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Abstract 
 
We discuss the momentum distributions of gluons and consider the 
dependence of the gluon parton distribution functions (PDFs) on both 
fractional (longitudinal) momentum x and transverse momentum pT, 
referred to as the gluon TMDs. Looking at the operator structure of the 
TMDs, we are able to unify various descriptions at small-x including the 
dipole picture and the notions of pomeron and odderon exchange.  

1.  TMD correlators and their operator structure, color gauge invariance 
2.  Rank of TMD and operator structure 
3.  The Wilson loop correlator unifying ideas on diffraction, dipole picture 

and small-x behavior 



Standard TMDs 

  TMDs incorporate hadron structure 

 

  High energies (lightlike n = P’/P.P’ and P.n=1) 

     and including transverse momenta 

 

  Polarized targets provide opportunities and challenges  

 

 

 

  At high energies x linked to scaling variables (e.g. x = Q2/2P.q) and convolutions 
of  transverse momenta are linked to azimuthal asymmetries (noncollinearity) 
requiring semi-inclusivity and/or polarization  
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Collinear momentum fraction x à 0 and diffraction  
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Matrix elements for TMDs 

  quark-quark 

 
 
  gluon-gluon 

 
  quark-gluon-quark 
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TMDs and color gauge invariance 

  Gauge invariance in a non-local situation requires a gauge link U(0,ξ) 

 
  Introduces path dependence for Φ(x,pT) 

 
 
 
  ‘Dominant’ paths: along lightcone connected at lightcone infinity (staples) 

 
  Reduces to ‘straight line’ for Φ(x) 
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Matrix elements for TMDs 

  quark-quark 

 
  gluon-gluon 

 
 
  … and even single Wilson loop correlator 
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u  Gauge links associated with resummation of dimension zero (not suppressed!) 
collinear An = A+ gluons, leading for TMD correlators to process-dependence: 

Quark correlators and gauge links 

Φij
q[C ](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ j (0)U[0,ξ ]

[C ] ψi (ξ ) P ξ .n=0

Φ[-] Φ[+] 

Time reversal 

TMD 

path dependent gauge link  

Belitsky, Ji, Yuan, 2003; Boer, M, Pijlman, 2003 

�q ! qq̄q ! �
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Gluon correlators and gauge links 

Γαβ[C ,C '] (x, pT ;n) =
d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P U[ξ ,0]

[C ] Fnα (0)U[0,ξ ]
[C '] Fnβ (ξ ) P

ξ .n=0

u  The TMD gluon correlators need two links, which can have different paths. N 

u  Note presence of transverse gluons in the perturbative expansion of Γαβ[U] 

Γ[-,-] Γ[-,+] 

Bomhof, M, Pijlman, 2006 

gg ! H qg ! q



Single Wilson loop correlator 
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(relevant at small x, t = pT
2) 



Parametrization of gluon correlators 

Unpolarized target 

  Vector polarized target 
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Definite rank TMDs 

  Expansion in constant tensors in transverse momentum space    
     

  … or traceless symmetric tensors (of definite rank)  

  Simple azimuthal behavior: 
    functions showing up in cos(mφ) or sin(mφ) asymmetries (wrt e.g. φT) 
 
  Simple Bessel transform to b-space (relevant for evolution):  

12 

gµ⌫T = gµ⌫ � P {µn⌫} ✏µ⌫T = ✏Pnµ⌫ = ✏�+µ⌫

kiT

kijT = kiT k
j
T � 1

2k
2
T gijT

kijkT = kiT k
j
T k

k
T � 1

4k
2
T

⇣
gijT kkT + gikT kjT + gjkT kiT

⌘

ki1...imT  ! |kT | e±im'

Fm(x, kT ) =

Z 1

0
bdb Jm(kT b)Fm(x, b)

Fm(x, b) =

Z 1

0
kT dkT Jm(kT b)Fm(x, kT )



