APFEL A PDF Evolution Library

[V. Bertone, et al., Comput. Phys. Commun. I85, 1647 (20 I4)]

Valerio Bertone
NIKHEF and VU Amsterdam

REF 2016

November 9, 2016, Antwerp

APFEL in a Nutshell

- APFEL is a public library for the computation of collinear PDF evolution and DIS structure functions:
f up to NNLO in QCD combined to QED corrections up to NLO.
© FFN and VFN schemes.
\int Pole and $\overline{\mathrm{MS}}$ heavy-quark masses.
- fast computation of DIS NC and CC observables in different mass schemes (ZM-VFNS, FFNS and FONLL).
fi Interfaces to FORTRAN, C/C++ and Python.
© Web interface available on http://apfel.mi. infn.it.
f available from http: //apfel. hepforge.org/.
EInterfaced to xFitter (see Ringaile's talk) and Alpos.
$\underbrace{5}$ Used for the next generation of the NNPDF fits (including FFs).

Small-x Resumination

© Tension between fixed-order predictions and data in the small- x region reached by HERA:

A similar effect was observed some time ago in the NNPDF framework by F. Caola et al. [arXiv:1007.5405].

Suggestion of the need for small-x resummation.

Sinall-x Resummation

© The HELL code [arXiv:1607.02153] has been interfaced to APFEL:
f based on the ABF formalism (e.g. see [hep-ph/9501231]).
© Small- x resummed splitting functions up to NLL accuracy,
\int Small- x resummed DIS coefficient functions up to NLL:
© massless (already available from APFEL),
f massive (since very recently \Rightarrow not interfaced to APFEL yet)
© Resummed matching conditions (not implemented in HELL, to come).
f In NNPDF we have attempted DIS-only PDF fits with small- x resummation correction at NLL in the evolution and in the ZM sector of the DIS structure functions obtaining encouraging results.

Sinall-x Resummation

\int_{\bullet} Resummed evolution leads to a suppression of the gluon PDF at small values of x as compared to fixed order.
© Compensation when also resummed coefficient functions are introduced \Rightarrow effect on the small- x gluon PDF at the level of 1- σ.
©Other PDFs mostly unchanged.

- A faithful determination of fragmentation functions (FFs) is extremely important to study the universality of the QCD factorisation theorems.
§The inclusive hadron measurements at the LHC, sensibly extending the previous kinematical coverage, are particularly useful for studying the FFs.
\backsim Moreover, a good knowledge of FFs is functional to the determination of the polarised PDFs.
© The spread between the different FFs present on the market is currently very large.
©In addition, none of the existing FF sets describes the recent LHC and Tevatron experimental data.

Fragmentation Functions

© Inclusive charged-hadron spectrum:

Large discrepancies that need to be understood.

Fragmentation Functions

© APFEL implements the time-like evolution:
vup to NLO in the VFNS,
$\tilde{\sigma}$ up to NNLO in the FFNS (NNLO matching conditions unknown).
APFEL vs. MELA: VFNS at NLO
© Careful benchmark of the evolution against the MELA code [arXiv:1501.00494].
© x-space vs. \mathcal{N}-space
Excellent agreement at all perturbative orders.

ω^{5} Single-inclusive $e^{+} e^{-}$annihilation (SIA) structure functions are also implemented in APFEL up to NNLO in QCD:
© partial benchmark against DSS code (thanks to D.P. Anderle).
© APFEL can now be used to determine FFs from SIA data.

ω^{5} Single-inclusive $e^{+} e^{-}$annihilation (SIA) structure functions are also implemented in APFEL up to NNLO in QCD:
© partial benchmark against DSS code (thanks to D.P. Anderle).
© APFEL can now be used to determine FFs from SIA data.

