Matrix elements and Monte Carlo calculations with k_T -factorization

Andreas van Hameren Institute of Nuclear Physics Polish Academy of Sciences Kraków

presented at

REF 2016, *Resummation, Evolution, Factorization* 9-11-2016, University of Antwerp, Antwerp

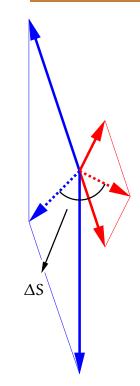
This work was supported by grant of National Science Center, Poland, No. 2015/17/B/ST2/01838.

- Factorized cross section calculation
- Off-shell amplitudes
- BCFW recursion for amplitudes with off-shell partons
- KaTie: for parton-level event generation with $k_{\text{T}}\text{-dependent}$ initial states

Four jets with k_T-factorization

√s = 7 TeV 4 jets X CMS data 2nd jet: p_ > 50 GeV ijet: p_ > 20 GeV [rad⁻¹] SPS + DPS 1/σ dσ/ΔS SPS HEF DPS HEF 10⁻¹ 10⁻² 0.5 1.5 2 25 3 ΔS [rad]

- ΔS is the azimutal angle between the sum of the two hardest jets and the sum of the two softest jets.
- This variable has no distribution at LO in collinear factorization: pairs would have to be back-to-back.
- k_T -factorization allows for the necessary momentum inbalance.



Factorization for hadron scattering

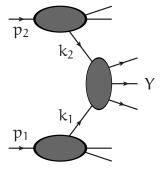
General formula for cross section with $\pi^* \in \{g^*,q^*,\bar{q}^*\}$:

 $d\sigma(h_{1}(p_{1})h_{2}(p_{2}) \to Y) = \sum_{a,b} \int d^{4}k_{1} \mathcal{P}_{1,a}(k_{1}) \int d^{4}k_{2} \mathcal{P}_{2,b}(k_{2}) d\hat{\sigma}(\pi_{a}^{*}(k_{1})\pi_{b}^{*}(k_{2}) \to Y)$

Collinear factorization: $\mathcal{P}_{i,a}(k) = \int_0^1 \frac{dx}{x} \mathbf{f}_{i,a}(\mathbf{x}, \mathbf{\mu}) \, \delta^4(k - x \, p_i)$

k_T-factorization: $\mathcal{P}_{i,a}(k) = \int \frac{d^2 \mathbf{k}_T}{\pi} \int_0^1 \frac{dx}{x} \mathcal{F}_{i,a}(x, |\mathbf{k}_T|, \mu) \,\delta^4(k - x \, p_i - k_T)$

- The parton level cross section $d\hat{\sigma}(\pi_a^*(k_1)\pi_b^*(k_2) \to Y)$ can be calculated within perturbative QCD.
- The parton distribution functions $f_{i,a}$ and $\mathcal{F}_{i,a}$ must be modelled and fit against data.
- Unphysical scale μ is a price to pay, but its dependence is calculable within perturbative QCD via *evolution equations*.



Factorization for hadron scattering

General formula for cross section with $\pi^* \in \{g^*, q^*, \bar{q}^*\}$:

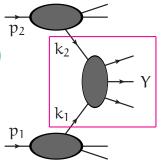
 $d\sigma(h_{1}(p_{1})h_{2}(p_{2}) \to Y) = \sum_{a,b} \int d^{4}k_{1} \mathcal{P}_{1,a}(k_{1}) \int d^{4}k_{2} \mathcal{P}_{2,b}(k_{2}) d\hat{\sigma}(\pi_{a}^{*}(k_{1})\pi_{b}^{*}(k_{2}) \to Y)$

Collinear factorization: $\mathcal{P}_{i,a}(k) = \int_0^1 \frac{dx}{x} f_{i,a}(x,\mu) \,\delta^4(k-x\,p_i)$

