

Ringailė Plačakytė University of Hamburg

on behalf of the xFitter team

Introduction

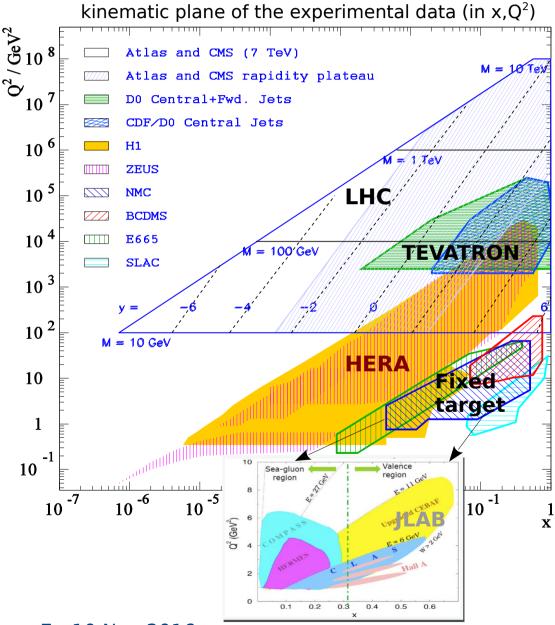
Precise knowledge of the PDFs are essential for predictions at hadron colliders

QCD factorisation:

 $\sigma \approx \hat{\sigma} \otimes PDF$

Experimental Data:

→ a large variety of data from fixedtarget and collider experiments


Theory:

 \rightarrow intense theoretical developments

QCD Analysis:

→ available (unpolarised) PDFs: CT/CJ,MMHT,NNPDF,ABM,HERAPDF,JR

... and **Tools**

Tools for PDFs

Available (open-source) tools for the PDF determination/plotting:

xFitter (former HERAFitter): an open-source package that provides a framework for the determination of the PDFs of the proton and for many different kinds of analyses in QCD EPJC (2015), 75: 304, *xfitter.org*

OPENQCDRAD (ABM collaboration: numerical computation of all hard scattering cross sections (DIS structure function calculation including heavy quark contributions, W and Z production) PRD86 (2012) 054009, www-zeuthen.desy.de/~alekhin/OPENQCDRAD

ALPOS: an object-oriented data to theory comparison and fitting tool (profit from and exchange with xFitter experience). Access from a public svn repository (via request) http://desy.de/~britzger/alpos/

QCDNUM: Fast QCD Evolution and Convolution (numerically solves the evolution equations for parton densities and fragmentation functions in pQCD)

APFEL (used by NNPDF): a PDF evolution library, is a computer library specialized in the solution of DGLAP evolution equations up to NNLO in QCD and to LO in QED

Valerio Bertone's talk

arXiv.1310.1394, apfel.hepforge.org

TMDlib/TMDplotter: library and plotting tools for Transverse Momentum Dependent parton
distributionsEPJC 74 (2014) 3220, tmdlib.hepforge.org

R. Plačakytė

xFitter Project

2011 Open Source Revolution:

first open source QCD Fit Platform which started the wave of sharing QCD fit codes

EPJC (2015), 75: 304

- A team of ~30 developers:
 - LHC/HERA/theory/independent
 - several releases since 2011
 - 33 publications that have used the framework [in total]

synergy between experiment and theory groups

Dedicated studies [xFitter developers team]:

- → method in preserving correlation between PDFs extracted at different orders in pQCD
- * address consistency of Tevatron measurement and evaluate their collective impact on valence
- \rightarrow determination of the running mass in $\overline{\text{MS}}$ scheme

R. Plačakytė

xFitter Project

\rightarrow open access, no registration required

www.xfitter.org

Welcome to xFitter (former HERAFitter)

Proton parton distribution functions (PDFs) are essential for precision physics at the LHC and other hadron colliders. The determination of the PDFs is a complex endeavor involving several physics process. The main process is the lepton proton deep-inelastic scattering (DIS), with data collected by the HERA ep collider covering a large kinematic phase space needed to extract PDFs. Further processes (fixed target DIS, ppbar collisions etc.) provide additional constraining powers for flavour separation. In particular, the precise measurements obtained or to come from LHC will continue to improve the knowledge of the PDF.

The xFitter project is an open source QCD fit framework ready to extract PDFs and assess the impact of new data. The framework includes modules allowing for a various theoretical and methodological options, capable to fit a large number of relevant data sets from HERA, Tevatron and LHC. This framework is already used in many analyses at the LHC.

Downloads of xFitter software package

★ xFitter-1.2.2 release is publicly available. All the xFitter releases can be accessed HERE. All the former (HERAFitter) releases can be accessed ● HERE. Description: ● http://antw.org/abs/1410.4412

xFitter Meetings

- User's Meetings: meetings to enhance communication between users and developers (open access)
- Developer's Meeting: technical weekly meetings to ensure communication among developers (restricted access)
- Steering Group's Meeting (restricted access)

xFitter representation

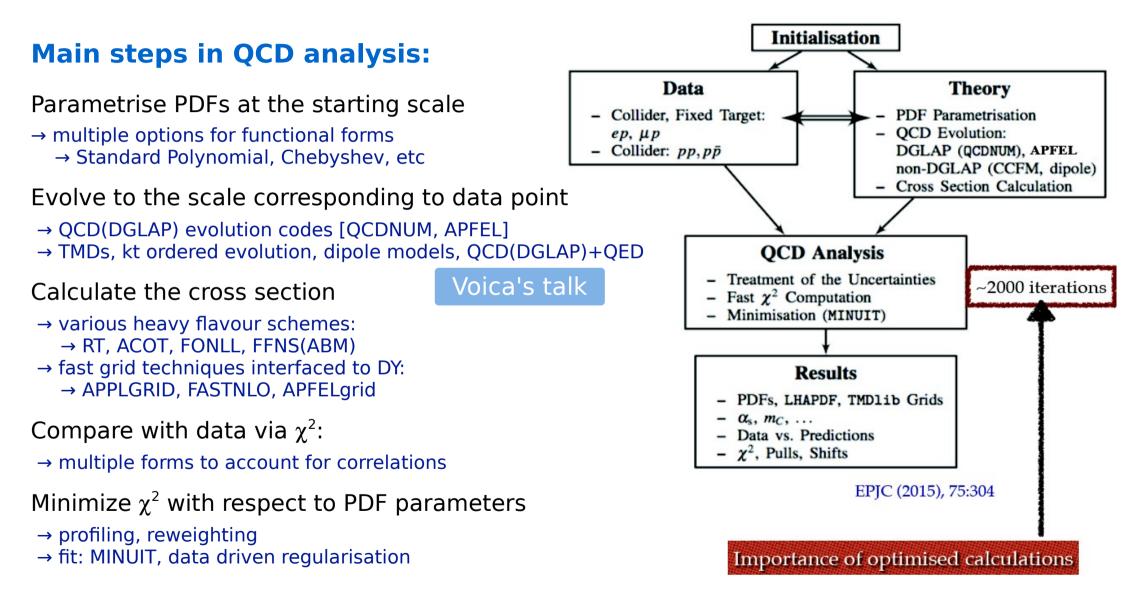
- List of results
- List of collected talks

Developers Info (restricted to developers)

Internal Developments

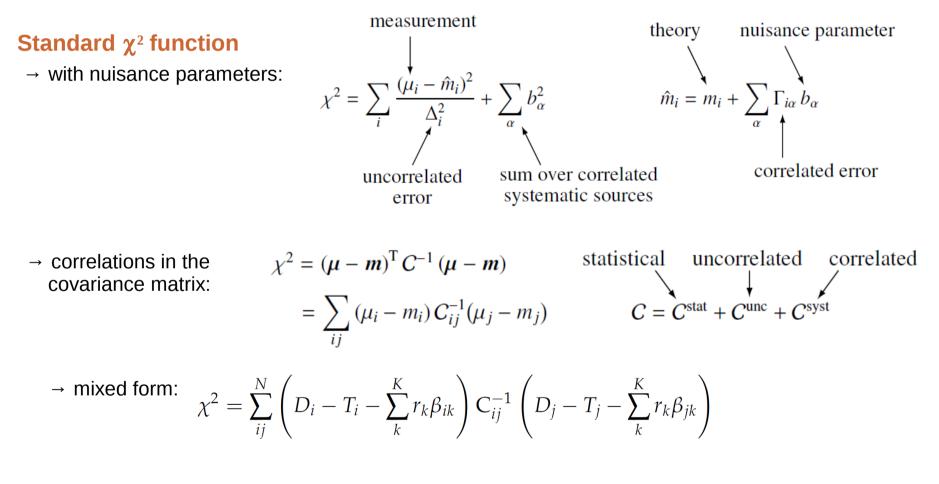
Organisation

Steering Group is composed of:


- · Conveners: Volca Radescu, Ringalle Placakyte, Amanda Cooper-Sarkar
- · Release coordinator (revision of the release candidates): Sasha Glazov
- Librarian (continuous revision/development of the main code and doxygen): Hayk Pirumov, Andrey Sapronov
- Contact Persons: Cristi Diaconu (H1), Klaus Rabbertz (CMS), Bogdan Malaescu (ATLAS), Olaf Behnke (ZEUS), Ronan McNuity (LHCb), Gavin Salam (theory)
- DESY IT Contact: Yves Kemp

R. Plačakytė

Schematic View of the xFitter Program



Measure the goodness of the fit: χ^2 function

The goodness of the fit is measured by $\chi^{\rm 2}$ in PDFs

 \rightarrow various forms are implemented in xFitter:

→ it is important to account statistical and systematic uncertainties of data \rightarrow theory (PDF) uncertainties can be accounted for

R. Plačakytė

xFitter release xfitter-1.2.2

xFitter / DownloadPage

https://www.xfitter.org/xFitter/xFitter/DownloadPage

Releases of the xFitter QCD analysis package

- Versioning convention: i.j.k with
 - o i stable release
 - o j beta release
 - o k bug fixes.
- The release notes can be found in this attachment: <a>Etter_release_notes.pdf
- Installation script for xFitter together with QCDNUM, APFEL, APPLGRID, LHAPQE @install-xfitter
- The script to download coupled data and theory files @getter-xfitter.sh.

Date	Version	Files	Remarks
07/2016	1.2.2	@xfitter-1.2.2.tgz	release with decoupled data and theory files
05/2016	1.2.1	@xfitter-1.2.1.tgz	release with decoupled data and theory files
02/2016	1.2.0	@xfitter-1.2.0.tgz	release with decoupled data and theory files

Documentation

- A list of @datasets which can be downloaded with the help of getter script.
- Manual (under continuous improvement) can be accessed lhere.
- The README file (accessible via the package) gives an explanation for a quick start.
- The INSTALLATION file (accessible via the package) provides information for package installation and usage instructions.
- The package is licensed under GNU GPL, please see LICENCE for mode details (accessible via the package).

By default only final combined HERA I+II data are distributed

→ getter-xfitter.sh script to download data with corresponding theory files

 \rightarrow in directory 'datasets' located all available files

R. Plačakytė

xfitter-1.2.2 vs xfitter-1.2.1

Several fixes were applied:

		0
Release	Date	Description
xfitter-1.2.2	8.07.2016	• Fix in profiling due to multiple sign flips, affects also reweighting.
		• Fix in the output of PDFs, strange is symetrised to $(s + \bar{s})/2$.
		• Fix in calculation of theory error bands for parametrisation uncertainties for
		thetherr option.
		• Fix for has_photon LHAPDF variable and protection against LHAPDFQ0 with
		photon PDFs.
		• Fixes to dipole steering file in input steering file, updated now to current set-
		tings.
		• Added the H1 beauty data to the list of data files
		• Fix in the default theoretical parameters for HVQMNR to be used not in Fit
	ax	mode.
CTEQ/MCnet School 2016 QCD and Electroweak		• Fix on warning message from Fastnlo.
Phenomenology		• Added examples in the example directory together with the tutorial slides from
6-16 July 2016		CTEQ 2016 school.
DESY, Hamburg		• Fix in configuration fordisable-root option.
		• Fix in α_s interpolation and protection in overriding the output directories.

• Fix in photon PDF sum rules.

https://indico.desy.de/contributionDisplay.py?contribId=11&confld=13506

xfitter-1.2.2 examples (CTEQ school)

CTEQ/MCnet School 2016 QCD and Electroweak Phenomenology 6-16 July 2016

https://indico.desy.de/contributionDisplay.py?contribId=11&confId=13506

A list of educational examples are provided in the package - prepared for the CTEQ summer school 2016:

Exercise 1: PDF fit

 \rightarrow learn the basic settings of a QCD analysis, based on HERA data only

Exercise 2: Simultaneous PDF fit and α_s

 \rightarrow learn the basic of an α_{s} extraction using H1 jet data

Exercise 3: LHAPDF analysis

→ how to estimate impact of a new data without fitting:
 → profiling and reweighting techniques

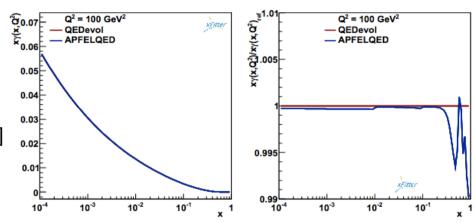
Exercise 4: Plotting LHAPDF files

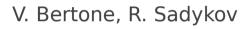
 \rightarrow direct visualisation of PDFs from LHAPDF6 using simple python scripts

Exercise 5: Equivalence of χ^2 representations

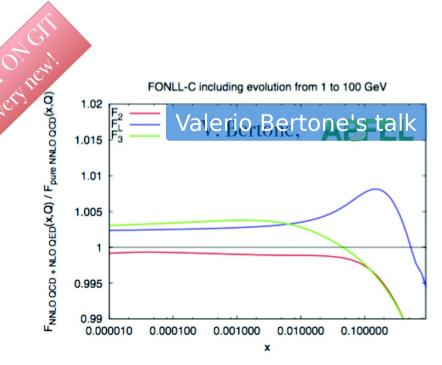
 \rightarrow understand different χ^2 representations

R. Plačakytė


New Physics Cases in xFitter



VFNS are now available via evolutions in:

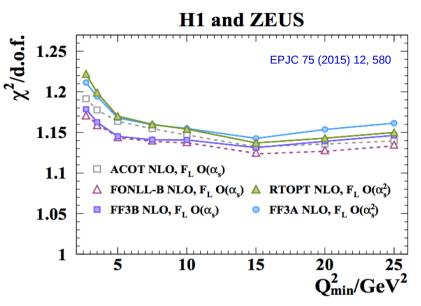

- → QCDNUM adjusted for DGLAP+QED [R. Sadykov] http://www.nikhef.nl/~h24/qcdnum
- → APFEL DGLAP+QED as used by NNPDF2.3 [V. Bertone et al] https://apfel.hepforge.org
- → plan to add NLO QED, interface APPLGRID to SANC https://apfel.hepforge.org/mela.html

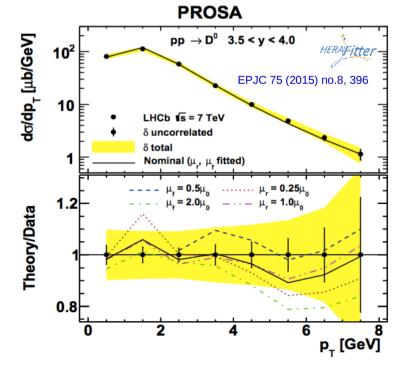
New: NLO QCD + QED via APFEL in xFitter:

- $\rightarrow\,$ at LO QED, no corrections to the SFs are needed
- \rightarrow at NLO QED, access to new diagrams: $\gamma^*\gamma \rightarrow qq$ and $\gamma^*q \rightarrow q\gamma$
- → implementing the $O(\alpha_s \alpha)$ and the $O(\alpha^2)$ corrections to the DGLAP splitting functions on top of the $O(\alpha)$ ones
- → implementing $O(\alpha_s^2 \alpha)$ and the $O(\alpha^2)$, $O(\alpha^2 \alpha_s)$ corrections to β functions
- → when including NLO QED corrections, not only the evolution is affected but also the DIS structure functions get corrected

R. Plačakytė

New Physics Cases in xFitter


Addition of new Heavy Flavour Scheme: FONLL VFNS


- \rightarrow it is available thanks to collaboration with APFEL
- → various FONLL options available via interface to APFEL https://apfel.hepforge.org
- → ABM scheme was up-to-dated to OPENQCDRAD v 2.0b4 http://www-zeuthen.desy.de/~alekhin/OPENQCDRAD

Interface to Mangano-Nason-Ridolfi (MNR, NPB 373 (1992) 295) theory code added in xFitter

- → was used for analysing the heavy-flavour production at LHCb and at HERA (via OPENQCDRAD)
 - $\rightarrow\,$ use of FFNS for accounting of heavy quark masses at NLO
 - \rightarrow added corresponding LHCb data