NLO QCD+QED Corrections Evolution

 In order to implement the full NLO QCD+QED corrections in the DGLAP evolution two main steps are required:1. Implementing the $O\left(\alpha_{s}^{2} \alpha\right), O\left(\alpha^{3}\right), O\left(\alpha^{2} \alpha_{s}\right)$ corrections to the $\boldsymbol{\beta}$-functions:

- running of α_{s} and α is coupled \Rightarrow solve of a coupled ODE,
- Numerical tests have shown that such terms lead to differences of $O\left(10^{-4}\right)$ for α_{s} and $O\left(10^{-3}\right)$ for $\alpha \Rightarrow$ unneeded complication.

NLO QCD+QED Corrections

 Coupling Evolutionrunning of the couplings, $\mathrm{N}_{\mathrm{F}}=5$

\circlearrowleft Mixed terms in the β-functions lead to negligible effects.

NLO QCD+QED Corrections
 Evolution

In order to implement the full NLO QCD+QED corrections in the DGLAP evolution two main steps are required:

1. Implementing the $O\left(\alpha_{s}^{2} \alpha\right), O\left(\alpha^{3}\right), O\left(\alpha^{2} \alpha_{s}\right)$ corrections to the $\boldsymbol{\beta}$-functions:

- running of α_{s} and α is coupled \Rightarrow solve of a coupled ODE,
- Numerical tests have shown that such terms lead to differences of $O\left(10^{-4}\right)$ for α_{s} and $O\left(10^{-3}\right)$ for $\alpha \Rightarrow$ unneeded complication.

2. Implementing the $O\left(\alpha_{s} \alpha\right)$ and the $O\left(\alpha^{2}\right)$ corrections to the DGLAP splitting functions on top of the $O(\alpha)$ ones:

- complication of the flavour structure due to the presence of terms promotional to $e_{q}{ }^{2}$ and $e_{q}{ }^{4}$ that break the isospin symmetry,
- need for a more optimal evolution basis as compared to pure QCD.

NLO QCD+QED Corrections DGLAP Evolution

Effect on the photon PDF of the NLO corrns. at the level of $1-2 \%$.

NLO QCD+QED Corrections DGLAP Evolution

©Slightly more sizeable effect on the $\gamma \gamma$ luminosity.

NLO QCD+QED Corrections DIS Structure Functions

- While at LO in QED no corrections to the DIS structure functions are required $\left(\gamma^{*} q \rightarrow q\right.$ itself is the LO $)$, at NLO in QED $O(\alpha)$ corrections need to be taken into account:
- new diagrams: $\gamma^{*} \gamma \rightarrow q \bar{q}$ and $\gamma^{*} q \rightarrow q \gamma$,
- easily derivable from the corresponding QCD diagrams.
- The additional diagrams offer a direct handle on the photon PDF in DIS observables:
- at LO in QED the photon PDF was entirely driven by the evolution.
- Small contribution proportional to $\alpha \gamma \sim O\left(\alpha^{2}\right)$ but can be relevant in some kinematic regions:
- typically at large x and large Q^{2}.

NLO QCD+QED Corrections DIS Structure Functions (NC)

© Generally small effect which becomes large at large x.

NLO QCD+QED Corrections DIS Structure Functions (CC)

© Generally small effect which becomes large at large x.

APFEL Web

Go to http://apfel.mi.infn.it and sign up

Welcome to APFEL online cluster!
This web-application is a tool designed for High Energy Physics by providing a simple and intuitive interface to plot and compute the most common observables with Parton Distribution Functions (PDFs).

To begin to produce on-line plots, please register and login!
The APFEL library
APFEL, a PDF evolution library, is a computer library specialized in the solution of DGLAP evolution equations up to NNLO in QCD and to LO in QED, both with Pole and $\overline{\mathrm{MS}}$ masses. With APFEL you can replace the evolution of LHAPDF sets and check the impact on the choice of evolution parameters. APFEL also computes deep-inelastic scattering processes using multiple schemes.