Structure of gluon TMD PDFs in polarized target 
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Meissner, Metz and Goeke, PR D76 (2007) 034002 

PJM & Rodrigues, PR D63 (2001) 094021  

D Boer, S Cotogno, T van Daal, PJM,  A Signori, Y Zhou, ArXiv 1607.01654 

  TMDs Γ…(x,kT
2) 

  Integrated (collinear) correlator: only circled ones survive 
  Collinear functions are spin-spin correlations 
  TMDs also momentum-spin correlations (spin-orbit) including also       

T-odd (single-spin) functions (appearing in single-spin asymmetries) 



Structure of gluon TMD PDFs in spin 1 target 
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D Boer, S Cotogno, T van Daal, PJM,  A Signori, Y Zhou, ArXiv 1607.01654 



Untangling operator structure in collinear case (reminder) 

  Collinear functions and x-moments 

  Moments correspond to local matrix elements of operators that all have the 
same twist since dim(Dn) = 0 

  Moments are particularly useful because their anomalous dimensions can be 
rigorously calculated and these can be Mellin transformed into the splitting 
functions that govern the QCD evolution. 
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Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] ψ(ξ ) P
ξ .n=ξT =0

xN−1Φq (x) = d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)(∂ξ

n )N−1U[0,ξ ]
[n] ψ(ξ ) P

ξ .n=ξT =0

=
d(ξ .P)
(2π )∫ ei p.ξ P ψ(0)U[0,ξ ]

[n] (Dξ
n )N−1ψ(ξ ) P

ξ .n=ξT =0

Φ(N ) = P ψ(0)(Dn )N−1ψ(0) P

x = p.n  



Transverse moments à operator structure of TMD PDFs 

  Operator analysis for [U] dependence (e.g. [+] or [-]) TMD functions: in analogy 
to Mellin moments consider transverse moments à role for quark-gluon m.e. 

 
 
 
 
    

16 

pT
αΦ[±](x, pT ;n) =

d(ξ .P)d 2ξT
(2π )3∫ ei p.ξ P ψ(0)U[0,±∞]iDT

αU[±∞,ξ ]ψ(ξ ) P ξ .n=0

dpT∫ pT
αΦ[U ](x, pT ;n) = !Φ∂

α (x)+CG
[U ]ΦG

α (x)

T-even  T-odd  

calculable  

T-even (gauge-invariant derivative)  

ΦD
α (x) = dx1∫ ΦD

α (x − x1,x1 | x)

T-odd (soft-gluon or gluonic pole, ETQS m.e.)  

Φ
∂
α (x) = ΦD

α (x)−ΦA
α (x)

ΦA
α (x) = PV

dx1
x1

ΦF
nα (x − x1,x1 | x)∫

ΦG
α (x) = πΦF

nα (x,0 | x)

Efremov, Teryaev; Qiu, Sterman; 
Brodsky, Hwang, Schmidt; Boer, Teryaev; Bomhof, Pijlman, M 



  CG
[U] calculable gluonic pole factors (quarks) 

  Complicates life for ‘double pT’ situation such as Sivers-Sivers in DY, etc. 
  In essence the factors would come naturally in perturbative calculations 

(Gamberg, Kang) 
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U U [±] U [+] U [!] 1
Nc

Trc(U
[!])U [+]

Φ[U ] Φ[±] Φ[+!] Φ[(!)+]

C
[U ]
G ±1 3 1

C
[U ]
GG,1 1 9 1

C
[U ]
GG,2 0 0 4

TABLE I: The values of the gluonic pole prefactors for some gauge links needed in the pT -weighted cases.
Note that the value of C[U ]

G is the same for single and double transverse weighting.

link. In fact there is a universal transverse moment relating all link dependent ones

f⊥(1)[U ]
1T (x) = C [U ]

G f⊥(1)
1T (x). (15)

Although the only difference for the single weighted case is just the numerical prefactor that for simple processes is just
+1 or −1, we will show in the next section that for the double weighted case the situation becomes more complicated
and one actually gains a lot by this different notation. But even for single weighting there is a clear advantage using
Eq. 15, because it states that there is a universal function with calculable process (link) dependent numbers rather
than an infinite number of somehow related functions. For some gauge links, these numbers are shown in Table I.
Here U [!] is the Wilson loop U [−]†U [+].