 $\mathbf{k}_{\mathrm{T}}\text{-factorization:} \quad \mathcal{P}_{\mathrm{i},a}(\mathbf{k}) = \int \frac{\mathrm{d}^{2}\mathbf{k}_{\mathrm{T}}}{\pi} \int_{0}^{1} \frac{\mathrm{d}x}{x} \,\mathcal{F}_{\mathrm{i},a}(x, |\mathbf{k}_{\mathrm{T}}|, \mu) \,\delta^{4}(\mathbf{k} - x \, \mathbf{p}_{\mathrm{i}} - \mathbf{k}_{\mathrm{T}})$

$$\hat{\sigma} = \int d\Phi(1, 2 \to 3, 4, \dots, n) \left| \mathcal{M}(1, 2, \dots, n) \right|^2 \mathcal{O}(p_3, p_4, \dots, p_n)$$

phase space includes summation over color and spin squared amplitude calculated perturbatively observable includes phase space cuts, or jet algorithm



Gauge invariance

In order to be physically relevant, any scattering amplitude following the constructive definition given before must satisfy the following

Freedom in choice of gluon propagator:

$$\begin{cases} -\frac{-i}{k^{2}} \left[g^{\mu\nu} - (1-\xi) \frac{k^{\mu}k^{\nu}}{k^{2}} \right] \\ -\frac{-i}{k^{2}} \left[g^{\mu\nu} - \frac{k^{\mu}n^{\nu} + n^{\mu}k^{\nu}}{k \cdot n} + (n^{2} + \xi k^{2}) \frac{k^{\mu}k^{\nu}}{(k \cdot n)^{2}} \right] \end{cases}$$

Ward identity:

$$\log_{\mu} \epsilon^{\mu}(k) \rightarrow \log_{\mu} k^{\mu} = 0$$

- Only holds if all external particles are on-shell.
- k_T -factorization requires off-shell initial-state momenta $k^{\mu} = p^{\mu} + k_T^{\mu}$.
- How to define amplitudes with off-shell intial-state momenta?

n-parton amplitude is a function of n momenta k_1, k_2, \ldots, k_n and n *directions* p_1, p_2, \ldots, p_n

n-parton amplitude is a function of n momenta $k_1, k_2, ..., k_n$ and n *directions* $p_1, p_2, ..., p_n$, satisfying the conditions

$k_1^\mu+k_2^\mu+\dots+k_n^\mu=0$	momentum conservation
$p_1^2 = p_2^2 = \dots = p_n^2 = 0$	light-likeness
$p_1 \cdot k_1 = p_2 \cdot k_2 = \dots = p_n \cdot k_n = \emptyset$	eikonal condition

n-parton amplitude is a function of n momenta k_1, k_2, \ldots, k_n and n *directions* p_1, p_2, \ldots, p_n , satisfying the conditions

$k_1^\mu + k_2^\mu + \dots + k_n^\mu = 0$	momentum conservation
$p_1^2 = p_2^2 = \cdots = p_n^2 = 0$	light-likeness
$p_1 \cdot k_1 = p_2 \cdot k_2 = \dots = p_n \cdot k_n = 0$	eikonal condition

With the help of an auxiliary four-vector q^{μ} with $q^2 = 0$, we define

$$k^{\mu}_{T}(q) = k^{\mu} - x(q)p^{\mu}$$
 with $x(q) \equiv rac{q \cdot k}{q \cdot p}$

n-parton amplitude is a function of n momenta k_1, k_2, \ldots, k_n and n *directions* p_1, p_2, \ldots, p_n , satisfying the conditions

$k_1^\mu+k_2^\mu+\cdots+k_n^\mu=0$	momentum conservation
$p_1^2 = p_2^2 = \cdots = p_n^2 = 0$	light-likeness
$p_1 \cdot k_1 = p_2 \cdot k_2 = \dots = p_n \cdot k_n = 0$	eikonal condition

With the help of an auxiliary four-vector q^{μ} with $q^2 = 0$, we define

$$k^{\mu}_{T}(q)=k^{\mu}-x(q)p^{\mu} \quad \text{with} \quad x(q)\equiv \frac{q\cdot k}{q\cdot p}$$

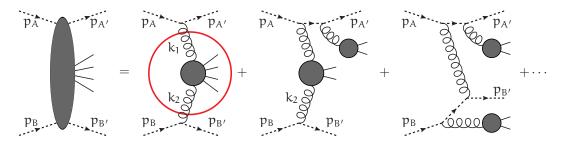
Construct k_T^{μ} explicitly in terms of p^{μ} and q^{μ} :

$$k_{T}^{\mu}(q) = -\frac{\kappa}{2} \, \varepsilon^{\mu} - \frac{\kappa^{*}}{2} \, \varepsilon^{*\mu} \quad \text{with} \quad \begin{cases} \varepsilon^{\mu} = \frac{\langle p | \gamma^{\mu} | q]}{[pq]} &, \quad \kappa = \frac{\langle q | \mathcal{K} | p]}{\langle qp \rangle} \\ \varepsilon^{*\mu} = \frac{\langle q | \gamma^{\mu} | p]}{\langle qp \rangle} &, \quad \kappa^{*} = \frac{\langle p | \mathcal{K} | q]}{[pq]} \end{cases}$$