If you use the APFEL library or the online cluster in a scientific publication, please cite: V. Bertone, S. Carrazza and J. Rojo, "APFEL: A PDF Evolution Library with QED corrections",

Comput. Phys. Commun. 185, 1647 (2014), arXiv:1310.1394.
S. Carrazza et al., "APFEL Web: a web-based application for the graphical visualization of parton distribution functions", J. Phys. G: Nucl. Part. Phys. 42 057001, arXiv:1410.5456. Labtalk.

APFEL Web

Go to http://apfel.mi.infn.it and sign up

APFEL Web

Workspace

APFEL Web

Workspace

APFEL Web
Add a new PDF set

Set parameters for PDF

LHAPDF grid setup:

Use tabulated LHAPDF evolution...

APFEL Web

Add a new PDF set

Plotting tools

Workspace
全 Home
a My Profile

PDF MANAGER
My PDF sets
国 Add PDF set
I Import a LHAPDF grid

TOOLS
＊Plotting Tools

DOWNLOAD RESULTS
亡 View jobs

Choose a plotting tool and select your PDF set

Some jobs，like PDF luminosities，require some time to be finalized．Check the job status at View jobs page．
The plotting tools can be used for both the LHAPDF libraries：LHAPDF5 and LHAPDF6．

Tools for PDF basic plotting

Tools for PDF analysis \＆comparisons

Tools for theoretical predictions from PDFs
 FS webpages

View your jobs

Choose a plotting tool and select your PDF set

ADEE C Contact

TMD Evolution (PDFs)

$$
F_{f / P}\left(x, \mathbf{b}_{T} ; \mu, \zeta\right)=\sum_{j} C_{f / j}\left(x, b_{*} ; \mu_{b}, \zeta_{F}\right) \otimes f_{j / P}\left(x, \mu_{b}\right)
$$

$$
\begin{array}{ll}
\times \exp \left\{K\left(b_{*} ; \mu_{b}\right) \ln \frac{\sqrt{\zeta_{F}}}{\mu_{b}}+\int_{\mu_{b}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma_{F}-\gamma_{K} \ln \frac{\sqrt{\zeta_{F}}}{\mu^{\prime}}\right]\right\} & : B \\
\times \exp \left\{g_{j / P}\left(x, b_{T}\right)+g_{K}\left(b_{T}\right) \ln \frac{\sqrt{\zeta_{F}}}{\sqrt{\zeta_{F, 0}}}\right\} & : C
\end{array}
$$

TMD Evolution (PDFs)

TMDs in SIDIS

f In SIDIS, what enters the computation of the cross sections is:

$$
\begin{gathered}
\mathcal{L}_{\text {SIDIS }}=\int \frac{d^{2} \mathbf{b}_{T}}{(2 \pi)^{2}} e^{-i \mathbf{q}_{T} \cdot \mathbf{b}_{T}} F_{f / P}\left(x, \mathbf{b}_{T} ; \mu, \zeta_{F}\right) D_{H / f}\left(x, \mathbf{b}_{T} ; \mu, \zeta_{D}\right) \\
\text { Fourier transform } \quad \text { PDFs }
\end{gathered}
$$

© The ingredients are:
© a set of evolved TMD-PDFs,
© a set of evolved TMD-FFs,
st the Fourier transform of its product.

- Complex set of tasks that have to be performed optimally
- APFEL provides the ideal environment for this computation:
© fast and accurate interpolation techniques,
© precomputation of the time consuming bits.
© Recent developments in APFEL:
- small-x resummation in PDF evolution and structure functions,
f. framework for the determination of FFs,
© NLO QED corrections to evolution and structure functions. Other Recent Developments
© Intrinsic-charm in DIS a la FONLL.
f Polarised DGLAP evolution up to NNLO.
f Independent factorisation and renormalisation scale variations both in the DIS structure functions and in the evolution.
In the Pipeline
f Implementation of TMD evolution and SIDIS cross sections,
© Implementation of the polarised structure functions, mass corrections to SIA structure functions.

