TMD fragmentation in jets

Wouter Waalewijn

㛓 UNIVERSITY OF AMSTERDAM

EDelta

REF 2016 Antwerp

Outline

1. Fragmentation in jets
2. TMD fragmentation in jets
3. First results
4. Conclusions and outlook

In collaboration with D. Neill and I. Scimemi

1. Fragmentation in jets

Introduction: What is fragmentation?

- Parton $i=q, g$ radiates and hadronizes \rightarrow produces hadron h
- Described by fragmentation function $D_{i \rightarrow h}\left(z_{h}, \mu\right)$ [colins, Soper]
- E.g. $e^{+} e^{-} \rightarrow h X$

$$
\frac{d \sigma}{d z_{h}}=\sigma_{0} \sum_{i} \int_{z_{h}}^{1} \frac{d z}{z} \hat{\sigma}_{i}(z, Q, \mu) D_{i \rightarrow h}\left(\frac{z_{h}}{z}, \mu\right)
$$

[Collins, Soper, Sterman]

Case study: Fragmentation with a cut on thrust

- Motivation: study light-quark fragmentation at Belle
- Dominant b-quark contribution in on-resonance data removed by cut on thrust $T>0.8$

Case study: Fragmentation with a cut on thrust

- Motivation: study light-quark fragmentation at Belle
- Dominant b-quark contribution in on-resonance data removed by cut on thrust $T>0.8$
- Thrust cut modifies shape of fragmentation spectrum

[Jain, Procura, WW]

Key ingredient: Fragmenting jet function

$$
\mathcal{G}_{i \rightarrow h}\left(s, z_{h}, \mu\right)
$$

- Collinear radiation contributes s to thrust and produces hadron

Key ingredient: Fragmenting jet function

$$
\begin{aligned}
& \mathcal{G}_{i \rightarrow h}\left(s, z_{h}, \mu\right)=\sum_{j} \int_{z_{h}}^{1} \frac{d z}{z} \mathcal{J}_{i j}(s, z, \mu) D_{j \rightarrow h}\left(\frac{z_{h}}{z}, \mu\right)
\end{aligned}
$$

- Collinear radiation contributes s to thrust and produces hadron
- OPE in $\Lambda_{\mathrm{QCD}}^{2} / s$ with perturbatively calculable coefficients

$$
\mathcal{J}_{i j}(s, z, \mu)=\delta_{i j} \delta(s) \delta(1-z)+\mathcal{O}\left(\alpha_{s}\right)
$$

- Fragmentation function probed at $\mu \sim \sqrt{s} \ll Q$

Developments

- Hemisphere jets [Procura, Stewart; Liu; Jain, Procura, WW; Bauer, Mereghetti; Ritzmann, WW]
- Exclusive jet production [Procura, ww; Chien, Kang, Ringer, Vitev, Xing; Baumgart, Leibovich, Mehen, Rothstein; Bain, Dai, Hornig, Leibovich, Makris, Mehen]
- Inclusive jet production [Kaufmann, Mukherjee, Vogelsang; Dai, Kim, Leibovich; Kang, Ringer, Vitev]
- Jet charge [Krohn, Schwartz, Lin, ww; ww]

Challenges

x Event shapes: susceptible to spectator-spectator interactions (Glaubers) in pp collisions [Gaunt; Zeng; Rothstein, Stewart]
x Exclusive jet production: non-global logarithms from different restrictions in regions of phase-space [Dasgupta, salam, ...]
\checkmark Inclusive jet production: insensitive to soft radiation

Glauber exchange

Soft emission giving rise to non-global logarithm

2. TMD fragmentation in jets

Removing soft recoil

- Fragmentation in inclusive jet production is purely collinear
- TMD measurement introduces soft sensitivity through axis
\checkmark Choose a recoil free axis, e.g. winner-takes-all [Larkoski, Neill, Thaler]

Winner-takes-all axis

- Run jet algorithm with following recombination scheme

$$
\begin{aligned}
& E_{r}=E_{1}+E_{2} \\
& \hat{n}_{r}= \begin{cases}\hat{n}_{1} & \text { if } E_{1}>E_{2} \\
\hat{n}_{2} & \text { if } E_{2}>E_{1}\end{cases}
\end{aligned}
$$

