On diffractive photoproduction of jets in NLO

A.V. Grabovsky

Budker Inst. of Nuclear Physics and Novosibirsk State University

REF 10.11.2016, Antwerp

Work with R. Boussarie, L.Szymanowski, S.Wallon

Outline

- Motivation - Diffractive jet production at HERA
- Previous work - Description in the collinear and k_{t} factorizations
- Current work - Calculation in the Shockwave approach
- Summary

Motivation - Diffractive jet production at HERA

Rapidity gap events at HERA

Experiments at HERA : about 10\% of scattering events reveal a rapidity gap

(a)

(b)

DIS events
DDIS events

Previous work

k_{T}-factorization approach : two gluon exchange

Bartels, Jung, Wusthoff collinear or soft approximations for $\gamma \rightarrow q \bar{q} g$

Previous work

Collinear factorization approach

Direct

Resolved

One needs to introduce a diffractive distribution function for partons within a pomeron Ingelman and Schlein

Previous work: comparison with HERA data

ZEUS collaboration, 2014 (A. Valkarova talk at LowX 2014)

The data favors two gluon exchange model

Current work - Calculation in the Shockwave approach

Introduce the light cone vectors n_{1} and n_{2}

$$
n_{1}=(1,0,0,1), \quad n_{2}=\frac{1}{2}(1,0,0,-1), \quad n_{1}^{+}=n_{2}^{-}=n_{1} n_{2}=1
$$

For any p define $p^{ \pm}$

$$
\begin{gathered}
p^{+}=p n_{2}=\frac{1}{2}\left(p^{0}+p^{3}\right), \quad p^{-}=p n_{1}=p^{0}-p^{3}, \\
p^{2}=2 p^{+} p^{-}-\vec{p}^{2}
\end{gathered}
$$

The scalar products:

$$
p=p^{+} n_{1}+p^{-} n_{2}+p_{\perp}, \quad(p k)=p^{\mu} k_{\mu}=p^{+} k^{-}+p^{-} k^{+}-\vec{p} \vec{k}
$$

Definitions

Wilson line describing interaction with external field b_{η}^{-}made of slow gluons with $p^{+}<e^{\eta}$

$$
U_{\vec{z}}^{\eta}=P e^{i g \int_{-\infty}^{+\infty} d z^{+} b_{\eta}^{-}\left(z^{+}, \vec{z}\right)}, \quad b_{\eta}^{-}=\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p z} b^{-}(p) \theta\left(e^{\eta}-p^{+}\right)
$$

Shock wave (Balitsky 1996)

For a fast moving particle with the velocity $-\beta$ and the field strength tensor $\mathbb{F}\left(x^{+}, x^{-}, \vec{x}\right)$ in its rest frame, in the observer's frame the field will look like

$$
\begin{gathered}
\mathfrak{F}^{-i}\left(y^{+}, y^{-}, \vec{y}\right)=\lambda \mathbb{F}^{-i}\left(\lambda y^{+}, \frac{1}{\lambda} y^{-}, \vec{y}\right) \rightarrow \delta\left(y^{+}\right) \mathfrak{F}^{i}(\vec{y}), \\
\mathfrak{F}^{-i} \gg \mathfrak{F}^{\cdots}
\end{gathered}
$$

in the Regge limit $\lambda \rightarrow+\infty, \lambda=\sqrt{\frac{1+\beta}{1-\beta}}$.
Therefore the natural choice for the gauge is $b^{i,+}=0$,
b^{-}is the solution of the equations

$$
\begin{aligned}
& \frac{\partial b^{-}}{\partial y^{i}}=\delta\left(y^{+}\right) \mathfrak{F}^{i}(\vec{y}), \text { i.e. } \\
& b^{\mu}(y)=\delta\left(y^{+}\right) B(\vec{y}) n_{2}^{\mu}
\end{aligned}
$$

It is the shock-wave field.

