),z'\right)\widetilde{f}_{c}\left(\frac{x}{zz'},\mu^{2\prime\prime}\right) \tag{7}$$

After integration:

$$\widetilde{f}_{a}(x,\mu^{2}) = \widetilde{f}_{a}(x,\mu_{0}^{2})\Delta_{a}(\mu^{2}) + \int_{\ln \mu_{a}^{2}}^{\ln \mu^{2}} d \ln \mu^{2} \frac{\Delta_{a}(\mu^{2})}{\Delta_{a}(\mu^{2})} \sum_{L} \int_{X}^{1} dz P_{ab}^{R} \left(\alpha_{s}(\mu^{2}),z\right) \widetilde{f}_{b}\left(\frac{x}{z},\mu^{2}\right).$$
 (6)

Sudakov: probability of evolving from  $\mu_0^2$  to  $\mu^2$  without any resolvable branching.



Figure : Example for a= gluon.

but!  $\tilde{f}_b\left(\frac{x}{z}, \mu^{2\prime}\right)$  has it's own evolution history!

$$\widetilde{f}_b\left(\frac{x}{z},\mu^{2\prime}\right) = \widetilde{f}_b\left(\frac{x}{z},\mu_0^2\right) \Delta_b(\mu^{2\prime}) + \int_{\ln\mu_s^2}^{\ln\mu^{2\prime}} d\ln\mu^{2\prime\prime} \frac{\Delta_s(\mu^{2\prime})}{\Delta_s(\mu^{2\prime\prime})} \sum_{\mathcal{L}} \int_{x}^{1} dz' P_{bc}^{R}\left(\alpha_s(\mu^{2\prime\prime}),z'\right) \widetilde{f}_c\left(\frac{x}{zz'},\mu^{2\prime\prime}\right)$$
(7)

This equation has an iterative solution which can be easily implemented in the MC code.

Results

## MC code

In this presentation: MC results obtained with updated and improved <u>uPDFevolv code</u>:

- .
- full coupled quark and gluon DGLAP evolution (gluon, sea and valence evolution),
- fixed flavour number scheme,
- ▶ LO in P(z),
- ▶ 1-loop- $\alpha_s$  (but also 2-loop- $\alpha_s$  implemented),
- $\triangleright xf(x,t)$ ,
- ▶ the initial distributions for  $u, d, s, ..., \overline{u}, \overline{d}, \overline{s}, ...$  and gluon come from QCDNum17 (but any other parametrization can be used).

Evolution over the whole range in x,  $Q^2$  and all kinematically allowed  $k_T$ .

https://updfevolv.hepforge.org/

#### MC code

In this presentation: MC results obtained with updated and improved UPDFevolv code

- ▶ full coupled quark and gluon DGLAP evolution (gluon, sea and valence evolution),
- fixed flavour number scheme,
- ▶ LO in *P*(*z*),
- ▶ 1-loop- $\alpha_s$  (but also 2-loop- $\alpha_s$  implemented),
- $\triangleright xf(x,t)$ ,
- ▶ the initial distributions for  $u, d, s, ..., \overline{u}, \overline{d}, \overline{s}, ...$  and gluon come from QCDNum17 (but any other parametrization can be used).

Evolution over the whole range in x,  $Q^2$  and all kinematically allowed  $k_T$ .

https://updfevolv.hepforge.org/

# Advantage of updfevolv:

b the structure of the code suitable for usage in xFitter (to have full TMDs): structure of grids → fitting method fast.

# Avoiding divergences in P(z) at $z \to 1$

Some of the splitting functions are divergent for  $z \to 1$ .

