# TMD fragmentation in jets

# Wouter Waalewijn



UNIVERSITY OF AMSTERDAM







### Outline

- 1. Fragmentation in jets
- 2. TMD fragmentation in jets
- 3. First results
- 4. Conclusions and outlook

#### In collaboration with D. Neill and I. Scimemi

# 1. Fragmentation in jets

#### Introduction: What is fragmentation?



- Parton i=q, g radiates and hadronizes  $\rightarrow$  produces hadron h
- Described by fragmentation function  $D_{i
  ightarrow h}(z_h,\mu)$  [Collins, Soper]
- E.g.  $e^+e^- \rightarrow hX$

$$\frac{d\sigma}{dz_h} = \sigma_0 \sum_i \int_{z_h}^1 \frac{dz}{z} \,\hat{\sigma}_i(z, Q, \mu) \, D_{i \to h}\left(\frac{z_h}{z}, \mu\right)$$

[Collins, Soper, Sterman]

#### Case study: Fragn

 $au=rac{1}{2}$  spherical even

- Motivation: study light fragmentation at Bell
- Dominant *b*-quark contribution in on-resonance data removed by cut on thrust *T*>0.8



 $\tau^{\rm cut} = 1 - T^{\rm cut} = 0.2$ 

#### Case study: Fragn

- Motivation: study light fragmentation at Bell
- Dominant *b*-quark contribution in on-resonance data removed by cut on thrust *T*>0.8
- Thrust cut modifies shape of fragmentation spectrum



 $\frac{1}{\sigma_0} \frac{d\sigma}{d\tau} = \delta(\tau) + \alpha_s(c_1 \delta(\tau) + \alpha_{\text{product}})^{\text{product}} = \delta(\tau) + \alpha_s(c_1 \delta(\tau) + \alpha_{\text{product}})^{\text{product}} = \delta(\tau) + \alpha_s(c_1 \delta(\tau) + \alpha_{\text{product}})^{\text{product}} = \delta(\tau) + \alpha_s(\tau) + \alpha_$ 

spherical even

# Key ingredient: Fragmenting jet function



 $\mathcal{G}_{i \to h}(s, z_h, \mu)$ 

Collinear radiation contributes s to thrust and produces hadron

# Key ingredient: Fragmenting jet function

$$\begin{aligned} &\bigotimes^{i} \underbrace{0}_{0} \underbrace{0}_{0} \underbrace{0}_{0} \underbrace{0}_{0} \underbrace{0}_{0} \underbrace{0}_{0} \underbrace{0}_{0} h(z_{h}) \\ &\mu \end{aligned} \\ \mathcal{G}_{i \to h}(s, z_{h}, \mu) = \sum_{j} \int_{z_{h}}^{1} \frac{dz}{z} \underbrace{\mathcal{J}_{ij}(s, z, \mu) D_{j \to h}\left(\frac{z_{h}}{z}, \mu\right)}_{\text{[Procura, Stewart; Jain, Procura, WW]}} \end{aligned}$$

- Collinear radiation contributes s to thrust and produces hadron
- OPE in  $\Lambda^2_{\rm QCD}/s$  with perturbatively calculable coefficients

$$\mathcal{J}_{ij}(s, z, \mu) = \delta_{ij}\delta(s)\delta(1-z) + \mathcal{O}(\alpha_s)$$

- Fragmentation function probed at  $\mu \sim \sqrt{s} \ll Q$ 

#### Developments

- Hemisphere jets [Procura, Stewart; Liu; Jain, Procura, WW; Bauer, Mereghetti; Ritzmann, WW]
- Exclusive jet production [Procura, WW; Chien, Kang, Ringer, Vitev, Xing; Baumgart, Leibovich, Mehen, Rothstein; Bain, Dai, Hornig, Leibovich, Makris, Mehen]
- Inclusive jet production [Kaufmann, Mukherjee, Vogelsang; Dai, Kim, Leibovich; Kang, Ringer, Vitev]
- Jet charge [Krohn, Schwartz, Lin, WW; WW]





# rition llenges

#### Not controlled by ones regulation procedures. (Glaubers) In pp collisions [Gaunt; Zeng; Rothstein, Stewart] definition of functions. X Exclusive jet production: non-global logarithins from different restrictions in regions of phase-space [Dasgurga; Salam, ...]