Propagator in the shock-wave background

Sum the diagrams

- b does not depend on x^{-}, hence the conservation of p^{+},
- $b \sim \delta\left(x^{+}\right)$, hence $e^{-i \frac{\vec{p}^{2}\left(x_{1}^{+}-x_{2}^{+}\right)}{2 p^{+}}} \rightarrow 1$ in every internal vertex,
- $g_{\perp}^{\mu \nu} d_{0 \nu \rho} g_{\perp}^{\rho \sigma}=g_{\perp}^{\mu \sigma}$, hence no dependence on $\vec{p} \Longrightarrow$ conservation of \vec{x} in every internal vertex

Propagator in the shock-wave background:
$\left.G_{\mu \nu}(x, y)\right|_{x^{+}>0>y^{+}}=2 i A^{\mu}(x) \int d^{4} z \delta\left(z^{+}\right) F^{+i}(z) \underset{\frac{\partial}{\partial z^{-}}}{U_{\vec{z}}} F^{+i}(z) A^{\nu}(y)$.
where the interaction with b is through Wilson line

$$
U_{\vec{z}}=P e^{i g \int_{y^{+}}^{x^{+}} d z^{+} b^{-}\left(z^{+}, \vec{z}\right)}
$$

Evolution equation

$\operatorname{tr}\left(U_{1} U_{2}^{\dagger}\right)$ obeys the LO Balitsky-Kovchegov evolution equation

$$
\frac{\partial \operatorname{tr}\left(U_{1} U_{2}^{\dagger}\right)}{\partial \eta}=\frac{\alpha_{s}}{2 \pi^{2}} \int d \vec{r}_{4} \frac{\vec{r}_{12}^{2}}{\vec{r}_{14} \vec{r}_{42}^{2}}\left[\operatorname{tr}\left(U_{1} U_{4}^{\dagger}\right) \operatorname{tr}\left(U_{4} U_{2}^{\dagger}\right)-N_{c} \operatorname{tr}\left(U_{1} U_{2}^{\dagger}\right)\right] .
$$

$\vec{r}_{i j} \equiv \vec{r}_{i}-\vec{r}_{j}$
LO equation was obtained in 1996 (Balitsky) - 99 (Kovchegov), NLO - in 2007-2010 (Balitsky and Chirilli).

Impact factor for $\gamma \rightarrow q \bar{q}$

Matrix element for EM current

$$
T_{0}^{\alpha}=\int d^{d} p_{1 \perp} d^{d} p_{2 \perp} \delta\left(p_{q 1 \perp}+p_{\bar{q} 2 \perp}-p_{\gamma \perp}\right) \Phi_{0}^{\alpha}\left[\operatorname{tr}\left(U_{1} U_{2}^{\dagger}\right)-N_{c}\right]\left(p_{1 \perp}, p_{2 \perp}\right)
$$

Impact factors

$$
\Phi_{0}^{+}=\frac{2 x \bar{x} p_{\gamma}^{+}}{\vec{p}_{q 1}^{2}+x \bar{x} Q^{2}}\left(\bar{u}_{p_{q}} \gamma^{+} v_{p_{\bar{q}}}\right), \quad \Phi_{0}^{i}=\frac{\bar{u}_{p_{q}}\left((\bar{x}-x) p_{q 1 \perp}^{i}+\frac{1}{2}\left[\hat{p}_{q 1 \perp}, \gamma^{i}\right]\right) \gamma^{+} v_{p_{\bar{q}}}}{\vec{p}_{q 1}^{2}+x \bar{x} Q^{2}} .
$$

$\gamma \rightarrow q \bar{q} g$ impact factor

$T^{\alpha}=g \int d^{d} p_{1 \perp} d^{d} p_{2 \perp}\left\{\delta\left(p_{q 1 \perp}+p_{\bar{q} 2 \perp}+p_{g \gamma \perp}\right) \Phi_{3}^{\alpha} \frac{N_{c}^{2}-1}{N_{c}}\left[\operatorname{tr}\left(U_{1} U_{2}^{\dagger}\right)-N_{c}\right]\right.$
$\left.+\int \frac{d^{d} p_{3 \perp}}{(2 \pi)^{d}} \delta\left(p_{q 1 \perp}+p_{\bar{q} 2 \perp}+p_{g \gamma \perp}-p_{3 \perp}\right) \Phi_{4}^{\alpha}\left[\operatorname{tr}\left(U_{1} U_{3}^{\dagger}\right) \operatorname{tr}\left(U_{3} U_{2}^{\dagger}\right)-N_{c} \operatorname{tr}\left(U_{1} U_{2}^{\dagger}\right)\right]\right\}$.