To avoid divergences:

$$\begin{split} \frac{d\widetilde{f}_{a}(x,\mu^{2})}{d\ln\mu^{2}} &= \sum_{b} \int_{x}^{1} dz P_{ab}^{R} \left(\alpha_{s}(\mu^{2}),z\right) \widetilde{f}_{b} \left(\frac{x}{z},\mu^{2}\right) + \widetilde{f}_{a} \left(x,\mu^{2}\right) \frac{1}{\Delta_{a}(\mu^{2})} \frac{d\Delta_{a}(\mu^{2})}{d\ln\mu^{2}} \approx \\ &\approx \sum_{b} \int_{x}^{z_{max}} dz P_{ab}^{R} \left(\alpha_{s}(\mu^{2}),z\right) \widetilde{f}_{b} \left(\frac{x}{z},\mu^{2}\right) + \widetilde{f}_{a} \left(x,\mu^{2}\right) \frac{1}{\Delta_{a}(\mu^{2})} \frac{d\Delta_{a}(\mu^{2})}{d\ln\mu^{2}} \end{split} \tag{8}$$

and the same cut off in Sudakov form factor  $\Delta_a(\mu^2)$  and  $\Delta_a(\mu^2')$ .

# Avoiding divergences in P(z) at $z \to 1$

Some of the splitting functions are divergent for  $z \to 1$ .

To avoid divergences:

$$\frac{d\widetilde{f}_{a}(x,\mu^{2})}{d\ln\mu^{2}} = \sum_{b} \int_{x}^{1} dz P_{ab}^{R} \left(\alpha_{s}(\mu^{2}), z\right) \widetilde{f}_{b} \left(\frac{x}{z}, \mu^{2}\right) + \widetilde{f}_{a} \left(x, \mu^{2}\right) \frac{1}{\Delta_{a}(\mu^{2})} \frac{d\Delta_{a}(\mu^{2})}{d\ln\mu^{2}} \approx \\
\approx \sum_{b} \int_{x}^{z_{max}} dz P_{ab}^{R} \left(\alpha_{s}(\mu^{2}), z\right) \widetilde{f}_{b} \left(\frac{x}{z}, \mu^{2}\right) + \widetilde{f}_{a} \left(x, \mu^{2}\right) \frac{1}{\Delta_{a}(\mu^{2})} \frac{d\Delta_{a}(\mu^{2})}{d\ln\mu^{2}} \tag{8}$$

and the same cut off in Sudakov form factor  $\Delta_a(\mu^2)$  and  $\Delta_a(\mu^2')$ .

it can be shown that terms  $\int_{z_{max}}^{1}$  skipped in the integral in eq. (8) are of order  $\mathcal{O}(1-z_{max})$ 

# Avoiding divergences in P(z) at $z \to 1$

Some of the splitting functions are divergent for  $z \to 1$ .

To avoid divergences:

$$\frac{d\widetilde{f}_{a}(x,\mu^{2})}{d\ln\mu^{2}} = \sum_{b} \int_{x}^{1} dz P_{ab}^{R} \left(\alpha_{s}(\mu^{2}), z\right) \widetilde{f}_{b} \left(\frac{x}{z}, \mu^{2}\right) + \widetilde{f}_{a} \left(x, \mu^{2}\right) \frac{1}{\Delta_{a}(\mu^{2})} \frac{d\Delta_{a}(\mu^{2})}{d\ln\mu^{2}} \approx \\
\approx \sum_{b} \int_{x}^{z_{max}} dz P_{ab}^{R} \left(\alpha_{s}(\mu^{2}), z\right) \widetilde{f}_{b} \left(\frac{x}{z}, \mu^{2}\right) + \widetilde{f}_{a} \left(x, \mu^{2}\right) \frac{1}{\Delta_{a}(\mu^{2})} \frac{d\Delta_{a}(\mu^{2})}{d\ln\mu^{2}} \tag{8}$$

and the same cut off in Sudakov form factor  $\Delta_a(\mu^2)$  and  $\Delta_a(\mu^{2'})$ .

it can be shown that terms  $\int_{z_{max}}^{1}$  skipped in the integral in eq. (8) are of order  $\mathcal{O}(1-z_{max})$ 

## Different choices of $z_{max}$ :

- ► z<sub>max</sub> fixed
- >  $z_{max}$  can change dynamically with the scale, for example: angular ordering:  $z_{max}=1-\left(\frac{Q_0}{Q}\right)$

In this presentation: results from fixed  $z_{max}$ .