 $k^2=-\kappa\kappa^*$ is independent of $q^\mu,$ but also individually κ and κ^* are independent of $q^\mu.$

AvH, Kutak, Kotko 2013:

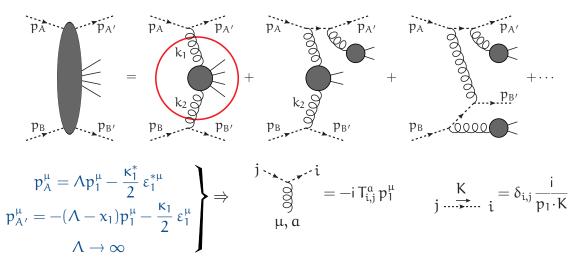
Embed the process in an on-shell process with auxiliary partons



$$p_{A}^{\mu} = \Lambda p_{1}^{\mu} - \frac{\kappa_{1}^{*}}{2} \varepsilon_{1}^{*\mu}$$
$$p_{A'}^{\mu} = -(\Lambda - x_{1})p_{1}^{\mu} - \frac{\kappa_{1}}{2} \varepsilon_{1}^{\mu}$$

AvH, Kutak, Kotko 2013:

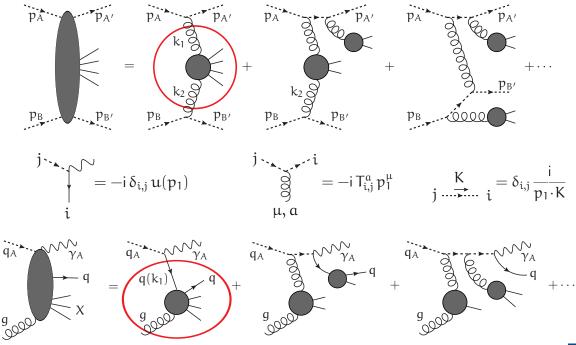
Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.



Amplitudes with off-shell partons

AvH, Kutak, Kotko 2013, AvH, Kutak, Salwa 2013:

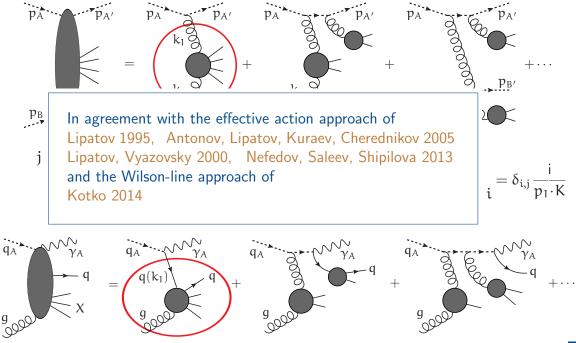
Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.



Amplitudes with off-shell partons

AvH, Kutak, Kotko 2013, AvH, Kutak, Salwa 2013:

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.



Off-shell one-loop amplitudes

$$xp^{\mu} + k_{T}^{\mu} \underbrace{\text{coccorr}}_{P_{A'}} \bigoplus \qquad p_{A'}^{\mu} \underbrace{p_{A'}}_{P_{A'}}$$

 $p^\mu_A = \Lambda p^\mu + \alpha q^\mu + \beta k^\mu_T \quad , \quad p^\mu_{A'} = -(\Lambda - x)p^\mu - \alpha q^\mu + (1-\beta)k^\mu_T \; ,$

where p,q are light-like with $p \cdot q > 0$, where $p \cdot k_T = q \cdot k_T = 0$, and where

$$\alpha = \frac{-\beta^2 k_T^2}{\Lambda(p+q)^2} \quad , \quad \beta = \frac{1}{1+\sqrt{1-x/\Lambda}}$$

With this choice, the momenta $p_A, p_{A'}$ satisfy the relations

$$p_A^2 = p_{A'}^2 = 0$$
 , $p_A^\mu + p_{A'}^\mu = x p^\mu + k_T^\mu$

for any value of the parameter Λ . Auxiliary quark propagators become eikonal for $\Lambda \to \infty$.

$$i \frac{\not{p}_A + K}{(p_A + K)^2} = \frac{i \not{p}}{2p \cdot K} + O(\Lambda^{-1})$$

Taking this limit after loop integration will lead to singularities $\log \Lambda$.