C. Double transverse weighting

In order to evaluate the double transverse weighting we need to consider matrix elements like

Φαβ
FF (x− x1 − x2, x1, x2|x) =

∫
d ξ·P

2π

d η·P

2π

d η′·P

2π
eix2(η

′·P ) eix1(η·P ) ei(x−x1−x2)(ξ·P )

×⟨P, S|ψ(0)U [n]
[0,η′]F

nα
T

(η′)U [n]
[η′,η]F

nβ
T

(η)U [n]
[η,ξ] ψ(ξ)|P, S⟩

∣∣∣∣∣
LC

, (16)

among others, where LC indicates that all transverse components and n-components of the coordinates are zero.
Besides this matrix element one needs ΦDF , ΦFD and ΦDD as well as bilocal matrix elements, obtained by direct
or principal value integrations over these matrix elements (as in the case of single transverse momentum weighting)
or gluonic pole matrix elements, where x1 or x2 or both are zero. Explicitly, the matrix elements are discussed in
Appendix A.
The actual weighting of the gauge link dependent TMD correlator Φ[U ](x, pT ) gives

Φ{αβ} [U ]
∂∂ (x) ≡

∫
d2pT p{αT pβ}

T Φ[U ](x, p2
T
)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+
∑

c

π2C [U ]
GG,cΦ

{αβ}
GG,c(x)

= Φ̃{αβ}
∂∂ (x) + πC [U ]

G

(
Φ̃{αβ}

∂G (x) + Φ̃{αβ}
G∂ (x)

)
+ π2C [U ]

GG,1 Φ
{αβ}
GG,1(x) + π2C [U ]

GG,2 Φ
{αβ}
GG,2(x). (17)

For the correlators containing two (or more) gluon fields like the one in Eq. 16, one must distinguish the different
color structures for the correlator, hence a summation over the color structures c. For double weighting, there are in
the double gluonic pole part two possible color structures related to the appearance of the color traced Wilson loop
1
Nc

Trc(U [!]). The differences between the two different correlators Φ{αβ}
GG,c(x) are made explicit in Appendix A. Just

as for the single weighted case in Eq. 9, the structures Φ̃... with one or more partial derivatives denote differences

between correlators with a covariant derivative minus a correlator with a principal value integration, e.g. Φ̃{αβ}
∂G (x) =

Φ{αβ}
DG (x)−Φ{αβ}

AG (x). For completeness, they are given in Appendix A. Since the weighting is done with the symmetric
combination, we have symmetrized in the indices, which should not influence the result. We also omitted the Dirac
indices on the fields. The precise form of all correlators in terms of matrix elements can be found in Appendix A.

Gluonic pole factors are calculable 
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Buffing, Mukherjee, M, PRD88 (2013) 054027, ArXiv 1306.5897 

Buffing, Mukherjee, M, PRD86 (2012) 074030, ArXiv 1207.3221 

Buffing, M, PRL 112 (2014), 092002 



Operator classification of gluon TMDs 
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CGG ,c
[U ]

factor RANK OF GLUON TMDs FOR SPIN ½ HADRON 
0 1 2 3 

1 

… 

… … 

f1T
⊥[Gc]  h1

[Gc]

f1   g1 g1T
[∂]

h1
⊥[GGc]

CG ,c
[U ]

CGG ,c
[U ]

h1L
⊥[∂Gc] h1T

⊥[∂∂Gc]

h1T
⊥[GGGc]

h1
⊥[∂∂]

CGGG ,c
[U ]

δ f1
[GGc]...