# sea quarks

QCDNum, 
$$1 - z_{max} = 10^{-2}$$
,  $1 - z_{max} = 10^{-4}$ ,  $1 - z_{max} = 10^{-8}$ ,

# sea at $\mu^2 = 2 \text{ GeV}^2$



# sea at $\mu^2$ = 1000 GeV<sup>2</sup>



# sea at $\mu^2 = 100000 \text{ GeV}^2$









MC results close to the QCDNum results for values of  $z_{max}$  large enough  $\rightarrow$  Sudakov formalism treats non-resorvable and virtual branchings to all orders.

The differences between MC and QCDNum at large x are an artefact of the histogram binning.

## gluon

QCDNum,  $1 - z_{max} = 10^{-2}$ ,  $1 - z_{max} = 10^{-4}$ ,  $1 - z_{max} = 10^{-8}$ ,

# gluon at $\mu^2 = 2 \text{ GeV}^2$



# gluon at $\mu^2 = 1000 \text{ GeV}^2$



## gluon at $\mu^2 = 100000 \text{ GeV}^2$









MC results close to the QCDNum results for values of  $z_{max}$  large enough  $\rightarrow$  Sudakov formalism treats non-resorvable and virtual branchings to all orders.

The differences between MC and QCDNum at large x are an artefact of the histogram binning.

## k<sub>₹</sub> dependence

MC method: for every branching Q is generated and  $Q_x$  and  $Q_y$  are calculated

 $\rightarrow$  The information about  $k_T$  is available for every branching.



two ways of defining  $k_T$ : Definition 1:  $\overrightarrow{k}_{T,n} = \overrightarrow{k}_{T,n-1} + \overrightarrow{Q}_{T,n}$ .

Definition 2: 
$$\overrightarrow{k}_{T,n} = \overrightarrow{k}_{T,n-1} + (1-z)\overrightarrow{Q}_{T,n}$$
 - angular ordering.

 $k_T$  contains the whole history of the evolution.

In this method  $k_T$  is treated properly from the beginning of the evolution- no extra reshuffling at the end is required.

# TMD PDFs for Definition 1 for different $z_{max}$ values Definition 1: $\overrightarrow{k}_{T,n} = \overrightarrow{k}_{T,n-1} + \overrightarrow{Q}_{T,n}$ .

Definition 1: 
$$KT_{,n} = KT_{,n-1} + QT_{,n}$$
.

$$1 - z_{max} = 10^{-4}, 1 - z_{max} = 10^{-5}, 1 - z_{max} = 10^{-8}$$







We observe  $k_T$  tails, which can be larger than the evolution scale.

Different  $z_{max}$  values give different large  $k_T$  tails: the bigger the value of  $z_{max}$  the larger the  $k_T$  tail: Larger  $z_{max} \to \text{Sudakov}$  form factor smaller  $\to$  the probability of evolving without any resolvable branching smaller  $\to$  more branchings (soft gluons!), larger  $k_T$  accumulated during the evolution process. 15/21

# TMD PDFs for angular ordering for different $z_{max}$ values Definition 2: $\overrightarrow{k}_{T,n} = \overrightarrow{k}_{T,n-1} + (1-z) \overrightarrow{Q}_{T,n}$ - angular ordering.

$$1 - z_{max} = 10^{-4}$$
,  $1 - z_{max} = 10^{-5}$ ,  $1 - z_{max} = 10^{-8}$ 







We observe  $k_T$  tails, which can be larger than the evolution scale. Different  $z_{max}$  values give the same large  $k_T$  tails!

