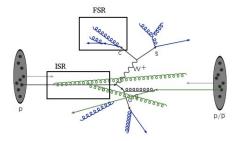
Azimuthal correlation in high p_t dijet events at 13 TeV

Armando Bermudez Martinez, <u>Daniela Dominguez Damiani</u>, Hannes Jung



daniela.dominguez.damiani@desy.de

November 9, 2016

REF-Workshop

Introduction

In a pp collision a bunch of particles are produce as jets.

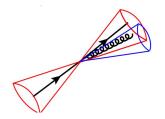
Why not an exact back to back configuration?

- QCD radiation (Parton Shower)
- Additional hard jets are emitted as correction beyond the LO

Introduction

Soft gluon emissions

- The cross section for soft gluon radiation tends to infinity as the *p_t* of the emitted gluon tends to 0
- The Soft gluon resummation formalism is needed to solve the divergence


Why could the back to back region be interesting?

- Soft emissions affect the p_t of the dijet system \rightarrow sensitive to soft gluon resummation
- Specially if the $p_{Tlead} > 3TeV$ (and sublead), soft emissions could be considered as $p_t \sim 30GeV$ (detectable)

Image: A match a ma

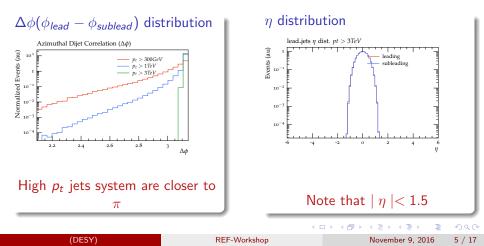
500000000

Introduction

We will focus on the scenarios where the two leading jets have $p_t > 3 TeV$ and also in the almost back to back configuration $175^\circ < \Delta \phi < \pi$

PYTHIA

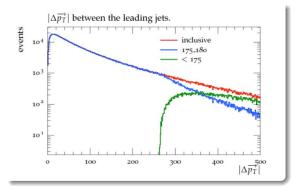
In Pythia only $2 \rightarrow 2$ processes are considered (LO) with Parton Shower (LL)


Image: A match a ma

What we have now in Data

- $p_t > 1 TeV \approx 500 K$ events
- $p_t > 2TeV \approx 2K$ events
- Resolution on $\Delta \phi$ of 0.5°

Mean features high p_t dijet system


Using ANTIKT Algorithm R = 0.4

High pt dijet system

$$|\Delta \overrightarrow{p_t}| = |\overrightarrow{p_t}_{lead} + \overrightarrow{p_t}_{sublead}|$$

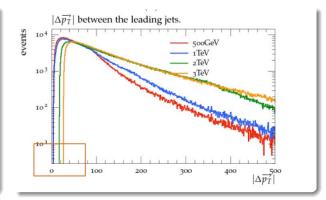
$$\phi^{'}=\pi-\Delta\phi$$

$$\phi^{\prime}\sim 5^{\circ}~(p_t>$$
 3 TeV)

Around 250 GeV are needed to separate the leading jets more than $\phi^{'} \sim 5^{\circ}$

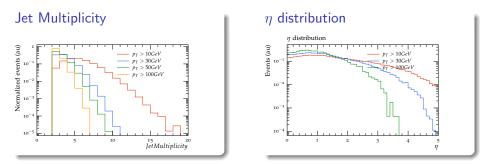
A ►

• = • •


High pt dijet system

$$\phi^{\prime}=\pi-\Delta\phi$$

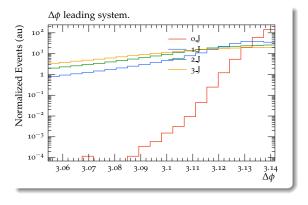
 $\phi' \sim 0.5^{\circ},$ $170^{\circ} < \Delta \phi < 179.5^{\circ}$ $\sigma/p_t \sim 0.04$ $3 TeV \pm 0.1 TeV$ There is at least 30 GeV of imbalance


in the case of $p_t > 3TeV$

イロト イヨト イヨト イヨト

Additional jets

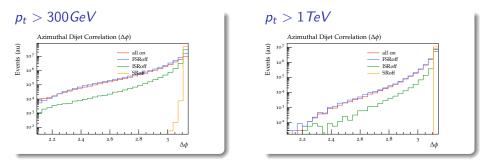
Additional jets in the event are studied taking into account events with the two leading jets above 3TeV and $175^{\circ}\Delta\phi < \pi$



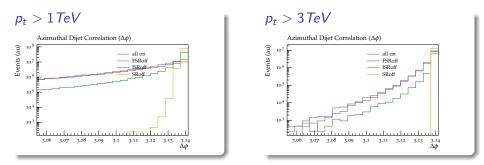
< 67 ▶

3 ×

REF-Workshop


(DESY)

We are considering the $\Delta \phi$ distribution of the leading system when:


- there are no jets above 30 GeV
- there is only one
- there are exactly 2
- there are exactly 3

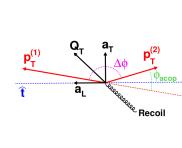
Initial and Final State Radiation

- In both cases additional Radiation (ISR and FSR) plays an important role in the azimuthal decorrelation of the leading jets
- Initial state radiation plays a major role.

Initial and Final State Radiation

These scenarios are sensitive to TMD since ISR have the major contribution.

DES	

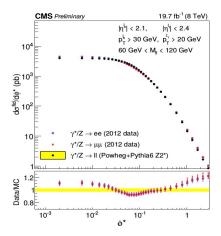

November 9, 2016 11 / 17

< 🗇 🕨

New variable: ϕ^*

In analogy to Drell Yan production: two leptons in the back to back configuration.

$$\begin{aligned} \widehat{\mathbf{t}} &= (\mathbf{p}_{T}^{(1)} - \mathbf{p}_{T}^{(2)}) / |\mathbf{p}_{T}^{(1)} - \mathbf{p}_{T}^{(2)}| \\ a_{T} &= \frac{2p_{T}^{(1)}p_{T}^{(2)}}{p_{T}^{(1)} + p_{T}^{(2)}} \sin \Delta \phi \\ Q &= \sqrt{2p^{(1)}p^{(2)}(1 - \cos \Delta \theta)} \\ \phi_{acop} &= \pi - \Delta \phi, \cos \theta_{\eta}^{*} = \tanh(\Delta \eta / 2) \\ \phi^{*} &= a_{T} / Q = \tan(\phi_{acop} / 2) \sin \theta_{\eta}^{*} \end{aligned}$$


< 4 → <

16 N A 16

3

New variable: ϕ^*

CMS PAS SMP-15-002

э

A (10) A (10) A (10)

 ϕ^* observable when the leading jets are above $3 \, TeV$ and in the back to back region $(175^\circ \Delta \phi < \pi)$

For small ϕ^* values the major contribution is given when there are no jets above 30 GeV while for bigger values it is needed jets above 30 GeV

< 67 ▶

Summary

- High *p_t* jet scenarios may give us the possibility to study soft gluon resummation and TMD effects.
- We already observe those events at the LHC but we need more statistics.
- Leading system within the tracker acceptance region.
- Significant p_t imbalance ($\sim 30 GeV$) is needed to have a decorrelation of $\sim 0.5^{\circ}$.
- ϕ^{\ast} is a good observable for studying decorrelation effects

Outlook

• Comparisons with data as soon as we get more luminosity.

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Thanks for your attention!!!

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・