Added extra reweighing option using Giele-Keller weights

xFitter on GitLab

GitLab (CERN) is now the main repository of the project

 \rightarrow open access to download for everyone (read only)

https://gitlab.cern.ch/fitters/xfitter

🔶 🛈 🔒 https:/	//gitlab. cer	n.ch/fitte	rs/xfitter	C C	Q Searc	h	-	110%	+	۹ 🕂	☆ 🗎	◙		»
≡ fitters/xf	itte				- 🖊						Q		+	۲
	Project	Activity	Repository	Pipelines	Graphs	lssues	Merge R	lequests	0 V	Viki S	Snippets			
					5					4	+		Glob	al 🔻
					xFitte	er.								
					xfitter	0								
★ U	nstar	p P	Fork 1	KRB5 💌	https://	/:@gitl	ab.cern	.ch:844	3/fit	ters/>	fitter)	
Files (100 MB)	Commi	its (1,982)	Branche	s (16) Ta	ags (0)	GNU GP	Lv3	Add Chan	gelog	Ad	d Contri	bution	guide]
								• 1	9 51 c	omm	its dur	ing 1 9	917 (days
								• A'	verag	e 1.0	comm	its pe	er day	y

Commits from developers which have no CERN account handled via mirror-GIT public page

xFitter on Hepforge: data access

http://xfitter.hepforge.org/

<u>Complementary information about the</u> <u>project</u> (to xfitter.org)

- → possibility to download **data** files (including theory)
- \rightarrow updated automatically with new data added to svn

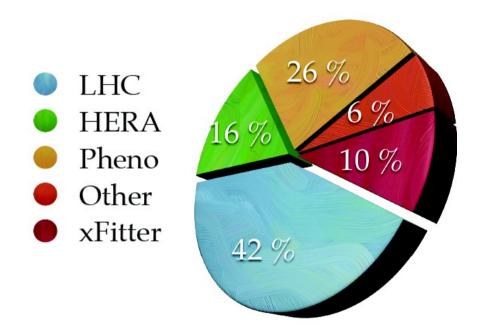
will include script to download all data at once

Your feedback is welcome

(via email xfitter-help@desy.de)

This page contains the list of publicly available experimental data sets (with corresponding theory grids if available) in the xFitter package. To download data set please click on the arXiv link (and open/save tar.gz file).

No	Collider	Experiment	Reaction	arXiv	Readme
1	fixedTarget	bcdms	inclusiveDis	<u>cern-ep-89-06</u>	README
2	hera	h1	beautyProduction	0907.2643	
3	hera	h1	inclusiveDis	1012.4355	
4	hera	h1	jets	0706.3722	README
5	hera	h1	jets	0707.4057	README
6	hera	h1	jets	0904.3870	README
7	hera	h1	jets	0911.5678	README
8	hera	h1	jets	1406.4709	README
9	hera	h1zeusCombined	charmProduction	<u>1211.1182</u>	
10	hera	h1zeusCombined	inclusiveDis	0911.0884	
11	hera	h1zeusCombined	inclusiveDis	<u>1506.06042</u>	
12	hera	zeus	beautyProduction	1405.6915	
13	hera	zeus	diffractiveDis	0812.2003	
14	hera	zeus	jets	0208037	
15	hera	zeus	jets	<u>0608048</u>	
16	hera	zeus	jets	<u>1010.6167</u>	
17	lhc	atlas	drellYan	<u>1305.4192</u>	
18	lhc	atlas	drellYan	<u>1404.1212</u>	
19	lhc	atlas	jets	<u>1112.6297</u>	


R. Plačakytė

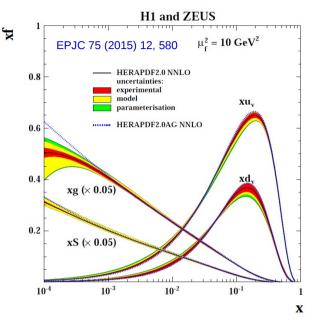
Results Obtained with xFitter

More than **30 public results** obtained using xFitter from the beginning of the project

https://www.xfitter.org/xFitter/xFitter/results

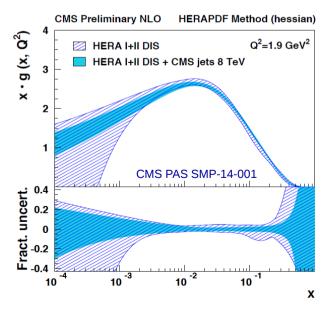
LHC experiments provide the main developments and usage of the xFitter platform

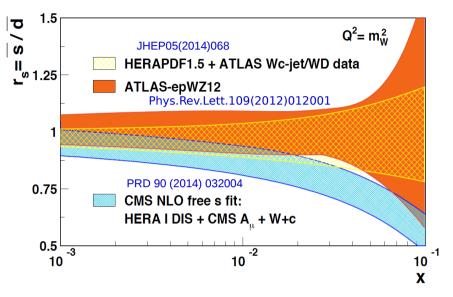
xFitter publications:


List of analyses using HERAFitter

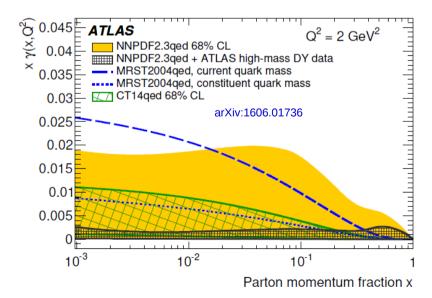
03.2016	xFitter and APFEL t	eams and A. Geiser	JHEP 1608 (2016) 050,	arXiv:1605.01946	• A determination of mc(mc) from HERA data using a matched heavy flavor scheme
03.2015	HERAFitter team	EPJC 75 (2015) 9,	458, arXiv:1503.05221	QCD analysis	of W- and Z-boson production at Tevatron
10.2014	2014 HERAFitter team EPJC (2015), 75: 304, arXiv:1410.4412		HERAFitter Open Source QCD Fit Project		
04.2014	HERAFitter team	EPJC (2014) 74: 30	039, arXiv:1404.4234	Parton distribu	tion functions at LO, NLO and NNLO with correlated uncertainties between orders

R. Plačakytė


Results Obtained with xFitter: Examples


DIS inclusive processes in *ep* (fixed target)

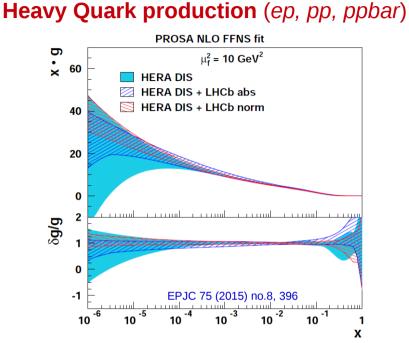
Jet production (ep, pp, ppbar)



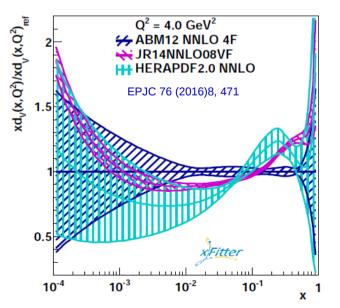
Drell-Yan processes (pp, ppbar)

 \rightarrow strange quark density determination

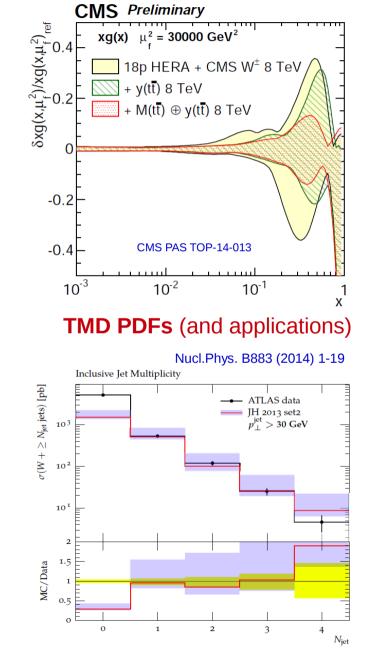
DY data sensitivity to photon PDF



R. Plačakytė


REF2016, Antwerp, 7 - 10 Nov 2016

Results Obtained with xFitter: Examples



Evaluation of modern PDFs (benchmarking)

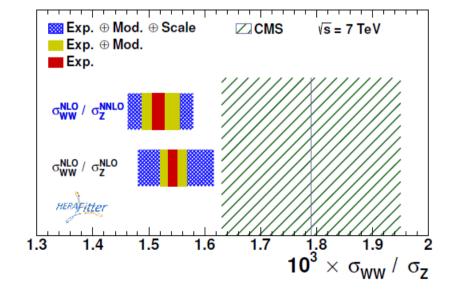
Top-quark production (pp, ppbar)