When  $z_{max}$  large  $1-z_{max}$  small so the contribution from large z suppressed- soft gluons suppressed by angular ordering!

# Comparison of different TMD sets

Definition 2:  $\overrightarrow{k}_{T,n} = \overrightarrow{k}_{T,n-1} + (1-z)\overrightarrow{Q}_{T,n}$  angular ordering.



 ${\sf ccfm-JH-2013-set2} \ \ for \ small \ \ scales \ gives \ \ very \ simillar \ \ results \ \ to \ \ DGLAP \ \ with \ \ angular \ \ ordering.$ 

# First fit of full integrated TMDs to HERA H1 and Zeus data

Integrated TMDs for gluon, valence and sea from MC code were used in xFitter to fit  $F_2$ . QCDNum convolution of integrated TMDs with collinear ME was used to obtain the structure function.



Fits work reasonably well for the whole x range and  $Q^2 > 5 \text{GeV}^2$  ( $\chi^2/ndf \approx 1$ ).

TMD PDFs from Monte Carlo evolution  $\sqsubseteq_{\mathsf{Summary}}$ 

Summary

# Summary

New approach to solve coupled gluon and quark DGLAP evolution equation with MC method was shown.

## Advantages:

- ▶ a full TMD pdf evolution including gluon, sea and valence quarks over the full range in x and  $Q^2$  with the  $k_T$  dependence in the whole kinematically available range (not limited to the small  $k_T$ ),
- reproduce semi-analytical solution (results consistent with QCDNum),
- direct usage in PS matched calculation.

TMDs are implemented in the preliminary version of xFitter.

New results of fitting integrated TMD pdfs to  $F_2$  with xFitter were shown: gluon and quark are fitted for  $Q^2 > 5 {\rm GeV}^2$  for all x with  $\chi^2/ndf \approx 1$ 

TMD PDFs from Monte Carlo evolution  $\sqsubseteq_{\mathsf{Summary}}$ 

Thank you!

Back up

Results for integrated TMDs  $\,$ 

up QCDNum, 1-zmax=10<sup>-4</sup>



MC results close to the QCDNum results.

down

QCDNum, 1-zmax=10<sup>-4</sup>



MC results close to the QCDNum results.

∟<sub>Back up</sub>

MC solution of the evolution equation

# MC solution - forward evolution

Goal: to solve DGLAP with MC method

$$\widetilde{f}_{\mathbf{a}}(\mathbf{x},\,\boldsymbol{\mu}^2) = \widetilde{f}_{\mathbf{a}}(\mathbf{x},\,\boldsymbol{\mu}_0^2) \Delta_{\mathbf{a}}(\boldsymbol{\mu}^2) + \int d\mathbf{x}_{i-1} \int_{\ln \boldsymbol{\mu}_0^2}^{\ln \boldsymbol{\mu}^2} d \ln \boldsymbol{\mu}^{2\prime} \frac{\Delta_{\mathbf{a}}(\boldsymbol{\mu}^2)}{\Delta_{\mathbf{a}}(\boldsymbol{\mu}^{2\prime})} \sum_b \int_{\mathbf{x}}^1 d\mathbf{z} \mathbf{z} \mathbf{P}_{\mathbf{a}b}^R \left(\alpha_{\mathbf{s}}(\boldsymbol{\mu}^{2\prime}),\,\mathbf{z}\right) \widetilde{f}_b \left(\mathbf{x}_{i-1},\,\boldsymbol{\mu}_0^2\right) \Delta_b(\boldsymbol{\mu}^{2\prime}) \delta(\mathbf{z} \mathbf{x}_{i-1} - \mathbf{x}) + \dots$$

Forward evolution: at the beginning of the evolution we don't know what we will have at the end  $\rightarrow$  is a a gluon or a quark?