- Axis tracks energetic radiation, along direction of a particle

Factorization of the jet

- Factor hard scattering from jet production for jet radius $R \ll 1$
$\frac{d \sigma_{h}}{d p_{T} d \eta d \vec{p}_{h \perp}^{2} d z_{h}}=\sum_{i} \int \frac{d x}{x} \hat{\sigma}_{i}\left(\frac{p_{T}}{x}, \eta, \mu\right) \mathcal{G}_{i \rightarrow h}\left(x, p_{T} R, \vec{p}_{h \perp}^{2}, z_{h}, \mu\right)$
- Transverse momentum p_{T} and rapidity η of jet
$\checkmark \mathcal{G}$ is universal because measurement is purely collinear, i.e. same for ee, ep and pp and independent of other jets

Factorization of TMD fragmentation

- For $r \equiv\left|\vec{p}_{h \perp}\right| / p_{T} \ll R$ factor jet from TMD fragmentation
$\mathcal{G}_{i \rightarrow h}\left(x, p_{T} R, \vec{p}_{h \perp}^{2}, z_{h}, \mu\right)=\sum_{k} \int \frac{d z}{z} B_{i k}\left(x, p_{T} R, z, \mu\right) D_{k \rightarrow h}\left(\frac{\vec{p}_{h \perp}^{2}}{z^{2}}, \frac{z_{h}}{z}, \mu\right)$
- B and D describe emissions at angular scales R and r

Factorization of TMD fragmentation

- For $r \equiv\left|\vec{p}_{h \perp}\right| / p_{T} \ll R$ factor jet from TMD fragmentation
$\mathcal{G}_{i \rightarrow h}\left(x, p_{T} R, \vec{p}_{h \perp}^{2}, z_{h}, \mu\right)=\sum_{k} \int \frac{d z}{z} B_{i k}\left(x, p_{T} R, z, \mu\right) D_{k \rightarrow h}\left(\frac{\vec{p}_{h \perp}^{2}}{z^{2}}, \frac{z_{h}}{z}, \mu\right)$
- B and D describe emissions at angular scales R and r

Factorization of the measurement:

- B identifies pixel of size r containing axis
- D determines axis in pixel \checkmark Ok for Cambridge/Aachen with winner-takes-all axis

Factorization of TMD fragmentation

- For $r \equiv\left|\vec{p}_{h \perp}\right| / p_{T} \ll R$ factor jet from TMD fragmentation
$\mathcal{G}_{i \rightarrow h}\left(x, p_{T} R, \vec{p}_{h \perp}^{2}, z_{h}, \mu\right)=\sum_{k} \int \frac{d z}{z} B_{i k}\left(x, p_{T} R, z, \mu\right) D_{k \rightarrow h}\left(\frac{\vec{p}_{h \perp}^{2}}{z^{2}}, \frac{z_{h}}{z}, \mu\right)$
- B and D describe emissions at angular scales R and r

Factorization of the amplitude:
\checkmark Winner-takes-all axis guarantees that B produces one energetic parton near axis (not true for standard axis)

- Hadron must fragment from this to be $1 / \vec{p}_{h \perp}^{2}$ enhanced

Factorization of fragmentation

- For perturbative $\left|\vec{p}_{h \perp}\right| \gg \Lambda_{Q C D}$

$$
D_{i}^{k}\left(\vec{p}_{h \perp}^{2}, z_{h}, \mu\right)=\sum_{k} \int \frac{d z}{z} C_{i k}\left(\frac{\vec{p}_{h \perp}^{2}}{z^{2}}, \frac{z_{h}}{z}, \mu\right) D_{k \rightarrow h}(z, \mu)
$$