D Boer, S Cotogno, T van Daal, PJM, A Signori Y Zhou, ArXiv 1607.01654 

Process dependence in pT dependence of TMDs due to gluonic pole operators 
(e.g. affecting <pT

2>  
 
                                              with δf1[GG c](x) = 0 
 
 
Multiple functions for rank 2 (double gluonic poles, multiple color configurations c) 

f1
[U ](x, pT

2 ) = f1 + CGG ,c
[U ] δ f1

[GGc]



Small x physics in terms of TMDs 

  The single Wilson-loop correlator Γ0  

  Note limit x à 0 for gluon TMDs linked to gluonic pole m.e. of Γ0  
 
 
    RHS depends in fact on t, which for x = 0 becomes pT

2 
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factor RANK OF WILSON LOOP TMDs FOR SPIN ½ HADRON 
0 1 2 3 

1 

… … 

… 

eT
 [G ]

e

CG ,c
[U ]

CGG ,c
[U ]

CGGG ,c
[U ]

(2⇡)2 �ij [U,U 0](0, kT ) ⇠ C [U,U 0]
GG M2� ij[U,U 0]

0GG (kT ) ⇠ C [U,U 0]
GG

kiT kjT
M2

�[U,U 0]
0 (kT )

�0(kT ) =
1

2M2

⇢
e(k2T )�

✏kST

M
eT (k

2
T ) + . . .

�



Small x physics in terms of gluon TMDs 

  Note limit x à 0 for gluon TMDs linked to gluonic pole m.e. of Γ0  

 
  Dipole correlators: at small x only two structures for unpolarized and 

transversely polarized nucleons: pomeron & odderon structure 
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⇡2 �↵� [U,U 0](0, pT ) = C [U,U 0]
GG �↵�

0GG(pT )

D Boer, MG Echevarria, PJM, J Zhou, PRL 116 (2016) 122001, ArXiv 1511.03485 

xh

?[+,�]
1 (x, k2T ) �! e

[+,�](k2T )

x f

[+,�]
1 (x, k2T ) �!

k

2
T

2M2
e

[+,�](k2T )

x f

?[+,�]
1T (x, k2T ) �!

k

2
T

2M2
e

[+,�]
T (k2T )

xh

[+,�]
1 (x, k2T ) �!

k

2
T

2M2
e

[+,�]
T (k2T )

xh

?[+,�]
1T (x, k2T ) �! e

[+,�]
T (k2T )

Dominguez, Xiao, Yuan 2011 brackets) is generated by the diagram shown in Fig. 1(a), and
thehard-gluonpole contribution (the second term) arises from
Fig.1(b).This expressioncanbe related to theone inRef. [52].
Throughout this Letter, we will neglect the contribution from
the antisymmetric partner of the Qiu-Sterman function ~TF
[49], which becomes suppressed in the small-x regime,
regardless of the gauge link structure, as it is antisymmetric
in its two arguments (assuming it has no pole).
The gluon TMDs hg1T and h

⊥g
1T can be calculated similarly

at large transverse momentum. They turn out to possess the
same perturbative tail 1=k4T behavior as the Sivers function,
only differing in the hard coefficients:

hg=qðfÞ1T ðx; k2TÞ

¼ C1

M
k4T

Z
1

x

dz
z

X

qþq̄

×
!
TF;qðz; zÞ

2 − 2ξ
ξ

− TF;qðz; z − xÞ 2 − ξ
ξ

"
; ð4Þ

h⊥g=qðfÞ
1T ðx; k2TÞ ¼ C1

M
k4T

Z
1

x

dz
z

X

qþq̄

TF;qðz; zÞ
4 − 4ξ

ξ
: ð5Þ

We note that the hard-gluon pole contribution to h⊥g
1T is

absent.
We now extrapolate these results to the small-x limit. For

theWW-type distributions, it is easy to see that in the small-
x limit, the gluon TMDs f⊥g=qðfÞ