R. Plačakytė

The first **xFitter Developers Team** publication

 \rightarrow addresses the correlations in PDF uncertainties at different orders

Parton distribution functions at LO, NLO and NNLO with correlated uncertainties between orders


HERAFitter developers' team $\,\cdot\,$

P. Belov^{1,12} · D. Britzger¹ · S. Camarda¹ · A.M. Cooper-Sarkar² ·

- C. Diaconu³ · J. Feltesse¹³ · A. Gizhko¹ · A. Glazov¹ · V. Kolesnikov⁴ ·
- K. Lohwasser¹⁴ · A. Luszczak⁵ · V. Myronenko¹ · H. Pirumov¹ ·
- R. Plačakytė
1 $\,\cdot\,$ K. Rabbertz
6 $\,\cdot\,$ V. Radescu¹ $\,\cdot\,$ A. Sapronov
4 $\,\cdot\,$
- A. Schöning¹⁰ · S. Shushkevich¹ · W. Slominski⁷ · P. Starovoitov¹ ·

M. Sutton
8 $\,\cdot\,$ J. Tomaszewska
9 $\,\cdot\,$ O. Turkot^1 $\,\cdot\,$ G. Watt^{11} $\,\cdot\,$ K. Wich
mann^1 and M. Lisovyi^1

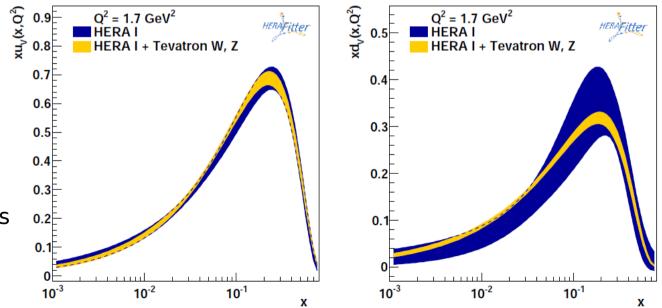
Abstract Sets of parton distribution functions (PDFs) of the proton are reported for the leading (LO), next-toleading (NLO) and next-to-next-to leading order (NNLO) QCD calculations. The parton distribution functions are determined with the HERAFitter program using the data from the HERA experiments and preserving correlations between uncertainties for the LO, NLO and NNLO PDF sets. The sets are used to study cross-section ratios and their uncertainties when calculated at different orders in QCD. A reduction of the overall theoretical uncertainty is observed if correlations between the PDF sets are taken into account for the ratio of WW di-boson to Z boson production cross sections at the LHC.

EPJC (2014) 74: 3039 arXiv:1404.4234

R. Plačakytė

QCD analysis of W- and Z-boson production at Tevatron

- W and Z boson production at Tevatron is valence quark dominated
- → W and Z measurements at Tevatron can be used to improve valence quark PDFs, especially the d-quark type (less constrained by DIS data)


Impact of Tevatron data on PDFs was studied in two ways: 1) preforming a full NLO PDF fit

2) studied by minimizing data to theory χ^2 vs nuisance parameters corresponding to PDF eigenvectors ("profiling")

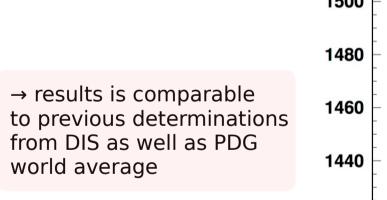
→ after the inclusion of Tevatron data, the uncertainties of u_v and d_v become comparable in size

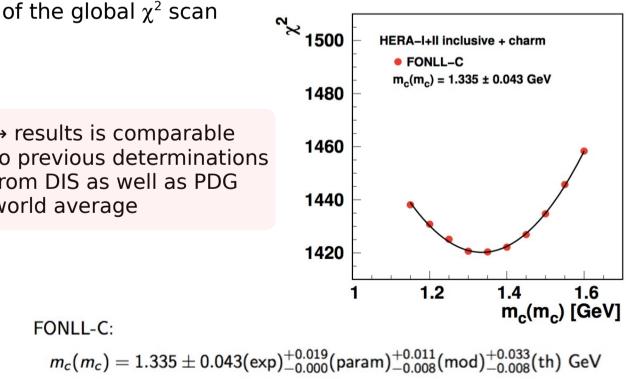
 \rightarrow data and theory (APPLgrids) files are available in xfitter.hepforge.org

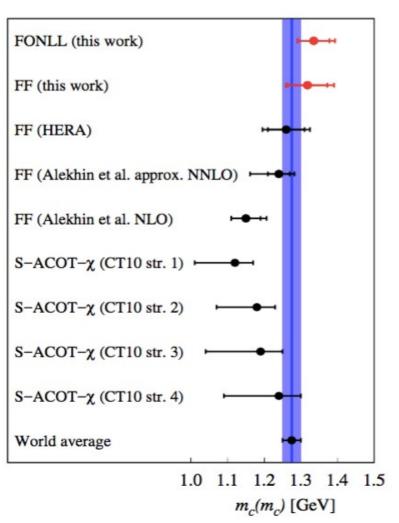
R. Plačakytė

REF2016, Antwerp, 7 - 10 Nov 2016

S. Camarda


EPJC 75 (2015) 9, 458


A determination of $m_c(m_c)$ from HERA data using a matched heavy-flavor scheme


The extraction of m_c(m_c) was performed using FONLL scheme in terms of the MS masses

- \rightarrow combined HERA I + II charm production and DIS cross sections
- \rightarrow also tested in FFNS (fixed flavour number scheme) at NLO

 \rightarrow m_c(m_c) value is determined from a parabolic minimum

V. Bertone

R. Plačakytė

Summary

xFitter project - a multi-functional QCD framework well integrated into the high energy community (both, experimental and theory) EPJC (2015) 75: 304

 \rightarrow many active developments thanks to the close collaboration with experiments and theory groups

→ **xfitter-1.2.2** is latest (recommended) release

- \rightarrow over 30 public results obtained using xFitter (main applications are from LHC)
- \rightarrow several published dedicated physics studies (developers team publications), more studies are ongoing
- → foreseen future physic (low-x phenomenology, nuclear PDF, etc...) and technical developments (improved user interface for PDF parametrisation form, data cards, python interface, etc...)

we welcome new ideas and developers :)

TMDs in xFitter: Voica's talk

R. Plačakytė

Back-up Slides

Technical Changes (since xfitter-1.2.0)

* Change of name of executables:

- * FitPDF —> xfitter
- DrawPdfs —> xfitter-draw
- * DrawResults —> xfitter-draw
- Postproc —> xfitter-process
- * Note that in the previous releases there was a theoryfiles directory
- * —> now theoryfiles are stored with clatafiles to be in sync **Installation:**
 - * xfitter-1.2.0 is compatible with new QCDNUM version > 17.01.10
 - * QCDNUM is available now also with autotools installations
 - * QCDNUM provides now access to more than standard 13 PDFs, e.g. photon PDF can be added
 - * Installation of the xfitter-1.2.0 can also be configured via prefix
 - Added the possibility to disable root
- Theory formats in xfitter (usage/parsing) have been unified between FASTNLO and APPLGRID
 ald format for FASTNLO is still operational
 - old format for FASTNLO is still operational
- Profiling and Reweighing codes now use same general infrastructure
- Possibility to access directly PDFs as stored in LHAPDF (surpassing QCDNUM)
- LHAPDFNATIVE option added

REF2016, Antwerp, 7 - 10 Nov 2016

16

Measure the goodness of the fit: χ^2 function

The goodness of the fit is measured by $\chi^{\rm 2}$ in PDFs

 \rightarrow various forms are implemented in xFitter:

Standard χ^2 function

 \rightarrow same definition rewritten:

$$\chi^{2}_{\exp}(\boldsymbol{m}, \boldsymbol{b}) = \sum_{i} \frac{\left[m^{i} - \sum_{\alpha} \gamma^{i}_{\alpha} \mu^{i} b_{\alpha} - \mu^{i}\right]^{2}}{\left(\delta_{i, \text{stat}} \mu^{i}\right)^{2} + \left(\delta_{i, \text{uncor}} \mu^{i}\right)^{2}} + \sum_{\alpha} b^{2}_{\alpha}$$
$$\Gamma^{i}_{\alpha} = \gamma^{i}_{\alpha} \mu_{i}$$

$$\chi^{2}(\boldsymbol{b_{\text{exp}}}, \boldsymbol{b_{\text{th}}}) = \sum_{i=1}^{N_{\text{data}}} \frac{\left(\sigma_{i}^{\text{exp}} + \sum_{\alpha} \Gamma_{i\alpha}^{\text{exp}} b_{\alpha, \text{exp}} - \sigma_{i}^{\text{th}} - \sum_{\beta} \Gamma_{i\beta}^{\text{th}} b_{\beta, \text{th}}\right)^{2}}{\Delta_{i}^{2}} + \sum_{\alpha} b_{\alpha, \text{exp}}^{2} + \sum_{\beta} b_{\beta, \text{th}}^{2}$$

