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Abstract
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Abstract

We discuss the momentum distributions of gluons and consider the 
dependence of the gluon parton distribution functions (PDFs) on both 
fractional (longitudinal) momentum x and transverse momentum pT, 
referred to as the gluon TMDs. Looking at the operator structure of the 
TMDs, we are able to unify various descriptions at small-x including the 
dipole picture and the notions of pomeron and odderon exchange. 

1. TMD correlators and their operator structure, color gauge invariance
2. Rank of TMD and operator structure
3. The Wilson loop correlator unifying ideas on diffraction, dipole picture 

and small-x behavior



Standard TMDs

TMDs incorporate hadron structure

High energies (lightlike n = P’/P.P’ and P.n=1)

and including transverse momenta

Polarized targets provide opportunities and challenges 

At high energies x linked to scaling variables (e.g. x = Q2/2P.q) and 
convolutions of  transverse momenta are linked to azimuthal asymmetries 
(noncollinearity) requiring semi-inclusivity and/or polarization 
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Collinear momentum fraction x  0 and diffraction
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At small x (and small t):



Matrix elements for TMDs

quark-quark

gluon-gluon

quark-gluon-quark
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TMDs and color gauge invariance

Gauge invariance in a non-local situation requires a gauge link U(0,x)

Introduces path dependence for F(x,pT)

‘Dominant’ paths: along lightcone connected at lightcone infinity (staples)

Reduces to ‘straight line’ for F(x)
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Matrix elements for TMDs

quark-quark

gluon-gluon

… and even single Wilson loop correlator
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 Gauge links associated with resummation of dimension zero (not suppressed!) 
collinear An = A+ gluons, leading for TMD correlators to process-dependence:

Quark correlators and gauge links

F
ij
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d(x.P)d 2x
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(2p )3ò ei p.x P y
j
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i
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F[] F[+]

Time reversal

TMD

path dependent gauge link 

Belitsky, Ji, Yuan, 2003; Boer, M, Pijlman, 2003
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Gluon correlators and gauge links

Gab[C ,C '](x, p
T
;n) =

d(x.P)d 2x
T

(2p )3ò ei p.x P U
[x ,0]

[C ] F na (0)U
[0,x ]

[C '] F nb (x ) P
x .n=0

 The TMD gluon correlators need two links, which can have different paths. N

 Note presence of transverse gluons in the perturbative expansion of Gab[U]

G[,] G[,+]

Bomhof, M, Pijlman, 2006



Single Wilson loop correlator
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G0
[,+]

soft in
Diffractive
processes

1

2

Cf: Gieseke, Qiao, Bartels 2000; Dominguez, Xiao, Yuan 2011 

(relevant at small x, t = pT
2)



Parametrization of gluon correlators

Unpolarized target

Vector polarized target
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Definite rank TMDs

Expansion in constant tensors in transverse momentum space   

… or traceless symmetric tensors (of definite rank) 

Simple azimuthal behavior:

functions showing up in cos(mf) or sin(mf) asymmetries (wrt e.g. fT)

Simple Bessel transform to b-space (relevant for evolution): 
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Structure of gluon TMD PDFs in polarized target
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Meissner, Metz and Goeke, PR D76 (2007) 034002

PJM & Rodrigues, PR D63 (2001) 094021 

D Boer, S Cotogno, T van Daal, PJM,  A Signori, Y Zhou, ArXiv 1607.01654

TMDs G…(x,kT
2)

Integrated (collinear) correlator: only circled ones survive

Collinear functions are spin-spin correlations

TMDs also momentum-spin correlations (spin-orbit) including also       
T-odd (single-spin) functions (appearing in single-spin asymmetries)



Structure of gluon TMD PDFs in spin 1 target
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Untangling operator structure in collinear case (reminder)

Collinear functions and x-moments

Moments correspond to local matrix elements of operators that all have the 
same twist since dim(Dn) = 0

Moments are particularly useful because their anomalous dimensions can be 
rigorously calculated and these can be Mellin transformed into the splitting 
functions that govern the QCD evolution.
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Transverse moments  operator structure of TMD PDFs

Operator analysis for [U] dependence (e.g. [+] or [-]) TMD functions: in analogy 
to Mellin moments consider transverse moments  role for quark-gluon m.e.
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CG
[U] calculable gluonic pole factors (quarks)

Complicates life for ‘double pT’ situation such as Sivers-Sivers in DY, etc.

In essence the factors would come naturally in perturbative calculations 
(Gamberg, Kang)
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U U [± ] U [+ ] U [ ] 1
N c

Trc(U [ ] ) U [+ ]

Φ[U ] Φ[± ] Φ[+ ] Φ[( ) + ]

C
[U ]

G ± 1 3 1

C
[U ]

G G ,1 1 9 1

C
[U ]

G G ,2 0 0 4

TABLE I: The values of the gluonic pole prefactors for some gauge links needed in the pT -weighted cases.