Backup Slides

Displaced Heavy-Quark Thresholds

© The implementation of the VFNS evolution both for PDFs and α_{s} requires matching factorization schemes differing in the number of active flavours:
f the scale at which two consecutive factorization schemes are matched are usually referred to as heavy-quark thresholds.
© Heavy-quark thresholds are usually (and for convenience) identified with the heavy quark masses by means of the so-called matching conditions presently know up to $\mathrm{O}\left(\alpha_{\mathrm{s}}{ }^{2}\right)$ [hep-ph/9612398].
© However, heavy-quark thresholds are actually free parameters and can be chosen arbitrarily.

- If masses and thresholds are taken to be different, the matching conditions need to be "generalized" including logarithmic terms.
- APFEL now implements the possibility to set masses and thresholds to different values in a consistent way both in the pole mass and in the $\overline{\mathrm{MS}}$ renormalization schemes.

Displaced Heavy-Quark Thresholds

Displaced Heavy-Quark Thresholds

[Thanks to Sasha Glazov]

APFELgrid A fast(er) interface for PDF fits

f While being an extremely useful tool, APPLgrid might not be appropriate to be directly employed in a global PDF fit where usually thousands of iterations are needed:
© Need to calculate PDF and α_{s} evolution in real time.
Not particularly fast convolution.
f many tables need to be loaded with the concrete risk of exceeding the memory limit (pretty common on clusters).
fin the NNPDF collaboration we developed APFELgrid which, starting from an existing APPLgrid, combines PDF evolution from APFEL to the hard cross sections producing derived interpolation tables (FK tables):

Observable	APPLGRID	FK	optimized FK
W^{+}production	1.03 ms	$0.41 \mathrm{~ms}(2.5 \mathrm{x})$	$0.32 \mathrm{~ms}(3.2 \mathrm{x})$
Inclusive jet production	2.45 ms	$20.1 \mu \mathrm{~s}(120 \mathrm{x})$	$6.57 \mu \mathrm{~s}(370 \mathrm{x})$

© APFELgrid will soon be made public in APFEL. [thanks to N. Harthland]

Improvements A Nero Fast Evolution

In the previous versions of APFEL the DGLAP evolution equations were written in terms of the evolution operator:
$\mu^{2} \frac{\partial}{\partial \mu^{2}} M_{i j}\left(\mu, \mu_{0}\right)=P_{i k}(\mu) \otimes M_{k j}\left(\mu, \mu_{0}\right) \quad$ with $\quad f_{i}(\mu)=M_{i j}\left(\mu, \mu_{0}\right) \otimes f_{j}\left(\mu_{0}\right)$
©This may be convenient because the evolution operator can be evaluated once and for all and convoluted with any initial PDF set.
© On the other hand, this requires solving numerically a big coupled system of ODEs, therefore it can be slow.

Alternatively, one can directly solve the DGLAP equations in terms of PDFs:

$$
\mu^{2} \frac{\partial}{\partial \mu^{2}} f_{i}(\mu)=P_{i j}(\mu) \otimes f_{j}(\mu)
$$

© This requires the solution of a much smaller system of equations and is consequently much faster.

Improvements A New Fast Evolution

Comparison between old (operatorial) and new (in terms of PDFs) solution for the QCD evolution:

APFEL QCD evolution time

Improvements A New Fast Evolution

© Comparison between old (operatorial) and new (in terms of PDFs) solution for the QCD+QED evolution:

APFEL QCDxQED evolution time

Improvements
 A Nere OCD + OED Evolution

In the previous versions of APFEL the QCD+QED evolution was performed by combining the separate $\mathbb{Q C D}$ and QED evolution:
© we showed that the differences, of a few $\%$ at most, with the standard implementations which evolve contemporaneously in QCD and QED were due to subleading terms in $\boldsymbol{\alpha}$.
© We have now implemented a new evolution basis which allows a simultaneous diagonalization of the $\mathrm{QCD}+\mathrm{QED}$ evolution matrix:

1) g
2) γ
3) $\Sigma=\Sigma_{u}+\Sigma_{d}$
4) $V=V_{u}+V_{d}$
5) $\Delta_{\Sigma}=\Sigma_{u}-\Sigma_{d}$
6) $\Delta_{V}=V_{u}-V_{d}$
7) $T_{1}^{u}=u^{+}-c^{+}$
8) $V_{1}^{u}=u^{-}-c^{-}$
9) $T_{2}^{u}=u^{+}+c^{+}-2 t^{+}$
10) $V_{2}^{u}=u^{-}+c^{-}-2 t^{-}$
11) $T_{1}^{d}=d^{+}-s^{+}$
12) $V_{1}^{d}=d^{-}-s^{-}$
13) $T_{2}^{d}=d^{+}+s^{+}-2 b^{+}$
14) $V_{2}^{d}=d^{-}+s^{-}-2 b^{-}$

Improvements A New OCD + OED Evolution

© In the previous versions of APFEL the QCD+QED evolution was performed by combining the separate $\mathbb{Q C D}$ and QED evolution:
© we showed that the differences, of a few $\%$ at most, with the standard implementations which evolve contemporaneously in QCD and QED were due to subleading terms in α.
© We have now implemented a new evolution basis which allows a simultaneous diagonalization of the $\mathrm{QCD}+\mathrm{QED}$ evolution matrix:

1) g 2) γ 3) $\Sigma=\Sigma_{u}+\Sigma_{d}$ 4) $\Delta_{\Sigma}=\Sigma_{u}-\Sigma_{d}$	9) $V=V_{u}+V_{d}$ 10) $\Delta_{V}=V_{u}-V_{d}$ 5) $T_{1}^{u}=u^{+}-c^{+}$ 11) $V_{1}^{u}=u^{-}-c^{-}$ 6) $T_{2}^{u}=u^{+}+c^{+}-2 t^{+}$ 12) $V_{2}^{u}=u^{-}+c^{-}-2 t^{-}$ 7) $T_{1}^{d}=d^{+}-s^{+}$ 13) $V_{1}^{d}=d^{-}-s^{-}$ 8) $T_{2}^{d}=d^{+}+s^{+}-2 b^{+}$ 14) $V_{2}^{d}=d^{-}+s^{-}-2 b^{-}$

Coupled

Decoupled

5 This new basis is also suitable for an easy implementation of the mixed higher order corrections to the evolution.

Intrinsic Charm

s Introducing an intrinsic charm (IC) component in the context of a GM-VFNS like FONLL (or ACOT, or TR) requires some care:
relax the assumption of pure perturbative generation of heavy quarks at the thresholds,
f take into account charm-initiated diagrams both in the massive and in the massless sectors [arXiv:1510.00009].

A full formulation of the FONLL scheme in the presence of IC has recently been achieved [arXiv:1510.02491]:
\int interestingly, it has been found that FONLL with IC is equivalent to full ACOT to all orders, while the standard FONLL (w/o IC) is instead equivalent to S-ACOT.
© Implemented in APFEL up to NLO both in the NC and $\mathbf{C C}$ sector and benchmarked against the public massiveDISsFuntion code (https://www.ge.infn.it/~bonvini/massivedis/).

Intrinsic Charm

© Consider realistic models:
© BHPS model:

$$
f_{c}^{(3)}(x)=f_{\bar{c}}^{(3)}(x)=A x^{2}\left[6 x(1+x) \ln x+(1-x)\left(1+10 x+x^{2}\right)\right]
$$

© SEA model:

$$
f_{c}^{(3)}(x)=f_{\bar{c}}^{(3)}(x)=A x^{-1.25}(1-x)^{3}
$$

A determined requiring the charm to carry 0.5% of the momentum