NLO $\gamma \rightarrow q \bar{q}$ impact factor

$T^{\alpha}=g \int d^{d} p_{1 \perp} d^{d} p_{2 \perp}\left\{\delta\left(p_{q 1 \perp}+p_{\bar{q} 2 \perp}-p_{\gamma \perp}\right) \Phi_{3}^{\alpha} \frac{N_{c}^{2}-1}{N_{c}}\left[\operatorname{tr}\left(U_{1} U_{2}^{\dagger}\right)-N_{c}\right]\right.$
$\left.+\int \frac{d^{d} p_{3 \perp}}{(2 \pi)^{d}} \delta\left(p_{q 1 \perp}+p_{\bar{q} 2 \perp}-p_{\gamma \perp}-p_{3 \perp}\right) \Phi_{4}^{\alpha}\left[\operatorname{tr}\left(U_{1} U_{3}^{\dagger}\right) \operatorname{tr}\left(U_{3} U_{2}^{\dagger}\right)-N_{c} \operatorname{tr}\left(U_{1} U_{2}^{\dagger}\right)\right]\right\}$.

NLO dijet diffractive photoproduction

Impact factor in arbitrary kinematics:

$$
\vec{p}_{q}, \vec{p}_{\bar{q}}, x,\left(p_{q}+p_{\bar{q}}\right)^{2}, Q^{2}, \epsilon_{L / T}
$$

Density matrix for the cross sections:

$$
d \sigma_{J I}=\left(\begin{array}{ll}
d \sigma_{L L} & d \sigma_{L T} \\
d \sigma_{T L} & d \sigma_{T T}
\end{array}\right), \quad d \sigma_{T L}=d \sigma_{L T}^{*} .
$$

Dependence on 2 hadronic matrix elements (dipole + double dipole)

$$
\left\langle p^{\prime}\right| \operatorname{tr}\left(U_{1} U_{2}^{\dagger}\right)-N_{c}|p\rangle, \quad\left\langle p^{\prime}\right| \operatorname{tr}\left(U_{1} U_{3}^{\dagger}\right) \operatorname{tr}\left(U_{3} U_{2}^{\dagger}\right)-N_{c} \operatorname{tr}\left(U_{1} U_{2}^{\dagger}\right)|p\rangle
$$

Singularities

- UV - cancelled by Ward identities $\left(Z_{1}=Z_{2}\right)$
- Rapidity - cancelled by the LO BK evolution of the dipole covoluted with the LO IF
- artificial UV - cancelled in the convolution of the IF and Wilson line operator
- collinear - removed by cone algorithm $\Delta \phi^{2}+\Delta Y^{2}<R^{2}$
- soft - removed with the lowest energy cutoff on the unobserved gluon $\omega_{g}<E$

$$
\begin{aligned}
d \sigma=d & \sigma_{0} \frac{\alpha_{s}}{\pi} \frac{N_{c}^{2}-1}{2 N_{c}}\left[\frac{1}{2} \ln \left(\frac{\left(x_{j} \vec{p}_{j}-x_{j} \vec{p}_{j}\right)^{4}}{x_{j}^{2} x_{j}^{2} R^{4} \vec{p}_{j}^{2} \vec{p}_{j}^{2}}\right)\left(\ln \left(\frac{4 E^{2}}{x_{j} x_{j}\left(p_{\gamma}^{+}\right)^{2}}\right)+\frac{3}{2}\right)\right. \\
& \left.+\ln (8)-\frac{1}{2} \ln \left(\frac{x_{j}}{x_{\bar{j}}}\right) \ln \left(\frac{x_{j} \vec{p}_{j}^{2}}{x_{j} \vec{p}_{j}^{2}}\right)+\frac{13-\pi^{2}}{2}\right]+d \sigma_{r e g}
\end{aligned}
$$

Applications

- $Q^{2} \rightarrow 0, \epsilon_{L} \rightarrow 0$: Predictions for the ultraperipheral dijet photoproduction at LHC - no new singularities appear.
- $\left(p_{q}+p_{\bar{q}}\right)^{2} \rightarrow 0$: diffractive light vector meson production hard part recalculated for longitudinal vector meson production. Additional singularities to be absorbed by ERBL equation.
- Comparison with HERA data (1505.0578) on exclusive diffractive dijet production

Conclusions

Work done

- $\gamma \rightarrow q \bar{q} g$ impact factor
- One loop $\gamma \rightarrow q \bar{q}$ impact factor in arbitrary kinematics, $\gamma \rightarrow$ longitudinally polarized vector meson impact factor with nonzero t.

Work in plans

- Resummation of Sudakov logs.
- Description of 2 and 3 jet, meson diffractive photoproduction at HERA and in UC at LHC in NLLA.

Thank you for your attention!