Goal: to solve DGLAP with MC method

$$\widetilde{f}_{\rm a}(x,\,\mu^2) = \widetilde{f}_{\rm a}(x,\,\mu_0^2) \Delta_{\rm a}(\mu^2) + \int dx_{i-1} \int_{\ln \mu_0^2}^{\ln \mu^2} d \ln \mu^2 \\ \frac{\Delta_{\rm a}(\mu^2)}{\Delta_{\rm a}(\mu^2')} \sum_{k} \int_{x}^{1} dz z P_{ab}^{R} \left( \alpha_{\rm s}(\mu^{2\prime}),z \right) \widetilde{f}_{b} \left( f(x_{i-1}),\mu_0^2 \right) \Delta_{b}(\mu^{2\prime}) \delta(z x_{i-1} - x) + \dots$$

Forward evolution: at the beginning of the evolution we don't know what we will have at the end  $\rightarrow$  is a a gluon or a quark?

#### Example:

Initial parton is a gluon: b = gluon:

$$\to \widetilde{\mathit{f}}_{b}\left(\mathit{x}_{i-1},\,\mu_{0}^{2}\right) = \widetilde{\mathit{g}}\left(\mathit{x}_{i-1},\,\mu_{0}^{2}\right) \text{. and we don't have } \Sigma_{b} \text{:}$$

$$\widetilde{f}_{\text{a}}(\mathbf{x},\mu^{2}) = \widetilde{f}_{\text{a}}(\mathbf{x},\mu_{0}^{2}) \Delta_{\text{a}}(\mu^{2}) + \int d\mathbf{x}_{i-1} \int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} d\ln \mu^{2} \frac{\Delta_{\text{a}}(\mu^{2})}{\Delta_{\text{a}}(\mu^{2})} \int_{\mathbf{x}}^{1} d\mathbf{z} \mathbf{z} P_{\text{ag}}^{R} \left( \alpha_{\text{S}}(\mu^{2}),\mathbf{z} \right) \widetilde{\mathbf{g}} \left( \mathbf{x}_{i-1},\mu_{0}^{2} \right) \Delta_{\text{g}}(\mu^{2}) \delta(\mathbf{z} \mathbf{x}_{i-1}-\mathbf{x}) + \dots$$

Goal: to solve with MC method

$$\widetilde{f}_{\text{a}}(\mathbf{x},\mu^2) = \widetilde{f}_{\text{a}}(\mathbf{x},\mu_0^2) \Delta_{\text{a}}(\mu^2) + \int d\mathbf{x}_{i-1} \int_{\ln \mu_0^2}^{\ln \mu^2} d \ln \mu^{2\prime} \frac{\Delta_{\text{a}}(\mu^2)}{\Delta_{\text{a}}(\mu^2)} \int_{\mathbf{x}}^{1} d\mathbf{x} \mathbf{z} \mathbf{P}_{\text{ag}}^{R} \left(\alpha_{\text{s}}(\mu^2\prime),\mathbf{z}\right) \widetilde{\mathbf{g}} \left(\mathbf{x}_{i-1},\mu_0^2\right) \Delta_{\text{g}}(\mu^2\prime) \delta(\mathbf{z} \mathbf{x}_{i-1}-\mathbf{x}) + \dots$$

Forward evolution: at the beginning of the evolution we don't know what we will have at the end  $\rightarrow$  is a a gluon or a quark?

• Generate  $\mu^2$  according to  $\Delta_g(\mu^2)=R_1$  where  $R_1$ - random number in the interval (0,1). Check: If  $\mu^2 > \mu^2$  then  $x_{i-1} = x$ , a=gluon we put to the grid  $\widetilde{g}\left(x,\mu_0^2\right)\Delta_g(\mu^2)$  and we don't have any branching. If  $\mu^2 < \mu^2$  (and let's assume it is this case) then we have the branching and we don't consider any more  $\widetilde{f}_3(x,\mu_0^2)\Delta_3(\mu^2)$ .