Impact of experimental data on PDFs can be studied by minimizing data to theory χ^2 vs nuisance parameters corresponding to PDF eigenvectors ("profiling")

R. Plačakytė

PDF Determination: Parametrisation

PDFs are parametrised (at the starting scale Q_0^2) using some flexible form

(starting scale choice is arbitrary, often $Q_0 = m_c$)

generic parametrisation form:

$$xf_j(x) = A_j x^{B_j} (1-x)^{C_j} P_j(x)$$

with
$$P_j(x) = (1 + \varepsilon_j \sqrt{x} + D_j x + E_j x^2)$$

or

 $e^{a_3x}(1+e^{a_4}x+e^{a_5}x^2)$

A: overall normalisation B: small x behavior C: $x \rightarrow 1$ shape

HERAPDF, MSTW/MMHT (Chebyshev polynomials), ABM, JR

CTEQ, CT (Bernstein polynomials)

 \rightarrow parametrisation has to be flexible enough (many free parameters) to avoid bias, however too many parameters may also lead to certain bias (several minima, problems to converge, ...)

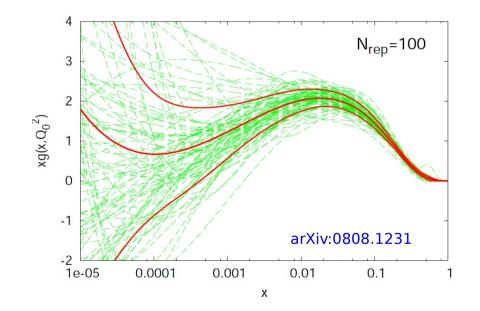
→ different parametrisations, if carefully chosen, will lead to similar results

PDF Determination: Parametrisation

PDFs are parametrised (at the starting scale Q_0^2) using some flexible form

parametrised in x-space with the flexible neural network (NN) method:

used by NNPDF collaboration


Basic principle:

→ Monte Carlo (MC) sampling of data (generation of replicas of experimental data)

 \rightarrow training: set of PDFs parametrised by neural networks on each of the replicas

 \rightarrow validation: fit stops when quality of fit stops improving (determined by random selected validation data)

advantage: unbiased parametrisation *disadvantage*: requires sufficient data

Uncertainties: Monte Carlo approach (explained later)

R. Plačakytė

arXiv.org > hep-ph > arXiv:1605.01946

High Energy Physics – Phenomenology

A determination of mc(mc) from HERA data using a matched heavyflavor scheme

xFitter Developers' team: Valerio Bertone, Stefano Camarda, Amanda Cooper-Sarkar, Alexandre Glazov, Agnieszka Luszczak, Hayk Pirumov, Ringaile Placakyte, Klaus Rabbertz, Voica Radescu, Juan Rojo, Andrey Sapranov, Oleksandr Zenaiev, Achim Geiser

(Submitted on 6 May 2016)

The charm quark mass is one of the fundamental parameters of the Standard Model Lagrangian. In this work we present a determination of the MSbar charm mass from a fit to the inclusive and charm HERA deep-inelastic structure function data. The analysis is performed within the xFitter framework, with structure functions computed in the FONLL general-mass scheme as implemented in APFEL. In the case of the FONLL-C scheme, we obtain mc(mc) = 1.335 + -0.043(exp) + 0.019 - 0.000(param) + 0.011 - 0.008(mod) + 0.033 - 0.008(th) GeV. We also perform an analogous determination in the fixed-flavor-number scheme at next-to-leading order, finding mc(mc) = 1.318 + -0.054(exp) + 0.011 - 0.010(param) + 0.015 - 0.019(mod) + 0.045 - 0.004(th) GeV, compatible with the FONLL-C value. Our results are consistent with previous determinations from DIS data as well as with the PDG world average.

Search or Art

The extraction of $m_c(m_c)$ was performed using FONLL scheme in terms of the \overline{MS} masses \rightarrow improves perturbative convergence

- → combined HERA I + II charm production and DIS cross sections
- → FONLL-C scheme used NLO accuracy in the massive sector
- \rightarrow also tested in FFNS (fixed flavour number scheme) at NLO

xFitter Developers Papers

https://www.herafitter.org/HERAFitter/HERAFitter/results

List of anal	yses by	HERAFitter	
--------------	---------	------------	--

0	NEW 03.2015	HERAFitter team	to be submitted to EPJC, arXiv:1503.05221	QCD analysis of W- and Z-boson production at Tevatron	Material
HERAFitter	10.2014	HERAFitter team	submitted to EPJC, arXiv:1410.4412	HERAFitter Open Source QCD Fit Project	
Juncer	04.2014	HERAFitter team	EPJC (2014) 74: 3039, arXiv:1404.4234	Parton distribution functions at LO, NLO and NNLO with correlated uncertainties between orders	Material

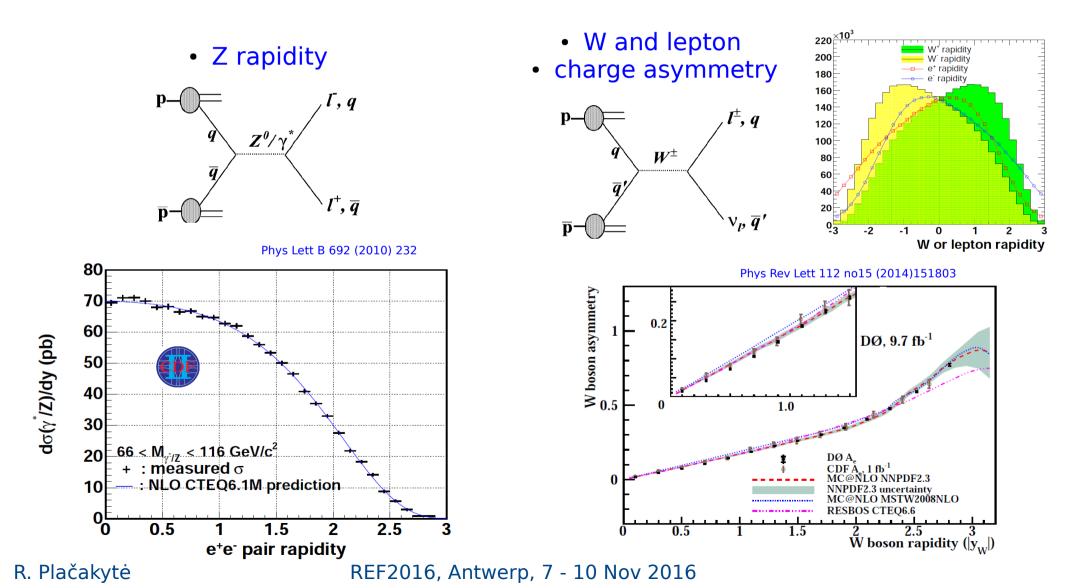
QCD analysis of W- and Z-boson production at Tevatron

HERAFitter developers' team: S. Camarda¹ \cdot P. Belov^{1,2} \cdot A.M. Cooper-Sarkar³ · C. Diaconu⁴ · A. Glazov¹ · A. Guffanti⁵ · A. $Jung^6 \cdot V.$ Kolesnikov⁷ \cdot K. Lohwasser⁸ \cdot V. Myronenko¹ \cdot F. Olness⁹ · H. Pirumov¹ · R. Plačakytė¹ · V. Radescu¹⁰ · A. Sapronov⁶ · W. Slominski¹¹ · P. Starovoitov¹ ·

arXiv:1503.0522

Abstract Recent measurements of the W-boson charge asymmetry and of the Z-boson production cross sections, performed at the Tevatron collider in Run II by the D0 and CDF collaborations, are studied to assess their impact on the proton parton distribution functions (PDFs), using the HERAFitter framework. The Tevatron measurements, together with deep-inelastic scattering data from HERA, are included in a QCD analysis performed at next-to-leading order, and compared to the predictions obtained using other PDF sets from different groups. Good agreement between measurements and theoretical predictions is observed. The Tevatron data provide significant constraints on the dvalence quark distribution.