Note that the value of C
[U ]

G is the same for single and double t ransverse weight ing.

link. In fact there is a universal t ransverse moment relat ing all link dependent ones

f
⊥ (1) [U ]

1T (x) = C
[U ]

G f
⊥ (1)

1T (x). (15)

Although the only difference for the single weighted case is just the numerical prefactor that for simple processes is just
+ 1 or − 1, we will show in the next sect ion that for the double weighted case the situat ion becomes more complicated
and one actually gains a lot by this different notat ion. But even for single weight ing there is a clear advantage using
Eq. 15, because it states that there is a universal funct ion with calculable process (link) dependent numbers rather
than an infinite number of somehow related funct ions. For some gauge links, these numbers are shown in Table I.

Here U [ ] is the Wilson loop U [− ]† U [+ ].

C. D ouble t r ansver se weight ing

In order to evaluate the double transverse weight ing we need to consider matrix elements like

Φ
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2π

dη·P

2π

dη ·P

2π
ei x 2 (η ·P ) ei x 1 (η·P ) ei ( x − x 1− x 2 ) ( ξ ·P )

× P, S|ψ(0) U
[n ]

[0,η ]
F nα

T
(η )U

[n ]

[η ,η]
F nβ

T
(η)U

[n ]

[η,ξ]
ψ(ξ)|P, S

L C
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among others, where LC indicates that all t ransverse components and n-components of the coordinates are zero.
Besides this matrix element one needs ΦD F , ΦF D and ΦD D as well as bilocal matrix elements, obtained by direct
or principal value integrat ions over these matrix elements (as in the case of single t ransverse momentum weight ing)
or gluonic pole matrix elements, where x1 or x2 or both are zero. Explicit ly, the matrix elements are discussed in
Appendix A.

The actual weight ing of the gauge link dependent TMD correlator Φ[U ](x, pT ) gives

Φ
{ α β } [U ]

∂ ∂ (x) ≡ d2pT p
{ α
T p

β }
T Φ[U ](x, p2

T
)
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{ α β }

∂ ∂ (x) + πC
[U ]
G Φ
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∂ G (x) + Φ
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G∂ (x) +
c

π2C
[U ]
GG,c Φ

{ α β }
GG,c(x)

= Φ
{ α β }

∂ ∂ (x) + πC
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G Φ
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∂ G (x) + Φ
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G∂ (x) + π2C
[U ]

GG,1 Φ
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GG,1(x) + π2C
[U ]

GG,2 Φ
{ α β }

GG,2(x). (17)

For the correlators containing two (or more) gluon fields like the one in Eq. 16, one must dist inguish the different
color st ructures for the correlator, hence a summat ion over the color st ructures c. For double weight ing, there are in
the double gluonic pole part two possible color st ructures related to the appearance of the color t raced Wilson loop

1
N c

Trc(U [ ]). The differences between the two different correlators Φ
{ α β }
GG,c(x) are made explicit in Appendix A. Just

as for the single weighted case in Eq. 9, the structures Φ... with one or more part ial derivat ives denote differences

between correlators with a covariant derivat ive minus a correlator with a principal value integrat ion, e.g. Φ
{ α β }

∂G (x) =

Φ
{ α β }

D G (x)− Φ
{ α β }

A G (x). For completeness, they aregiven in Appendix A. Since the weight ing is donewith the symmetric
combinat ion, we have symmetrized in the indices, which should not influence the result . We also omit ted the Dirac
indices on the fields. The precise form of all correlators in terms of matrix elements can be found in Appendix A.

Gluonic pole factors are calculable
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Buffing, Mukherjee, M, PRD86 (2012) 074030, ArXiv 1207.3221

Buffing, M, PRL 112 (2014), 092002



Operator classification of gluon TMDs
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Process dependence in pT dependence of TMDs due to gluonic pole operators
(e.g. affecting <pT

2> 

with df1
[GG c](x) = 0

Multiple functions for rank 2 (double gluonic poles, multiple color configurations c)
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Small x physics in terms of TMDs

The single Wilson-loop correlator G0

Note limit x  0 for gluon TMDs linked to gluonic pole m.e. of G0

RHS depends in fact on t, which for x = 0 becomes pT
2
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Small x physics in terms of gluon TMDs

Note limit x  0 for gluon TMDs linked to gluonic pole m.e. of G0

Dipole correlators: at small x only two structures for unpolarized and 
transversely polarized nucleons: pomeron & odderon structure

20D Boer, MG Echevarria, PJM, J Zhou, PRL 116 (2016) 122001, ArXiv 1511.03485

Dominguez, Xiao, Yuan 2011

D Boer, S Cotogno, T van Daal, PJM, A Signori, Y Zhou, ArXiv 1607.01654

Agrees for x  0 with 

perturbatively generated eT
[GGG]



Conclusion

(Generalized) universality of TMDs studied via operator product 
expansion, extending the well-known collinear distributions to TMDs, 
ordered into functions of definite rank.

Knowledge of operator structure is important (e.g. in lattice calculations) 
as well as for the small-x limits for gluons

Multiple operator possibilities for higher rank functions

The TMD PDFs appear in cross sections with specific calculable factors 
that deviate from (or extend on) the naïve parton universality for 
hadron-hadron scattering but can also be addressed in pQCD

Applications in polarized high energy processes, even for unpolarized
hadrons (with linearly polarized gluons) 

Applications in diffractive processes and simplifications at small-x via 
Wilson loop correlator, confirmed in perturbative calculations
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