For Generate z according to  $\int_{z_{min}}^{z} dz' \left( \hat{P}_{gg}(z') + \hat{P}_{qg}(z') \right) = R_2 \int_{z_{min}}^{z_{max}} dz' \left( \hat{P}_{gg}(z') + \hat{P}_{qg}(z') \right)$  where  $R_2$ - random number in the interval (0, 1). Calculate  $x_i = x_{i-1} \rightarrow \text{fulfil} \delta(zx_{i-1} - x)!$ 

$$\widetilde{\mathit{f}}_{\mathsf{a}}(x,\mu^2) = \int \mathit{d}x_{i-1} \int_{\ln\mu_0^2}^{\ln\mu^2} \mathit{d}\ln\mu^2 \prime \, \frac{\Delta_{\mathsf{a}}(\mu^2)}{\Delta_{\mathsf{a}}(\mu^2\prime)} \int_{x}^{1} \mathit{d}zz \mathit{P}_{\mathsf{ag}}^{R} \left(\alpha_{\mathsf{s}}(\mu^2\prime),z\right) \widetilde{\mathit{g}} \left(x_{i-1},\mu_0^2\right) \Delta_{\mathsf{g}}(\mu^2\prime) + \ldots \cdot \left(x_{i-$$

Goal: to solve with MC method

$$\widetilde{\mathit{f}}_{\mathsf{a}}(\mathsf{x},\,\mu^2) = \int \mathit{d} \mathsf{x}_{i-1} \int_{\ln \mu_0^2}^{\ln \mu^2} \mathit{d} \ln \mu^2 \prime \, \frac{\Delta_{\mathsf{a}}(\mu^2)}{\Delta_{\mathsf{a}}(\mu^2\prime)} \int_{\mathsf{x}}^{1} \mathit{d} \mathsf{z} \mathsf{z} \mathsf{P}_{\mathsf{a}\mathsf{g}}^{R} \left(\alpha_{\mathsf{s}}(\mu^2\prime),\,\mathsf{z}\right) \widetilde{\mathsf{g}} \left(\mathsf{x}_{i-1},\,\mu_0^2\right) \Delta_{\mathsf{g}}(\mu^2\prime) + \dots$$

Moreover! if in the next step:

- $\qquad \qquad \mu^{2\prime\prime} > \mu^2$  the evolution will be stopped with only one branching,
- ho  $\mu^{2\prime\prime}<\mu^2$  than evolution will continue with second branching (we will be in the "..." piece).



 $ightarrow \frac{\Delta_a(\mu^2)}{\Delta_a(\mu^{2\prime})}$  fulfilled by construction!

$$\widetilde{\mathit{f}}_{a}(x,\mu^{2}) = \int \mathsf{d}x_{i-1} \int_{\ln \mu_{0}^{2}}^{\ln \mu^{2}} \mathsf{d} \ln \mu^{2} \prime \int_{x}^{1} \mathsf{d}zz P_{ag}^{R} \left(\alpha_{s}(\mu^{2} \prime),z\right) \widetilde{g}\left(x_{i-1},\mu_{0}^{2}\right) \Delta_{g}(\mu^{2} \prime) + \dots$$

Goal: to solve with MC method

$$\widetilde{\mathit{f}}_{\mathsf{a}}(x,\,\mu^2) = \int \mathsf{d} x_{i-1} \int_{\ln \mu_0^2}^{\ln \mu^2} \mathsf{d} \ln \mu^{2\,\prime} \int_{x}^{1} \mathsf{d} z \mathsf{d} \mathsf{p}^{R}_{\mathsf{a}g} \left(\alpha_{\mathsf{S}}(\mu^{2\,\prime}),z\right) \widetilde{g}\left(x_{i-1},\,\mu_0^2\right) \Delta_g(\mu^{2\,\prime}) + \dots$$