Evolution and resummation

TMD fragmentation $D\left(\vec{p}_{h \perp}^{2}\right)$

$$
\begin{aligned}
& \frac{d \sigma_{h}}{d p_{T} d \eta d \vec{p}_{h \perp}^{2} d z_{h}}=\hat{\sigma}\left(p_{T}, \eta\right) \otimes B\left(p_{T} R\right) \otimes C\left(\vec{p}_{h \perp}^{2}\right) \otimes D\left(\Lambda_{\mathrm{QCD}}\right) \\
& \mathcal{J}\left(p_{T} R, \vec{p}_{h \perp}^{2}\right)
\end{aligned}
$$

$$
\mathcal{G}\left(p_{T} R, \vec{p}_{h \perp}^{2}\right)
$$

- Factorization separates physics at disparate scales

Evolution and resummation

TMD fragmentation $D\left(\vec{p}_{h \perp}^{2}\right)$

$$
\mathcal{G}\left(p_{T} R, \vec{p}_{h \perp}^{2}\right)
$$

- Factorization separates physics at disparate scales
- Logarithms are resummed by renormalization group evolution

$$
\begin{aligned}
& \frac{d \sigma_{h}}{d p_{T} d \eta d \vec{p}_{h \perp}^{2} d z_{h}}=\hat{\sigma}\left(p_{T}, \eta\right) \otimes B\left(p_{T} R\right) \otimes C\left(\vec{p}_{h \perp}^{2}\right) \otimes D\left(\Lambda_{\mathrm{QCD}}\right) \\
& \mathcal{J}\left(p_{T} R, \vec{p}_{h \perp}\right)
\end{aligned}
$$

Matching coefficients for $p_{T} R \sim \vec{p}_{h \perp}^{2}$

- We calculated all matching coefficients at next-to-leading order

$$
\begin{aligned}
\mathcal{J}_{q q}\left(x, p_{T} R, \vec{p}_{h \perp}^{2}, z\right)= & \delta\left(\vec{p}_{h \perp}^{2}\right) \delta(x-1) \delta(z-1) \\
& +\frac{\alpha_{s} C_{F}}{2 \pi}\left[\frac{1}{\mu^{2}} \frac{1}{\left(\vec{p}_{h \perp}^{2} / \mu^{2}\right)} \delta(x-1) \theta\left(\frac{1}{2} \geq z \geq \frac{\left|\vec{p}_{h \perp}\right|}{p_{T} R}\right) \frac{1+z^{2}}{1-z}\right. \\
& \left.+\delta\left(\vec{p}_{h \perp}^{2}\right)(\ldots)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

- At this order only two partons and winner-takes-all axis along most energetic one, so $\vec{p}_{h \perp}=0$ for $z>1 / 2$
- No rapidity divergences

Matching coefficients for $p_{T} R \sim \vec{p}_{h \perp}^{2}$

- We calculated all matching coefficients at next-to-leading order

$$
\begin{aligned}
\mathcal{J}_{q q}\left(x, p_{T} R, \vec{p}_{h \perp}^{2}, z\right)= & \delta\left(\vec{p}_{h \perp}^{2}\right) \delta(x-1) \delta(z-1) \\
& +\frac{\alpha_{s} C_{F}}{2 \pi}\left[\frac{1}{\mu^{2}} \frac{1}{\left(\vec{p}_{h \perp}^{2} / \mu^{2}\right)} \delta(x-1)+\theta\left(\frac{1}{2} \geq z \geq \frac{\left|\vec{p}_{h \perp}\right|}{p_{T} R}\right)\right] \frac{1+z^{2}}{1-z} \\
& \left.+\delta\left(\vec{p}_{h \perp}^{2}\right)(\ldots)\right]+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

- At this order only two partons and winner-takes-all axis along most energetic one, so $\vec{p}_{h \perp}=0$ for $z>1 / 2$
- No rapidity divergences
- Interplay between jet boundary and TMD measurement (more complicated at higher orders)