1 Introduction


Accurate knowledge of the parton distribution functions (PDFs) is essential for predictions at hadron colliders. The primary source of information on the proton PDFs comes from deep-inelastic scattering (DIS). Measurements at fixed target experiments and at the HERA $e^{\pm}p$ collider provide constraints on the quark and gluon densities, and discrimination of the quark flavours. The DIS proton data mostly constrain the utype quark density, due to the greater couplings to the photon at low absolute four momentum transfers, Q^2 , whereas the *d*-type quark densities are only constrained at high Q^2 with limited precision. Even more chal-

R. Plačakytė

Motivation

- W and Z boson production at Tevatron is valence quark dominated
- → W and Z measurements at Tevatron can be used to improve valence quark PDFs, especially the d-quark type (less constrained by DIS data)

W and Z Measurements at Tevatron

Tevatron W and Z production data sets (used in the QCD analysis)

luminosi	y requirements	Used in the Ref. nominal fit
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 66 < m_{ee} < 116 \ {\rm GeV} \\ p_T^{\mu} > 25 \ {\rm GeV}, \ p_T^{\nu} > 25 \ {\rm GeV} \\ E_T^e > 25 \ {\rm GeV}, \ p_T^{\nu} > 25 \ {\rm GeV} \\ none \end{array}$	yes Phys Rev D 76 (2007) 012003 yes Phys Lett B 692 (2010) 232 yes Phys Rev D 88 (2013) 091102 no Phys Rev D 91 no3 (2015) 032007 yes Phys Rev Lett 102 (2009) 181801 yes Phys Rev Lett 112 no15 (2014)151803

Revised correlation model:

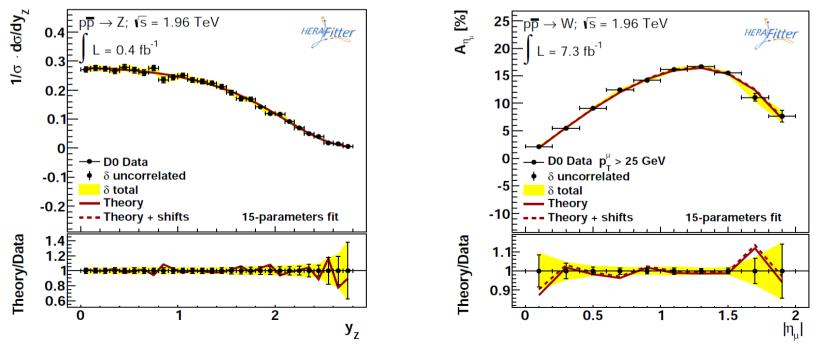
 \rightarrow uncertainties of data-driven corrections are treated as bin-to-bin uncorrelated (lepton ID, trigger and charge efficiencies)

(Fast) theoretical predictions: MCFM+APPLGRID

QCD Analysis Settings

- xFitter
- In the QCD analysis HERA I data sets (JHEP 1001 (2010) 109) used in a simultaneous fit with Tevatron W and Z production data
 - Parametrisation functional form:
 - \rightarrow optimisation via paramterisation scan
 - \rightarrow 15 parameter central parametrisation which includes linear and exponential terms

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} (1+D_g x) \,; \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} e^{F_{u_v} x} \,; \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}} e^{F_{d_v} x} \,; \\ x\bar{u}(x) &= A_{\bar{u}} x^{B_{\bar{u}}} (1-x)^{C_{\bar{u}}} (1+D_{\bar{u}} x) \,; \\ x\bar{d}(x) &= A_{\bar{d}} x^{B_{\bar{d}}} (1-x)^{C_{\bar{d}}} (1+D_{\bar{d}} x) \,. \end{aligned}$$


 $x\overline{U}=x\overline{u}$ and $x\overline{D}=x\overline{d}+x\overline{s}$ at the starting scale Q² = 1.7 GeV² ($x\overline{s}=r_s x\overline{D}$ with $r_s=1.0$) A_{g} , A_{uv} , A_{dv} are fixed by the sum rules, $B_{\overline{u}}=B_{\overline{d}}$ and $A_{\overline{u}}=A_{\overline{d}}$

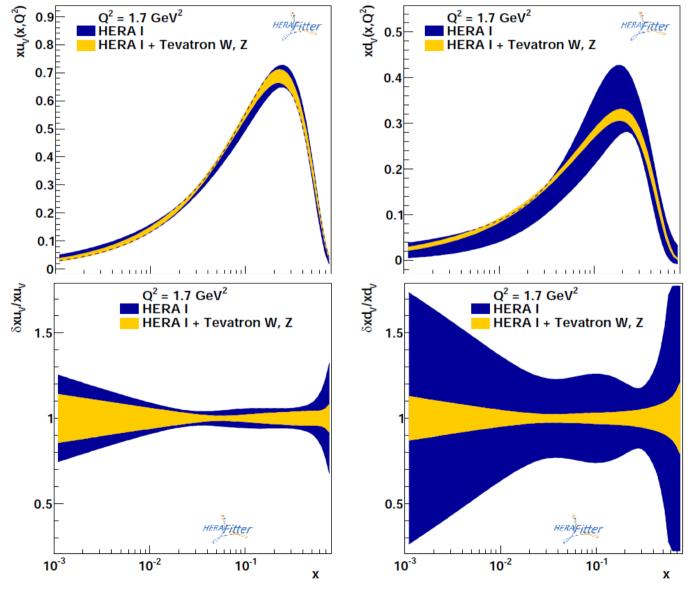
QCD Analysis Results

Good total and partial (per data set) χ^2 of the fit:

Data set	HERA I χ^2 / number of points	HERA I + Tevatron W, Z χ^2 / number of points
NC DIS cross sections H1-ZEUS combined e^-p . NC DIS cross sections H1-ZEUS combined e^+p . CC DIS cross sections H1-ZEUS combined e^-p . CC DIS cross sections H1-ZEUS combined e^+p . HERA I correlated χ^2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 109 \ / \ 145 \\ 333 \ / \ 337 \\ 20 \ / \ 34 \\ 31 \ / \ 34 \\ 23 \end{array}$
D0 $d\sigma(Z)/dy$ CDF $d\sigma(Z)/dy$ D0 muon charge asymmetry in $W \to \mu\nu$ CDF W charge asymmetry in $W \to e\nu$ D0 W charge asymmetry in $W \to e\nu$	- - - -	$\begin{array}{c} 23 \ / \ 28 \\ 32 \ / \ 28 \\ 12 \ / \ 10 \\ 14 \ / \ 13 \\ 8 \ / \ 14 \end{array}$
Total $\chi^2_{\rm min}$ / dof	505 / 535	606 / 628

R. Plačakytė

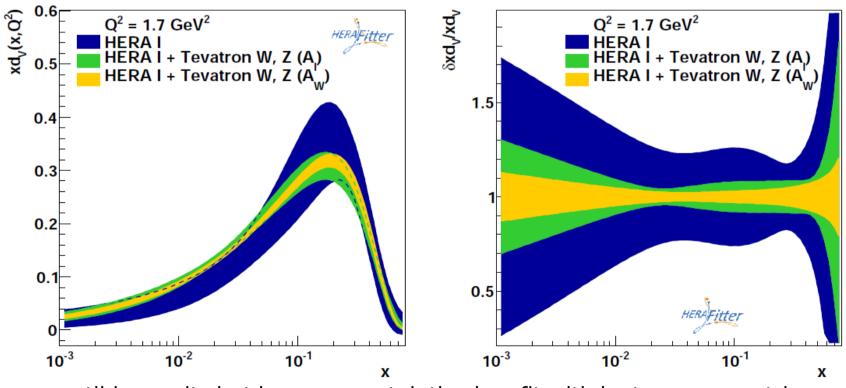
REF2016, Antwerp, 7 - 10 Nov 2016


Impact on Valence Quarks

- Significant impact of the W and Z boson measurements on the valence quarks
- and particularly on the d-type quarks

→ comparison of PDFs from a fit to the HERA data alone to a fit to the HERA and Tevatron data

→ after the inclusion of Tevatron data, the uncertainties of u_v and d_v become comparable in size