Decision about the splitting using R- random number in interval  $(0\,,\,1)$ 

$$R \leq \frac{\int_{x}^{1} \mathrm{d}zz P_{gg}^{R}\left(\alpha_{s}(\mu^{2}'), z\right)}{\int_{x}^{1} \mathrm{d}zz \sum_{c} P_{cg}^{R}\left(\alpha_{s}(\mu^{2}'), z\right)}$$

continue as gluon → now we know that a=gluon

$$\widetilde{\mathbf{g}}(\mathbf{x},\boldsymbol{\mu}^2) = \int d\mathbf{x}_{i-1} \int_{\ln \mu_0^2}^{\ln \mu^2} d \ln \boldsymbol{\mu}^2 / \sum_c \int_{\mathbf{x}}^1 \mathrm{dzz} \mathbf{P}_{cg}^R \left( \alpha_{\mathbf{S}}(\boldsymbol{\mu}^2), \mathbf{z} \right) \widetilde{\mathbf{g}} \left( \mathbf{x}_{i-1}, \boldsymbol{\mu}_0^2 \right) \Delta_{\mathbf{g}}(\boldsymbol{\mu}^2) + \dots$$

TMD PDFs from Monte Carlo evolution

Back up

MC solution of the evolution equation

Goal: to solve with MC method

$$\widetilde{\mathbf{g}}(\mathbf{x},\boldsymbol{\mu}^2) = \int d\mathbf{x}_{i-1} \int_{\ln \mu_0^2}^{\ln \mu^2} d\ln \mu^2 \frac{1}{c} \sum_{c} \int_{\mathbf{x}}^1 d\mathbf{z} \mathbf{z} P_{cg}^R \left(\alpha_{\mathrm{S}}(\boldsymbol{\mu}^2),\mathbf{z}\right) \widetilde{\mathbf{g}} \left(\mathbf{x}_{i-1},\mu_0^2\right) \Delta_{\mathbf{g}}(\boldsymbol{\mu}^2) + \dots$$

when we generate z:  $weight_Z$ 

$$\widetilde{g}(\mathbf{x},t) = \int d\mathbf{x}_{i-1} \int_{\ln \mu_0^2}^{\ln \mu^2} d \ln \mu^2 \sum_{C} \int_{\mathbf{x}}^1 d\mathbf{z} \mathbf{z} \rho_{cg}^R \left( \alpha_s(\mu^{2\prime}), \mathbf{z} \right) \widetilde{g} \left( \mathbf{x}_{i-1}, \mu_0^2 \right) \Delta_g(\mu^{2\prime}) weight_Z$$

TMD PDFs from Monte Carlo evolution

Back up

MC solution of the evolution equation

Goal: to solve with MC method

$$\widetilde{\mathbf{g}}(\mathbf{x},\boldsymbol{\mu}^2) = \int d\mathbf{x}_{i-1} \int_{\ln \mu_0^2}^{\ln \mu^2} d\ln \mu^2 \mathbf{1} \sum_{c} \int_{\mathbf{x}}^1 d\mathbf{x} \mathbf{z} \mathbf{P}_{cg}^R \left( \alpha_{\mathbf{S}}(\boldsymbol{\mu}^{2\, \prime}), \mathbf{z} \right) \widetilde{\mathbf{g}} \left( \mathbf{x}_{i-1}, \mu_0^2 \right) \Delta_{\mathbf{g}}(\boldsymbol{\mu}^{2\, \prime}) + \dots$$

when we generate z: weight-

$$\widetilde{g}(\mathbf{x},t) = \int d\mathbf{x}_{i-1} \int_{\ln \mu_0^2}^{\ln \mu^2} d \ln \mu^2 / \sum_{c} \int_{\mathbf{x}}^1 d\mathbf{z} e^{R} \int_{cg}^{R} \left(\alpha_s(\mu^2),\mathbf{z}\right) \widetilde{g}\left(\mathbf{x}_{i-1},\mu_0^2\right) \Delta_g(\mu^2) \text{weight}_{\mathbf{z}}$$

Now the procedure starts from beginning.