Tree-level amplitudes with off-shell recursion

The scattering amplitude is the residue of the connected Green function obtained for the kinematical situation in which all external particles are on-shell, and satisfy momentum conservation.

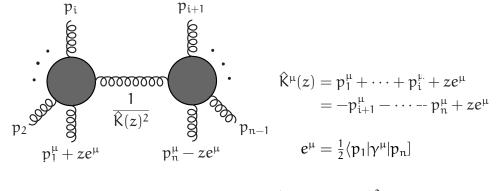
Off-shell currents, or Green functions with all external particles on-shell, satisfy the recursive *Dyson-Schwinger equations*:

- Sums are over partitions of on-shell particles over the blobs, and over possible flavors for virtual particles.
- Current with n = #externalparticles -1 is completely on-shell and gives the amplitude.
- Solution can be represented as a sum of Feynman graphs,
- but recursion can also be used to construct amplitude directly.

Theories with four-point vertices: $-\mathbf{n} = \sum_{i \mid i=n} -\frac{i}{j} + \sum_{i \mid i \mid k=n} -\frac{i}{j}$ $+\frac{1}{2}$ - **n** $+\frac{1}{2}\sum_{n}$ - **i** $+\frac{1}{6}$ - **n** Theories with more types of currents: $\mathbf{n} = \sum_{i \in I} \mathbf{n} + \mathbf{n}$ $\rightarrow n = \sum \rightarrow i$

BCFW recursion for on-shell amplitudes

Gives compact expression through recursion of on-shell amplitudes.



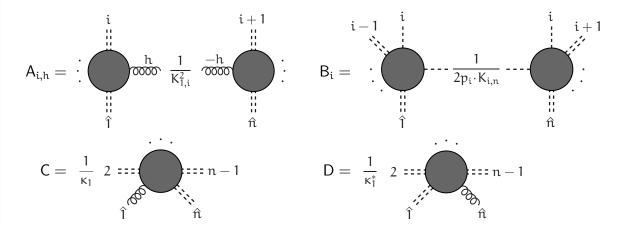
$$\hat{\zeta}(z)^2 = 0 \quad \Leftrightarrow \quad z = -\frac{(\mathbf{p}_1 + \dots + \mathbf{p}_i)^2}{2(\mathbf{p}_2 + \dots + \mathbf{p}_i) \cdot \mathbf{e}}$$

$$\mathcal{A}(1^+, 2, \dots, n-1, n^-) = \sum_{i=2}^{n-1} \sum_{h=+,-} \mathcal{A}(\hat{1}^+, 2, \dots, i, -\hat{K}^h_{1,i}) \frac{1}{K^2_{1,i}} \mathcal{A}(\hat{K}^{-h}_{1,i}, i+1, \dots, n-1, \hat{n}^-)$$

$$\mathcal{A}(1^+, 2^-, 3^-) = \frac{\langle 23 \rangle^3}{\langle 31 \rangle \langle 12 \rangle} \quad , \quad \mathcal{A}(1^-, 2^+, 3^+) = \frac{[32]^3}{[21][13]}$$

BCFW recursion for off-shell amplitudes

The BCFW recursion formula becomes

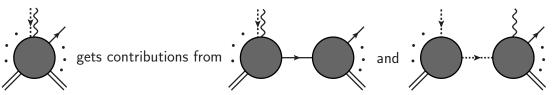


The hatted numbers label the shifted external gluons.