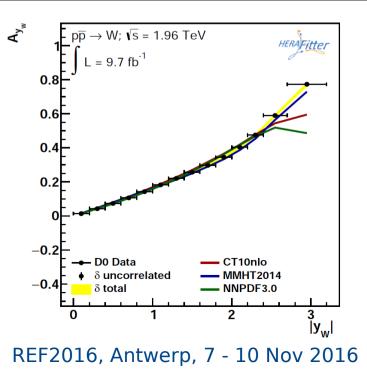


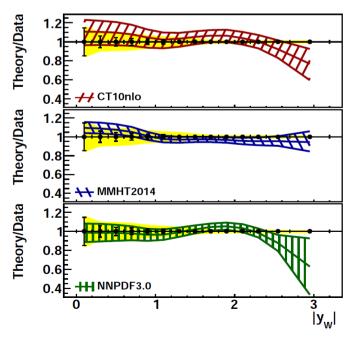
W vs Lepton Charge Asymmetry

W boson charge asymmetries rely on the reconstruction of the W boson rapidity

- \rightarrow requires assumptions on the longitudinal momentum of the neutrino
- → model dependence is introduced
- \rightarrow study of possible bias via alternative fit, excluding W and including lepton asymmetries

 \rightarrow compatible results but larger uncertainties in a fit with lepton asymmetries


Comparison of Tevatron Data with Modern PDFs

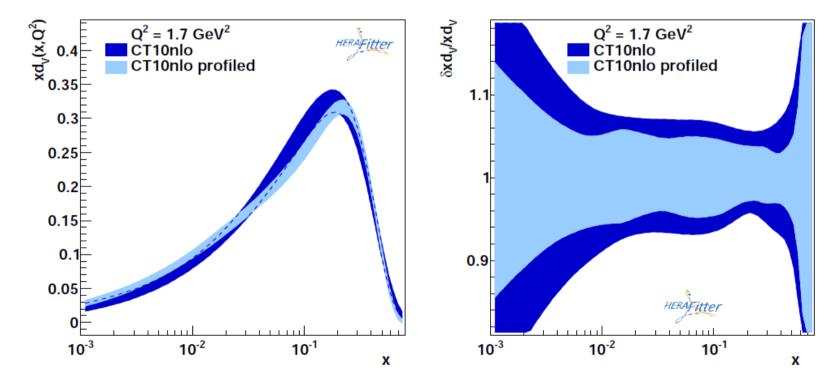


\rightarrow consider only the data sets which are not yet included in the PDF fits

w/wo taking into account theory uncertaintie	es: $\chi^2 = \sum_i \left(\frac{\mu}{2}\right)^{i}$	$\frac{b_i - m_i \left[1 + \sum_j b_j^{\exp} \gamma_{ji}^{\exp} + \sum_j b_j \right]}{\Delta_i}$	$\frac{\sum_{j=1}^{\text{theo}} \gamma_{ji}^{\text{theo}}]}{j}^2 + \sum_{j=1}^{\infty} (b_j^{\text{exp}})^2 + \sum_{j=1}^{\infty} (b_j^{\text{theo}})^2$
PDF set	$\begin{array}{c} \text{CT10nlo} \\ \chi^2 \text{ / number of points} \end{array}$	$\frac{\text{MMHT2014}}{\chi^2 \text{ / number of points}}$	NNPDF3.0 χ^2 / number of points
D0 muon charge asymmetry in $W \to \mu\nu$ CDF W charge asymmetry in $W \to e\nu$ D0 W charge asymmetry in $W \to e\nu$ PDF correlated χ^2	$\begin{array}{c} 13 \ / \ 10 \\ 14 \ / \ 13 \\ 8 \ / \ 14 \\ 3 \end{array}$	5/14 2	$\begin{array}{c} 12 \ / \ 10 \\ 15 \ / \ 13 \\ 2 \ / \ 14 \\ 7 \end{array}$
Total χ^2 / dof	39 / 37	7 / 14	36 / 37
Total χ^2 / dof without PDFs uncertainties	369/37	25/14	906 / 37

Good description → no tension between Tevatron data observed

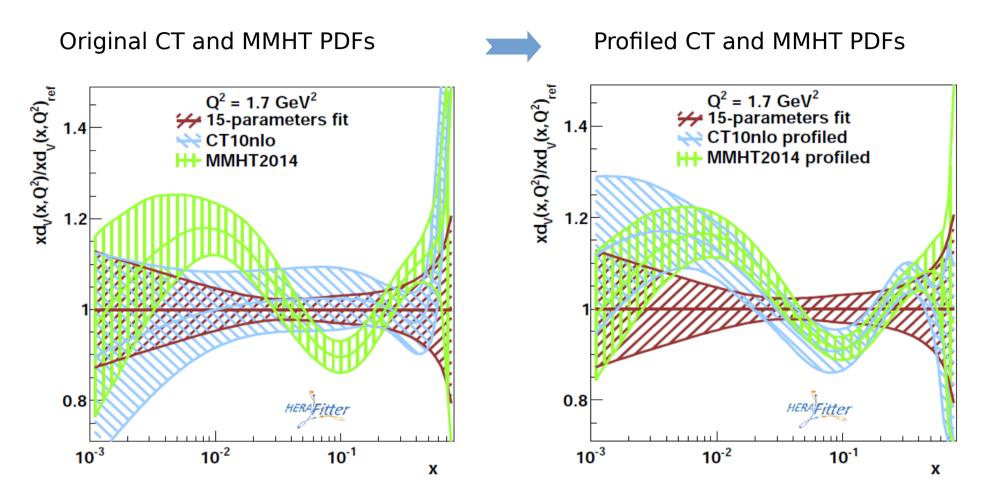
R. Plačakytė


Impact on PDFs Using Profiling Technique

Impact of Tevatron data on PDFs can be studied by minimizing data to theory χ^2 vs nuisance parameters corresponding to PDF eigenvectors ("profiling")

$$\chi^{2} = \sum_{i} \left(\frac{\mu_{i} - m_{i} \left[1 + \sum_{j} b_{j}^{\exp} \gamma_{ji}^{\exp} + \sum_{j} b_{j}^{\operatorname{theo}} \gamma_{ji}^{\operatorname{theo}} \right]}{\Delta_{i}} \right)^{2} + \sum_{j} (b_{j}^{\exp})^{2} + \sum_{j} (b_{j}^{\operatorname{theo}})^{2}$$

 μ_i - data, m_i - theory, β_j^{theo} - nuisance parameters of theory uncertainties (PDF) (asymmetric uncertainties are taken into account)



 \rightarrow similar as in PDF fit case, a significant reduction on the d_v quark is observed

R. Plačakytė

Impact on PDFs Using Profiling Technique

only the measurements that are not included in the each of PDF sets are considered for the profiling

 \rightarrow improved agreement of the d-valence distribution between the MMHT2014 $\,$ and CT10nlo PDF sets

R. Plačakytė

The first xFitter Developers Team publication:

EPIC (2014) 74: 3039

DESY Report 2014-054

PDFs at LO, NLO, NNLO with correlated uncertainties between orders

Parton distribution functions at LO, NLO and NNLO with correlated uncertainties between orders

HERAFitter developers' team .

K. Lohwasser¹⁴ · A. Luszczak⁵ · V. Myronenko¹ · H. Pirumov¹ ·

Ö

ep-

 \triangleleft Abstract Sets of parton distribution functions (PDFs) of the proton are reported for the leading (LO), next-to-leading (NLO) and next-to-next-to leading order (NNLO)

of WW di-boson to Z boson production cross sections at the LHC.

QCD calculations. The parton distribution functions are determined with the HERAFitter program using the data from the HERA experiments and preserving correlations between uncertainties for the LO, NLO and NNLO PDF sets. The sets are used to study crosssection ratios and their uncertainties when calculated at different orders in QCD. A reduction of the overall

 \sim theoretical uncertainty is observed if correlations between the PDF sets are taken into account for the ratio 423

² Department of Physics, University of Oxford, Oxford, United Kingdom

⁸ University of Sussex, Department of Physics and Astronomy, Sussex House, Brighton BN1 9RH, United Kingdom ⁹ Warsaw University of Technology, Faculty of Physics, Koszykowa 75, 00-662 Warsaw, Poland

¹⁰ Physikalisches Institut, Universität Heidelberg, Heidelberg. Germany

¹¹ Institute for Particle Physics Phenomenology, Durham University, Durham, DH1 3LE, United Kingdom ¹² Current address: Department of Physics, St. Petersburg State University, Ulyanovskaya 1, 198504 St. Petersburg, Rus-

sia ¹³ CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France ¹⁴ DESY, Platanenallee 6, D15738 Zeuthen, Germany

1 Introduction

Accurate knowledge of the parton distribution functions (PDFs) of the proton is required for precision physics at the LHC. PDF sets are now available as determined by several groups [1,2,3,4,5,6] at leadingorder (LO), next-to-leading-order (NLO) and next-tonext-to-leading-order (NNLO) accuracy in QCD. To obtain the cross-section predictions, the PDF sets should be paired with calculations of the coefficient functions at the matching order of the accuracy. Theoretical uncertainties for the predictions arise from both the PDF and coefficient-function uncertainties.

