FCC FAST SIMULATION

Anna Zaborowska

on behalf of the FCC Software Group

May 27, 2016 GeantV Fast Simulation mini-workshop

FCCSW

FCCSW is a common software framework for all FCC accelerators (FCC-ee, FCC-eh and FCC-hh) and for all experiments.

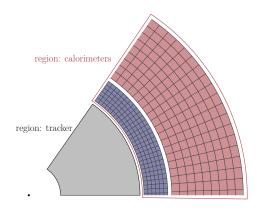
• uses GAUDI as a framework

FCCSW

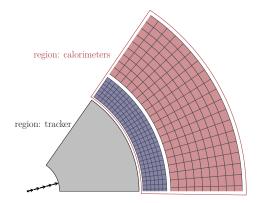
FCCSW is a common software framework for all FCC accelerators (FCC-ee, FCC-eh and FCC-hh) and for all experiments.

- uses GAUDI as a framework
- Geant4 simulation (fast and full simulation):
 - $\circ~$ sim service configures Geant4 (physics list, user actions...)
 - $\circ~{\rm sim}$ algorithm passes and retrieves ${\tt G4Event}$
 - $\circ~$ simulation is entirely in hands of Geant4, also fast simulation

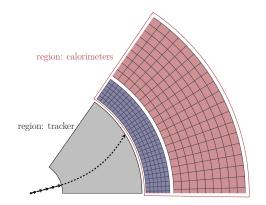
FCCSW

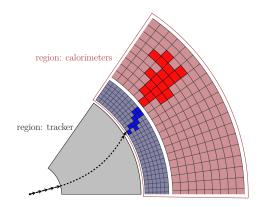

FCCSW is a common software framework for all FCC accelerators (FCC-ee, FCC-eh and FCC-hh) and for all experiments.

- uses GAUDI as a framework
- Geant4 simulation (fast and full simulation):
 - $\circ~$ sim service configures Geant4 (physics list, user actions...)
 - $\circ~{\rm sim}$ algorithm passes and retrieves ${\tt G4Event}$
 - $\circ~$ simulation is entirely in hands of Geant4, also ${\bf fast}$ simulation
- others (**fast** simulation):
 - $\circ~$ Delphes parametrised simulation
 - $\circ~$ tracker fast simulation developed in ACTS (ATLAS Common Tracking Software)


Fast simulation in Geant 4

- parametrisation (G4FastSimulationManagerProcess)
 - $\circ~$ another 'physics' process
 - $\circ~$ can be added to specific particle types
- fast simulation models (G4VFastSimulationModel)
 - $\circ~$ attached to region
 - volume
 - few volumes
 - defined in parallel geometry
 - triggered by chosen particles
 - based on G4ParticleDefinition (PDG data)
 - based on G4FastTrack (kinematics)
 - $\circ~$ describe what happens to particle
 - G4FastStep allows to go back to G4Track
 - changes to momentum/position are made


- geometry described in DD4hep (envelope for tracker and sensitive detectors for calorimeters)
- fast simulation models
 - $\circ~$ create tracks for tracker detectors
 - $\circ~$ create energy deposits (showers) for calorimeters


- geometry described in DD4hep (envelope for tracker and sensitive detectors for calorimeters)
- fast simulation models
 - $\circ~$ create tracks for tracker detectors
 - $\circ~$ create energy deposits (showers) for calorimeters
- at the entrance point to the region:
 - ordinary transportation is disabled

- geometry described in DD4hep (envelope for tracker and sensitive detectors for calorimeters)
- fast simulation models
 - $\circ~$ create tracks for tracker detectors
 - \circ create energy deposits (showers) for calorimeters
- at the entrance point to the region:
 - ordinary transportation is disabled
 - for tracker:
 - new exit position is calculated
 - particle momentum can be changed (smeared)
 - tracks stored in Event Data Model

- geometry described in DD4hep (envelope for tracker and sensitive detectors for calorimeters)
- fast simulation models
 - $\circ~$ create tracks for tracker detectors
 - $\circ~$ create energy deposits (showers) for calorimeters
- at the entrance point to the region:
 - ordinary transportation is disabled
 - for tracker:
 - new exit position is calculated
 - particle momentum can be changed (smeared)
 - tracks stored in Event Data Model
 - \circ for calorimeter:
 - if particle is contained inside, hits are created
 - energy deposits stored in Event Data Model

FCC fast simulation

Calorimeters

- hits in the calorimeter created instantly, based on the particle type and energy
- analytical parametrisation of the radial and longitudinal profiles
- implementation of shower parametrisation (for electrons) in Geant4: GFlash
- currently in validation

Summary

Main goal

- using Geant4 as the framework for both fast and full simulation
- configuration of the simulation on Gaudi side:
 - $\circ~$ which models to use
 - $\circ~$ what parametrisation to take
 - $\circ~$ where to perform fast and where full sim
- extracting as much as possible to make it detector-independent Gaudi simulation package 'Gaussino'

Current ideas for future

- fast simulation in tracker using resolutions obtained from full simulation
- extension of GFlash parametrisation
- frozen showers

I would be glad to hear your suggestions and hope for fruitful cooperation.

BACKUP SLIDES

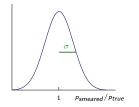
Tracking detector

- fast simulation simulates the detector response:
 - physics processes
 - $\circ~$ detector performance (resolution and efficiency)
 - $\circ~$ reconstruction procedure

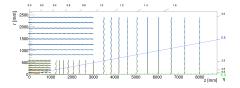
by smearing the particle momentum (and exit position)

- smeared tracks can be treated as 'reconstructed'
- the three CPU expensive stages detector simulation, digitisation, reconstruction, are replaced with a single, fast one

Tracking detector

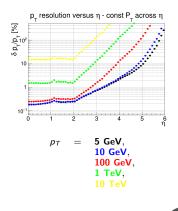

- fast simulation simulates the detector response:
 - physics processes
 - $\circ~$ detector performance (resolution and efficiency)
 - $\circ~$ reconstruction procedure

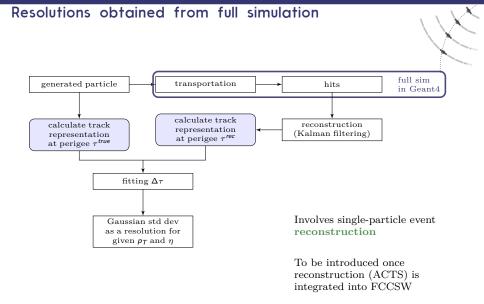
by smearing the particle momentum (and exit position)


- smeared tracks can be treated as 'reconstructed'
- the three CPU expensive stages detector simulation, digitisation, reconstruction, are replaced with a single, fast one

Smearing resolutions σ may be derived from:

- 1. momentum dependent formula (using existing measurements)
- 2. external packages, e.g. tkLayout
- 3. full sim performed in the same framework (in particular, using the same geometry description)


tkLayout



- configuration tool with a sample detector for FCC-hh has been prepared
- resolutions can be read in FCCSW and used for momentum smearing in tracker

- tracker layout simulation toolkit
- developed and used for CMS Phase 2 Upgrade studies