AvH 2014

BCFW recursion with (off-shell) quarks

- on-shell case treated in Luo, Wen 2005
- any off-shell parton can be shifted: propagators of "external" off-shell partons give the correct power of z in order to vanish at infinity
- different kinds of contributions in the recursion



- many of the MHV amplitudes come out as expected
- $\bullet\,$ some more-than-MHV amplitudes do not vanish, but are sub-leading in k_T

$$\mathcal{A}(1^+,2^+,\ldots,n^+,\bar{q}^*,q^-) = \frac{-\langle \bar{q}q \rangle^3}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n\bar{q} \rangle \langle \bar{q}q \rangle \langle q1 \rangle}$$

• off-shell quarks have helicity

 $\mathcal{A}(1, 2, \dots, n, \bar{q}^{*(+)}, q^{*(-)}) \neq \mathcal{A}(1, 2, \dots, n, \bar{q}^{*(-)}, q^{*(+)})$

https://bitbucket.org/hameren/katie

- \bullet parton level event generator, like $\operatorname{Alpgen}, \operatorname{Helac}, \operatorname{Mad}Graph,$ etc.
- arbitrary processes within the standard model (including effective Hg) with several final-state particles.
- 0, 1, or 2 off-shell intial states.

KATIE

- produces (partially un)weighted event files, for example in the LHEF format.
- requires LHAPDF. TMD PDFs can be provided as files containing rectangular grids.
- a calculation is steered by a single input file.
- employs an optimization phase in which the pre-samplers for all channels are optimized.
- during the generation phase several event files can be created in parallel.
- can generate (naively factorized) MPI events.
- event files can be processed further by parton-shower program like CASCADE (next talk by Mirko Serino).

```
Ngroup = 1
Nfinst = 3
process = g u -> mu+ mu- u factor = 1
                                           groups = 1 pNonQCD = 200
process = g u<sup>~</sup> -> mu+ mu- u<sup>~</sup> factor = 1
                                           groups = 1 pNonQCD = 200
process = g d -> mu+ mu- d factor = 1
                                           groups = 1 pNonQCD = 200
process = g d~ -> mu+ mu- d~ factor = 1
                                           groups = 1 pNonQCD = 200
lhaSet = MSTW2008nlo68cl
offshell = 10
tmdTableDir = /home/user0/kTfac/tables/krzysztof02/
tmdpdf = g KMR_gluon.dat
                                                                    cut = deltaR|1.3| > 0.4
tmdpdf = u KMR_u.dat
                                                                    cut = deltaR|2.3| > 0.4
tmdpdf = u~ KMR_ubar.dat
                                                                    cut = pT|1| > 20
tmdpdf = d KMR_d.dat
                                                                    cut = pT|2| > 20
tmdpdf = d~ KMR_dbar.dat
                                                                    cut = pseudoRap|1| > 2.0
tmdpdf = s KMR_s.dat
                                                                    cut = pseudoRap|2| > 2.0
tmdpdf = s~ KMR_sbar.dat
                                                                    cut = pseudoRap|1| < 4.5
tmdpdf = c KMR_c.dat
                                                                    cut = pseudoRap|2| < 4.5
tmdpdf = c~ KMR_cbar.dat
                                                                    cut = mass | 1+2 | > 60
tmdpdf = b KMR_b.dat
                                                                    cut = mass | 1+2 | < 120
tmdpdf = b~ KMR_bbar.dat
                                                                    cut = pT|3| > 20
Nflavors = 5
                                                                    cut = rapidity|3| > 2.0
helicity = sampling
                                                                    cut = rapidity|3| < 4.5
Noptim = 1,000,000
                                                                    scale = (pT|3|+pT|1+2|+91.1882D0)/3
E_{cm} = 7000
                                                                    mass = Z 91.1882 2.4952
Esoft = 20
                                                                    mass = W 80.419 2.21
                                                                    mass = H 125.0 0.00429
                                                                    mass = t 173.5
                                                                    switch = withQCD Yes
                                                                    switch = withQED Yes
      p p \rightarrow Z + j in the forward direction
                                                                    switch = withWeak Yes
                                                                    switch = withHiggs No
```

```
22
```

switch = withHG No

coupling = Gfermi 1.16639d-5

- k_T -factorization allows for the parton-level description of kinematical situations inaccessible with LO collinear factorization, eg. ΔS for four jets.
- Factorization prescriptions with explicit k_T dependence in the pdfs ask for hard matrix elements with off-shell initial-state partons.
- The necessary amplitudes can be defined in a manifestly gauge invariang manner that allows for Dyson-Schwinger recursion and BCFW recursion, both for off-shell gluons and off-shell quarks.
- KaTie generates parton-level events with k_T -dependent initial states.
- Next: NLO.

