Azimuthal correlation in multijet events at 13 TeV

D. Dominguez Damiani, H. Jung, <u>A. Bermudez Martinez</u>

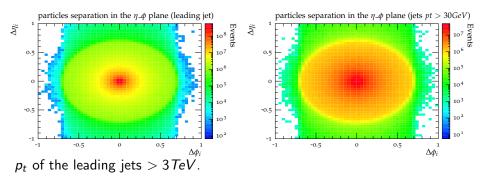
November 9, 2016

Outline

2 Study

4 p_t imbalance

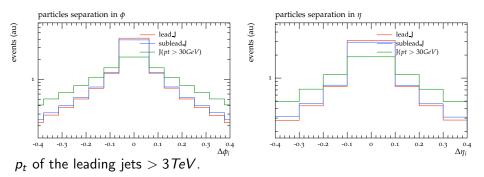
э


Image: Image:

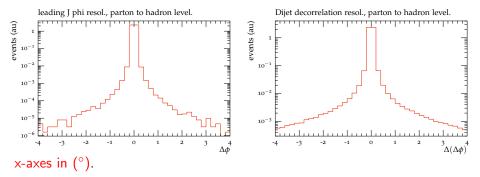
æ

- Studying corners of phase space in order to:
 - Accessing the Sudakov region.
 - Testing resummation (PS).
 - Factorization breaking sensitivity?

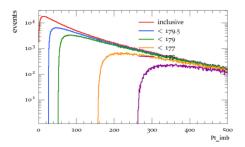
- Main focus on:
 - High p_t jets scenarios (> 1 TeV)
 - $\Delta \phi$ of the leading system.
 - p_t imbalance (p_t^{imb})
- For this we used the predictions from fixed order NLO ($2 \rightarrow 2$ and $2 \rightarrow 3$), modified fixed order NLO (POWHEG), POWHEG+PS, P8.


Jets size

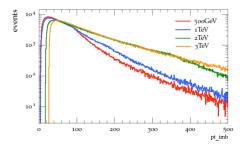
- Pen-like leading jets structure (effective $\Delta R \sim 0.2$).
- ΔR of extra ($p_t > 30 GeV$) jets ~ 0.7


Jets size

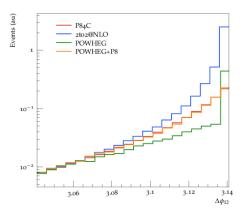
η and ϕ jets size projections


< A

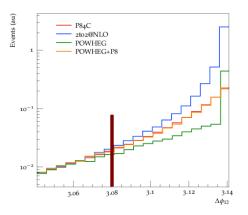
Non-perturbative uncertainties important when dealing with small $\boldsymbol{\phi}$ differences

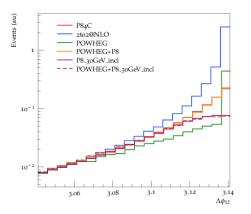

 \bullet Uncertainty in going from parton to hadron level $\sim 0.1^\circ$

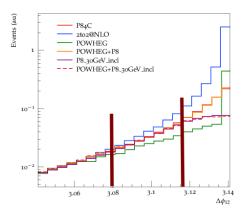
 p_t imbalance for different separations in $\Delta \phi$

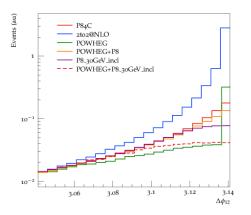


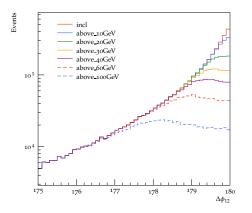
- at least 30GeV for half a degree
- at least 50GeV for one degree
- at least 160GeV for three degrees


 p_t imbalance for different leading jets p_t thresholds and requiring at least $\Delta \phi = 0.5^{\circ}$ away from π)


- at least \sim 40 GeV of p_T^{imb} for being at least 0.5° away from π
- requiring a small decorrelation between the high p_T jets implies a sizeable amount of p_T^{imb}


- divergent NLO
- Sudakov tamed POWHEG
- Resummation from PS


- divergent NLO
- Sudakov tamed POWHEG
- Resummation from PS
- Resummed contributions start at $\Delta \phi \sim 3.085(176^\circ)$


• Compare with the $\Delta \phi$ dist. requiring at least one extra jet $(p_t > 30 GeV)$

- Compare with the $\Delta \phi$ dist. requiring at least one extra jet $(p_t > 30 GeV)$
- A piece of the Sudakov region is sensible to contributions of partons with $p_t \sim 30 GeV$.

- 1TeV case even more interesting
- POWHEG modified Sudakov for matching to PS affects considerably the resummation region (even the one we could access).

- Evolution of the non-resolvable region as a function of *p*_t threshold of the extra jets.
- extra jets with $p_t > 100 GeV$ produce angular decorrelations of less than 3° from π

- High p_T jets are very narrowed leading to a small uncertainty which could come from non-perturbative physics and allowing a possible well precise future measurement.
- Possible scenarios for studying the multiple soft gluon emission and resummation were studied using the $\Delta \phi$ and p_T^{imb} of the leading jets.
- For relatively high p_T radiated partons, $\Delta \phi$ between the leading jets takes very small values (within the resummation region).
- Analogously, requiring a small decorrelation between the high p_T jets implies a sizeable amount of p_T^{imb}.

Thank you for your attention.