✓Inclusive jet production: insensitive to soft radiation



# 2. TMD fragmentation in jets



### Removing soft recoil



- Fragmentation in inclusive jet production is purely collinear
- TMD measurement introduces soft sensitivity through axis
- ✓ Choose a recoil free axis, e.g. winner-takes-all [Larkoski, Neill, Thaler]

#### Winner-takes-all axis



Run jet algorithm with following recombination scheme

$$E_r = E_1 + E_2$$
  

$$\hat{n}_r = \begin{cases} \hat{n}_1 & \text{if } E_1 > E_2 \\ \hat{n}_2 & \text{if } E_2 > E_1 \end{cases}$$

Axis tracks energetic radiation, along direction of a particle

#### Factorization of the jet



- Factor hard scattering from jet production for jet radius  $R \ll 1$  $\frac{d\sigma_h}{dp_T \, d\eta \, d\vec{p}_{h\perp}^2 dz_h} = \sum_i \int \frac{dx}{x} \, \hat{\sigma}_i \left(\frac{p_T}{x}, \eta, \mu\right) \mathcal{G}_{i \to h}(x, p_T R, \vec{p}_{h\perp}^2, z_h, \mu)$ 
  - Transverse momentum  $p_T$  and rapidity  $\eta$  of jet

 $\checkmark G$  is universal because measurement is purely collinear, *i.e.* same for *ee*, *ep* and *pp* and independent of other jets

### Factorization of TMD fragmentation

• For  $r \equiv |\vec{p}_{h\perp}|/p_T \ll R$  factor jet from TMD fragmentation  $\mathcal{G}_{i \to h}(x, p_T R, \vec{p}_{h\perp}^2, z_h, \mu) = \sum_k \int \frac{dz}{z} B_{ik}(x, p_T R, z, \mu) D_{k \to h}\left(\frac{\vec{p}_{h\perp}^2}{z^2}, \frac{z_h}{z}, \mu\right)$ 

B and D describe emissions at angular scales R and r

# Factorization of TMD fragmentation

• For  $r \equiv |\vec{p}_{h\perp}|/p_T \ll R$  factor jet from TMD fragmentation  $\mathcal{G}_{i \to h}(x, p_T R, \vec{p}_{h\perp}^2, z_h, \mu) = \sum_k \int \frac{dz}{z} B_{ik}(x, p_T R, z, \mu) D_{k \to h}\left(\frac{\vec{p}_{h\perp}^2}{z^2}, \frac{z_h}{z}, \mu\right)$ 

• B and D describe emissions at angular scales R and r

#### Factorization of the measurement:

- B identifies pixel of size r containing axis
- D determines axis in pixel
- ✓Ok for Cambridge/Aachen with winner-takes-all axis



# Factorization of TMD fragmentation

• For  $r \equiv |\vec{p}_{h\perp}|/p_T \ll R$  factor jet from TMD fragmentation  $\mathcal{G}_{i \to h}(x, p_T R, \vec{p}_{h\perp}^2, z_h, \mu) = \sum_k \int \frac{dz}{z} B_{ik}(x, p_T R, z, \mu) D_{k \to h}\left(\frac{\vec{p}_{h\perp}^2}{z^2}, \frac{z_h}{z}, \mu\right)$ 

• B and D describe emissions at angular scales R and r

#### Factorization of the amplitude:

- ✓Winner-takes-all axis guarantees that B produces one energetic parton near axis (not true for standard axis)
- Hadron must fragment from this to be  $1/\vec{p}_{h\perp}^2$  enhanced

#### Factorization of fragmentation



• For perturbative  $|\vec{p}_{h\perp}| \gg \Lambda_{QCD}$ 

$$D_i^k(\vec{p}_{h\perp}^2, z_h, \mu) = \sum_k \int \frac{dz}{z} C_{ik}\left(\frac{\vec{p}_{h\perp}^2}{z^2}, \frac{z_h}{z}, \mu\right) D_{k\to h}(z, \mu)$$

### **Evolution and resummation**



Factorization separates physics at disparate scales

### **Evolution and resummation**



- Factorization separates physics at disparate scales
- Logarithms are resummed by renormalization group evolution



# 3. First results

# Matching coefficients for $p_T R \sim \vec{p}_{h\perp}^2$

We calculated all matching coefficients at next-to-leading order

$$\begin{aligned} \mathcal{J}_{qq}(x, p_T R, \vec{p}_{h\perp}^2, z) &= \delta(\vec{p}_{h\perp}^2) \,\delta(x-1) \,\delta(z-1) \\ &+ \frac{\alpha_s C_F}{2\pi} \left[ \frac{1}{\mu^2} \, \frac{1}{(\vec{p}_{h\perp}^2/\mu^2)}_+ \delta(x-1) \,\theta\left(\frac{1}{2} \ge z \ge \frac{|\vec{p}_{h\perp}|}{p_T R}\right) \frac{1+z^2}{1-z} \\ &+ \delta(\vec{p}_{h\perp}^2)(\dots) \right] + \mathcal{O}(\alpha_s^2) \end{aligned}$$

- At this order only two partons and winner-takes-all axis along most energetic one, so  $\vec{p}_{h\perp}=0$  for z>1/2
- No rapidity divergences

# Matching coefficients for $p_T R \sim \vec{p}_{h\perp}^2$

We calculated all matching coefficients at next-to-leading order

$$\begin{aligned} \mathcal{J}_{qq}(x, p_T R, \vec{p}_{h\perp}^2, z) &= \delta(\vec{p}_{h\perp}^2) \,\delta(x-1) \,\delta(z-1) \\ &+ \frac{\alpha_s C_F}{2\pi} \left[ \frac{1}{\mu^2} \, \frac{1}{(\vec{p}_{h\perp}^2/\mu^2)}_+ \delta(x-1) \theta\left(\frac{1}{2} \ge z \ge \frac{|\vec{p}_{h\perp}|}{p_T R}\right) \frac{1+z^2}{1-z} \\ &+ \delta(\vec{p}_{h\perp}^2)(\dots) \right] + \mathcal{O}(\alpha_s^2) \end{aligned}$$