Matching coefficients for $p_{T} R \gg \vec{p}_{h \perp}^{2}$

- Jet boundary restriction and TMD measurement factorize

$$
\begin{aligned}
B_{q q}\left(x, p_{T} R, z, \mu\right)= & \delta(x-1) \delta(z-1)+\frac{\alpha_{s} C_{F}}{2 \pi}\left\{-\ln \frac{p_{T}^{2} R^{2}}{\mu^{2}}\left[\frac{1+x^{2}}{(1-x)} \delta(z-1)\right.\right. \\
& \left.\left.-\delta(x-1) \theta\left(z \geq \frac{1}{2}\right) \frac{1+z^{2}}{(1-z)_{+}}\right]+\ldots\right\} \\
C_{q q}\left(\vec{p}_{h \perp}^{2}, z\right)= & \delta\left(\vec{p}_{h \perp}^{2}\right) \delta(1-z)+\frac{\alpha_{s} C_{F}}{2 \pi}\left[\frac{1}{\mu^{2}} \frac{1}{\left(\vec{p}_{h \perp}^{2} / \mu^{2}\right)_{+}} \theta\left(\frac{1}{2} \geq z\right) \frac{1+z^{2}}{1-z}\right. \\
& \left.+\delta\left(\vec{p}_{h \perp}^{2}\right)(\ldots)\right]
\end{aligned}
$$

- B describes parton along axis and thus vanishes for $z<1 / 2$

Matching coefficients for $p_{T} R \gg \vec{p}_{h \perp}^{2}$

- Jet boundary restriction and TMD measurement factorize

$$
\begin{aligned}
B_{q q}\left(x, p_{T} R, z, \mu\right)= & \delta(x-1) \delta(z-1)+\frac{\alpha_{s} C_{F}}{2 \pi}\left\{-\ln \frac{p_{T}^{2} R^{2}}{\mu^{2}}\left[\frac{1+x^{2}}{(1-x)_{+}} \delta(z-1)\right.\right. \\
& \left.\left.-\delta(x-1) \theta\left(z \geq \frac{1}{2}\right) \frac{1+z^{2}}{(1-z)_{+}}\right]+\ldots\right\} \\
C_{q q}\left(\vec{p}_{h \perp}^{2}, z\right)= & \delta\left(\vec{p}_{h \perp}^{2}\right) \delta(1-z)+\frac{\alpha_{s} C_{F}}{2 \pi}\left[\frac{1}{\mu^{2}} \frac{1}{\left(\vec{p}_{h \perp}^{2} / \mu^{2}\right)_{+}} \theta\left(\frac{1}{2} \geq z\right) \frac{1+z^{2}}{1-z}\right. \\
& \left.+\delta\left(\vec{p}_{h \perp}^{2}\right)(\ldots)\right]
\end{aligned}
$$

- B describes parton along axis and thus vanishes for $z<1 / 2$
- Between B and C the DGLAP evolution in z is modified

Transverse momentum dependence

- TMD fragmentation matching coefficients C give $1 / \vec{p}_{h \perp}^{2}$
- Difference between RG evolution above and below C modify

$$
1 / \vec{p}_{h \perp}^{2} \quad \rightarrow \quad 1 / \vec{p}_{h \perp}^{2-\Delta}
$$

where Δ follows from anomalous dimensions

Transverse momentum dependence

- TMD fragmentation matching coefficients C give $1 / \vec{p}_{h \perp}^{2}$
- Difference between RG evolution above and below C modify

$$
1 / \vec{p}_{h \perp}^{2} \quad \rightarrow \quad 1 / \vec{p}_{h \perp}^{2-\Delta}
$$

where Δ follows from anomalous dimensions

- For N-th moment and $\alpha_{s}=0.1$ this gives

4. Conclusions and outlook

Conclusions and outlook

- TMD fragmentation in a jet with winner-takes-all axis:
- Purely collinear observable, so universal
- Jet and TMD fragmentation factorize for Cambridge/Aachen
- No rapidity divergences
- Applications (work in progress)
- Extend to spin-dependent fragmentation
- Medium modification of TMD fragmentation
- Jet substructure for boosted analyses
- ...

Application: medium modifications

- Medium modification of fragmentation function is studied
- Can now be extended to TMD fragmentation
\checkmark Observable must be insensitive to overload of soft "crap"

Application: jet substructure

- Jet substructure is key to tag heavy particles at high energies

[ATLAS-CONF-2013-052]
- Exploits that subjet splittings differ between e.g. top and gluon
- TMD fragmentation can be extended from hadrons to subjets
\checkmark Provides direct measure of subjet energies and angle

Application: jet substructure

- Jet substructure is key to tag heavy particles at high energies

[ATLAS-CONF-2013-052]
- Exploits that subjet splittings differ between e.g. top and gluon
- TMD fragmentation can be extended from hadrons to subjets
\checkmark Provides direct measure of subjet energies and angle