Most of the Standard Model processes at the LHC are calculated to NLO accuracy. The uncertainties due to missing higher orders for the coefficient functions are typically determined by varying factorisation and renormalisation scales. This leads to large uncertainties often as large as 10% of predicted cross sections, which usually exceed uncertainties due to the PDFs determination. For a handful of processes known at NNLO, the PDF uncertainties often exceed uncertainties due to missing higher orders in coefficient-function calculations.

The experimental precision achieved by the LHC experiments often exceeds the precision of theoretical calculations. Ultimately a more complete set of NNLO calculations should remedy the situation in future. At present, special methods are employed to reduce theoretical uncertainties. One such method is to measure

P. Belov^{1,12} · D. Britzger¹ · S. Camarda¹ · A.M. Cooper-Sarkar² ·

C. Diaconu³ · J. Feltesse¹³ · A. Gizhko¹ · A. Glazov¹ · V. Kolesnikov⁴ ·

R. Plačakyte¹ · K. Rabbertz⁶ · V. Radescu¹ · A. Sapronov⁴ ·

A. Schöning¹⁰ · S. Shushkevich¹ · W. Slominski⁷ · P. Starovoitov¹ ·

M. Sutton⁸ · J. Tomaszewska⁹ · O. Turkot¹ · G. Watt¹¹ · K. Wichmann¹ and M. Lisovyi¹

²⁰¹

DI

¹ DESY, Hamburg, Germany

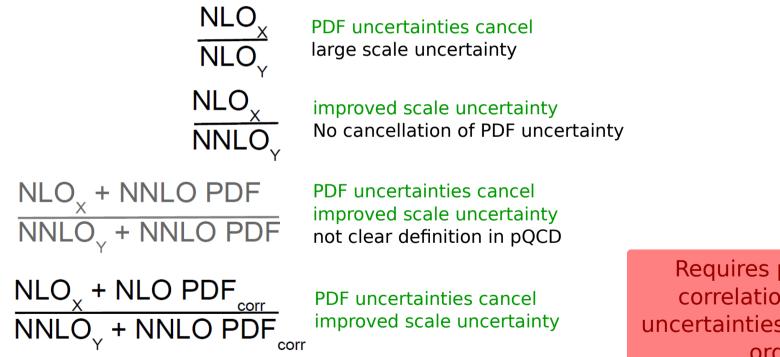
^{404.} ³ CPPM, IN2P3-CNRS, Univ. Mediterranee, Marseille, France

⁴ Joint Institute for Nuclear Research (JINR), Joliot-Curie 6, 141980, Dubna, Moscow Region, Russia

⁵ T. Kosciuszko Cracow University of Technology

⁶ Institut für Experimentelle Kernphysik, Karlsruhe, Germany

arXi ⁷ Jagiellonian University, Institute of Physics, Ul. Reymonta 4, PL-30-059 Cracow, Poland


Motivation

Predictions for various processes at LHC are available at different orders in pQCD

- \rightarrow PDFs and coefficient functions ideally should be paired at the same order
- → uncertainties rise from both, PDFs and coefficient functions, missing higher order uncertainties often determined by the scale variation

Ratios of cross sections are used to reduce theoretical uncertainties:

Requires preserved correlations in PDF uncertainties at different orders

QCD Analysis Settings

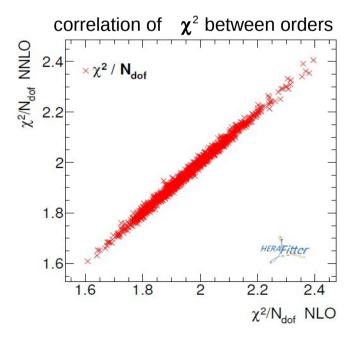
A QCD fit to HERA I data

(JHEP 1001, 2010, 109)

using xFitter

Parametrisation:

$$\begin{aligned} xu_{v}(x) &= A_{u_{v}} \ x^{B_{u_{v}}} \ (1-x)^{C_{u_{v}}} \ (1+E_{u_{v}}x^{2}), \\ xd_{v}(x) &= A_{d_{v}} \ x^{B_{d_{v}}} \ (1-x)^{C_{d_{v}}}, \\ x\overline{U}(x) &= A_{\overline{U}} \ x^{B_{\overline{U}}} \ (1-x)^{C_{\overline{U}}}, \\ x\overline{D}(x) &= A_{\overline{D}} \ x^{B_{\overline{D}}} \ (1-x)^{C_{\overline{D}}}, \\ xg(x) &= A_{g} \ x^{B_{g}} \ (1-x)^{C_{g}} + A'_{g} \ x^{B'_{g}} \ (1-x)^{C'_{g}} \end{aligned}$$


- + additional constraints and assumptions
- → other setting largely follow JHEP 1001, 2010, 109

model and parametrisation uncertainties treated correlated between orders

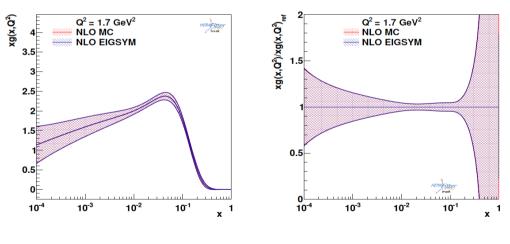
MC replica method used to preserve the correlations:

- \rightarrow 1337 MC replicas of the data fluctuating the inputs within uncertainties using Gaussian prob densities
- → perform a consistent fit of PDFs at different orders to each replica

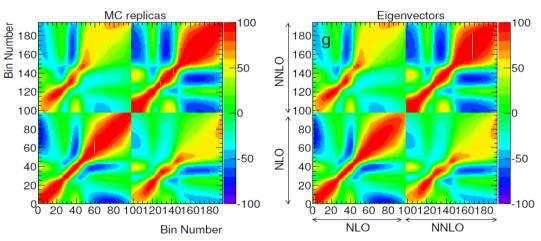
central PDF = average over replicas, PDF uncertainty = RMS over replicas

R. Plačakytė

Eigenvector Representation


EPJC (2014) 74: 3039

Eigenvector representation is often more convenient than MC replica


employ the method suggested for extraction of META PDFs

- \rightarrow build the covariance matrix
- \rightarrow diagonalise matrix and keep only leading eigenvectors
- \rightarrow evolve tabulated values (central and eigenvectors) using DGLAP evolution

Comparison of PDFs determined with MC method and its eigenvector representation

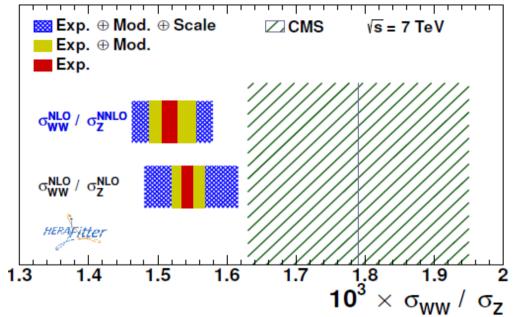
 \rightarrow very good agreement between PDFs

(arXiv:1401.0013)

- → PDFs show high degree of correlation at neighboring x bins (smoothness of parametrisation)
- \rightarrow strong correlation between NLO and NNLO PDFs

Correlation coefficients among PDFs:

Comparison to Data: WW/Z ratio



Used case example: WW/Z ratio measurement from CMS

(arXiv:1306.1126)

 \rightarrow build the cross section ratio using the correlated PDFs

Ratio	Value	Exp. PDF	Mod. PDF	Scale
	$\times 10^{-3}$	$\times 10^{-3}$	$\times 10^{-3}$	$\times 10^{-3}$
$rac{\sigma_{WW}^{ m NLO}}{\sigma_Z^{ m NLO}}$	1.543	± 0.008	$+0.023 \\ -0.021$	$+0.069 \\ -0.058$
$rac{\sigma_{WW}^{ m NLO}}{\sigma_Z^{ m NNLO}}$	1.517	± 0.010	$+0.036 \\ -0.027$	$+0.050 \\ -0.046$

- \rightarrow predictions agree with the data within 1-2 σ
- \rightarrow the total theoretical uncertainty is reduced by 30-40%
- → mixed-order calculations with correlated PDFs help to reduce PDF and scale uncertainties