1T and hg=qðfÞ1T vanish up to
leading logarithm lnð1=xÞ accuracy, due to the cancellation
among the soft-gluon and hard-gluon pole contributions.
The same cancellation occurs at small x for the trigluon
correlation contribution: f⊥g=gðfÞ

1T ≈ hg=gðfÞ1T ≈ 0.
The case of h⊥gðfÞ

1T is different, however. Combining the
small-x limit of the quark channel in Eq. (4) with the
contribution of the gluon channel, it takes the form

h⊥gðfÞ
1T ðx; k2TÞ ≈ C1

M
k4T

4

x

×
Z

1

x→0
dz
!X

qþq̄

TF;qðz; zÞ þ TðþÞ
G ðz; zÞ

"
;

ð6Þ

where TðþÞ
G is the C-even trigluon correlation [48,53,54].

This particular integral vanishes as a consequence of
transverse momentum conservation, as it can be related
(at tree level certainly [55] and the relation is stable under
QCD corrections [51]) to the Burkardt sum rule for the first
transverse momentum of the Sivers TMD [56]. Therefore,
for the h⊥gðfÞ

1T case, the leading logarithm contributions
cancel out between the quark and gluon channels.
Now we consider the dipole case. Again all three TMDs

can be dynamically generated by the Qiu-Sterman function,
and possess the same perturbative tail 1=k4T . The result for
the gluon Sivers function in the quark channel is

f⊥g=qðdÞ
1T ðx; k2TÞ

¼ C2

M
k4T

Z
1

x

dz
z

X

q−q̄

×
!
TF;qðz; zÞ

1þ ð1 − ξÞ2

ξ
þ TF;qðz; z − xÞ 2 − ξ

ξ

"
;

ð7Þ

where C2 ¼ ½ðN2
c − 4Þ=2Nc&ðαs=2π2Þ. The

P
q−q̄ indicates

that in this C-odd case, the sum runs over all quark flavors
minus antiflavors. Similarly, for the other two gluon TMDs,
we find

hg=qðdÞ1T ðx; k2TÞ

¼ C2

M
k4T

Z
1

x

dz
z

X

q−q̄

×
!
TF;qðz; zÞ

2 − 2ξ
ξ

þ TF;qðz; z − xÞ 2 − ξ
ξ

"
; ð8Þ

h⊥g=qðdÞ
1T ðx; k2TÞ

¼ C2

M
k4T

Z
1

x

dz
z

X

q−q̄
× TF;qðz; zÞ

4 − 4ξ
ξ

: ð9Þ

It is worth noting that as compared to the WW-type
distributions, the overall color factor is different, and
the sign of the hard-gluon pole contributions is reversed.
The complete expressions for the gluon channel (g=g) will
be presented elsewhere. Here we only present the extrapo-
lation to the small-x limit. In this limit, all three dipole-type
T-odd gluon TMDs take the same form in both the quark
and the gluon channel:

FIG. 1. Diagrams contributing to T-odd gluon TMDs at large
transverse momentum in the flavor-singlet case. (a) Soft-gluon
pole contribution. (b) Hard-gluon pole contribution. (Mirror
diagrams are not shown.)
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Agrees for x à 0 with 
perturbatively generated eT
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Conclusion 

  (Generalized) universality of TMDs studied via operator product 
expansion, extending the well-known collinear distributions to TMDs, 
ordered into functions of definite rank. 

  Knowledge of operator structure is important (e.g. in lattice calculations) 
as well as for the small-x limits for gluons 

  Multiple operator possibilities for higher rank functions 
  The TMD PDFs appear in cross sections with specific calculable factors 

that deviate from (or extend on) the naïve parton universality for 
hadron-hadron scattering but can also be addressed in pQCD 

  Applications in polarized high energy processes, even for unpolarized 
hadrons (with linearly polarized gluons)  

  Applications in diffractive processes and simplifications at small-x via 
Wilson loop correlator, confirmed in perturbative calculations 
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