The starting distribution:  $\tilde{g}(x, t)$ . Generate  $\mu^{2\prime\prime}$  according to  $\Delta_{g}(\mu^{2\prime\prime}, \mu^{2\prime})$ .

If  $\mu^{2}$   $\mu \rightarrow$  only one branching & put to the grid:

$$\widetilde{g}(\mathbf{x},t) = \sum_{\mathbf{c}} \int_{\mathbf{x}}^{1} d\mathbf{z} \mathbf{z} P_{\mathbf{c}g}^{R} \left( \alpha_{\mathbf{s}}(\boldsymbol{\mu^{2}}'), \mathbf{z} \right) \widetilde{g} \left( \mathbf{x}_{i-1}, \boldsymbol{\mu}_{0}^{2} \right) \Delta_{g}(\boldsymbol{\mu^{2}}') \text{weight}_{\mathbf{z}}$$

if  $\mu^{2}$   $\prime\prime$  <  $\mu^2$   $\rightarrow$  we have second branching, we are in ... piece.

Back up

MC solution of the evolution equation

Goal: to solve with MC method

$$\widetilde{\underline{\mathbf{g}}}(\mathbf{x},\boldsymbol{\mu}^2) = \int \mathrm{d}\mathbf{x}_{i-1} \int_{\ln \mu_0^2}^{\ln \mu^2} \mathrm{d}\ln \boldsymbol{\mu}^2 \mathbf{1} \sum_{c} \int_{\mathbf{x}}^1 \mathrm{d}\mathbf{z}\mathbf{z} \mathbf{P}_{cg}^R \left(\alpha_{\mathbf{S}}(\boldsymbol{\mu}^{2\prime}),\mathbf{z}\right) \widetilde{\underline{\mathbf{g}}} \left(\mathbf{x}_{i-1},\boldsymbol{\mu}_0^2\right) \Delta_{\mathbf{g}}(\boldsymbol{\mu}^{2\prime}) + \dots$$

when we generate z: weight-

$$\widetilde{g}(\mathbf{x},t) = \int d\mathbf{x}_{i-1} \int_{\ln \mu_0^2}^{\ln \mu^2} d \ln \mu^2 / \sum_{c} \int_{\mathbf{x}}^1 d\mathbf{z} e^{R} \rho_{cg}^{R} \left(\alpha_s(\mu^2),\mathbf{z}\right) \widetilde{g}\left(\mathbf{x}_{i-1},\mu_0^2\right) \Delta_g(\mu^2) \text{weight}_{\mathbf{z}}$$

Now the procedure starts from beginning.

The starting distribution:  $\tilde{g}(x, t)$ . Generate  $\mu^{2\prime\prime}$  according to  $\Delta_{g}(\mu^{2\prime\prime}, \mu^{2\prime})$ .

If  $\mu^{2}$   $\mu \rightarrow$  only one branching & put to the grid:

$$\widetilde{g}(\mathbf{x},t) = \sum_{\mathbf{c}} \int_{\mathbf{x}}^{1} d\mathbf{z} \mathbf{z} P_{\mathbf{c}g}^{R} \left( \alpha_{\mathbf{s}}(\boldsymbol{\mu^{2}}'), \mathbf{z} \right) \widetilde{g} \left( \mathbf{x}_{i-1}, \boldsymbol{\mu}_{0}^{2} \right) \Delta_{g}(\boldsymbol{\mu^{2}}') \text{weight}_{\mathbf{z}}$$

if  $\mu^{2}$   $\prime\prime$  <  $\mu^2$   $\rightarrow$  we have second branching, we are in ... piece.

integrals  $\int dx_{i-1}$  and  $\int_{\ln \mu^2}^{\ln \mu^2} d \ln \mu^{2} \prime$  solved by MC integration method:

$$\int_{a}^{b} f(x) dx = (b - a) \frac{1}{N} \sum_{i=1}^{N} f(x_{i})$$
(9)