- At this order only two partons and winner-takes-all axis along most energetic one, so  $\vec{p}_{h\perp}=0$  for z>1/2
- No rapidity divergences
- Interplay between jet boundary and TMD measurement (more complicated at higher orders)

# Matching coefficients for $p_T R \gg \vec{p}_{h\perp}^2$

Jet boundary restriction and TMD measurement factorize

$$B_{qq}(x, p_T R, z, \mu) = \delta(x - 1) \,\delta(z - 1) + \frac{\alpha_s C_F}{2\pi} \left\{ -\ln \frac{p_T^2 R^2}{\mu^2} \left[ \frac{1 + x^2}{(1 - x)} \,\delta(z - 1) \right] - \delta(x - 1) \,\theta\left(z \ge \frac{1}{2}\right) \frac{1 + z^2}{(1 - z)} + \right] + \dots \right\}$$

$$C_{qq}(\vec{p}_{h\perp}^2, z) = \delta(\vec{p}_{h\perp}^2) \,\delta(1 - z) + \frac{\alpha_s C_F}{2\pi} \left[ \frac{1}{\mu^2} \frac{1}{(\vec{p}_{h\perp}^2/\mu^2)} \,\theta\left(\frac{1}{2} \ge z\right) \frac{1 + z^2}{1 - z} + \delta(\vec{p}_{h\perp}^2)(\dots) \right]$$

• B describes parton along axis and thus vanishes for z < 1/2

# Matching coefficients for $p_T R \gg \vec{p}_{h\perp}^2$

Jet boundary restriction and TMD measurement factorize

$$B_{qq}(x, p_T R, z, \mu) = \delta(x - 1) \,\delta(z - 1) + \frac{\alpha_s C_F}{2\pi} \left\{ -\ln \frac{p_T^2 R^2}{\mu^2} \left[ \frac{1 + x^2}{(1 - x)} \,\delta(z - 1) \right] - \delta(x - 1) \,\theta\left(z \ge \frac{1}{2}\right) \frac{1 + z^2}{(1 - z)} + \left[ \frac{1}{2} + \dots \right] \right\}$$

$$C_{qq}(\vec{p}_{h\perp}^2, z) = \delta(\vec{p}_{h\perp}^2) \,\delta(1 - z) + \frac{\alpha_s C_F}{2\pi} \left[ \frac{1}{\mu^2} \frac{1}{(\vec{p}_{h\perp}^2/\mu^2)} \,\theta\left(\frac{1}{2} \ge z\right) \frac{1 + z^2}{1 - z} + \delta(\vec{p}_{h\perp}^2)(\dots) \right]$$

- B describes parton along axis and thus vanishes for z < 1/2
- Between B and C the DGLAP evolution in z is modified

#### Transverse momentum dependence

- TMD fragmentation matching coefficients C give  $1/\vec{p}_{h\perp}^2$
- Difference between RG evolution above and below C modify

$$1/\vec{p}_{h\perp}^2 \rightarrow 1/\vec{p}_{h\perp}^{2-\Delta}$$

where  $\Delta$  follows from anomalous dimensions

#### Transverse momentum dependence

- TMD fragmentation matching coefficients C give  $1/\vec{p}_{h\perp}^2$
- Difference between RG evolution above and below C modify

$$1/\vec{p}_{h\perp}^2 \rightarrow 1/\vec{p}_{h\perp}^{2-\Delta}$$

where  $\Delta$  follows from anomalous dimensions

• For N-th moment and  $\alpha_s = 0.1$  this gives



# 4. Conclusions and outlook

# **Conclusions and outlook**

- TMD fragmentation in a jet with winner-takes-all axis:
  - Purely collinear observable, so universal
  - Jet and TMD fragmentation factorize for Cambridge/Aachen
  - No rapidity divergences
- Applications (work in progress)
  - Extend to spin-dependent fragmentation
  - Medium modification of TMD fragmentation
  - Jet substructure for boosted analyses

# **Application: medium modifications**



- Medium modification of fragmentation function is studied
- Can now be extended to TMD fragmentation

✓Observable must be insensitive to overload of soft "crap"



30

# Application: jet substructure

Jet substructure is key to tag heavy particles at high energies



- Exploits that subjet splittings differ between e.g. top and gluon
- TMD fragmentation can be extended from hadrons to subjets

✓ Provides direct measure of subjet energies and angle

## Application: jet substructure

Jet substructure is key to tag heavy particles at high energies



- Exploits that subjet splittings differ between e.g. top and gluon
- TMD fragmentation can be extended from hadrons to subjets

✓ Provides direct measure of subjet energies and angle

(Thank you!