News on new physics in B decays

David M. Straub Universe Cluster/TUM, Munich

Outline

2 NP in radiative B decays

David Straub (Universe Cluster)

◆□▶ ◆昼▶ ◆臣▶ ◆臣▶ ─ 臣 ─ のへで

$b \rightarrow s$ FCNC decays

Loop- & CKM-suppressed \Rightarrow sensitive to new physics

$B^+ \rightarrow K^+ \mu^+ \mu^-$ branching ratio

David Straub (Universe Cluster)

$B_s ightarrow arphi \mu^+ \mu^-$ branching ratio

David Straub (Universe Cluster)

<ロト <回ト < 三ト < 三ト = 三 のへで

$B^0 ightarrow K^* \mu^+ \mu^-$ angular observables

Significance of tensions

Mode	Observable	Bin	Pull
$B^0 o K^* \mu^+ \mu^-$	P'_5	4-6	-2.6σ
$B_{ m s} o arphi \mu^+ \mu^-$	BR	1-6	-3.3σ
$B^+ ightarrow K^+ \mu^+ \mu^-$	BR	1-6	-2.0σ
$B^+ o K^+ \mu^+ \mu^-$	BR	15-22	-2.6σ

Suspects: New physics? Underestimated theory uncertainties?

(flavio v0.13.1 using combined LCSR+LQCD FFs for $B \rightarrow V$ FFs Bharucha et al. 1503.05534 and FNAL/MILC $B \rightarrow K$ FFs Bailey et al. 1509.06235; hadronic unc. estimated as in Altmannshofer and Straub 1411.3161)

New physics?

NP effects model-independently described by modification of Wilson coefficients of dim.-6 operators

$$\mathcal{H}_{eff} = -\frac{4 \, G_F}{\sqrt{2}} \frac{e^2}{16\pi^2} V_{tb} V_{ts}^* \sum_{i} C_i O_i + \text{h.c.}$$

$$\mathcal{O}_{7}^{(i)} = O_{S_{L(R)}}^{(i)} \mathcal{O}_{9,10}^{(i)} = O_{9,10}^{(i)} = O_{S_{L(R)}}^{(i)} \mathcal{O}_{1,10}^{(i)} = O_{1,10}^{(i)} \mathcal{O}_{1,10$$

$$\begin{aligned} O_{7}^{(\prime)} &= \frac{m_{b}}{e} (\bar{s}\sigma_{\mu\nu}P_{R(L)}b)F^{\mu\nu} \\ O_{9}^{(\prime)} &= (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\ell) \\ O_{10}^{(\prime)} &= (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \end{aligned}$$

David Straub (Universe Cluster)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

Global constraints on C₉ & C₁₀

- ► Global fit including also 3 fb⁻¹ LHCb measurements of BR($B^0 \rightarrow K^* \mu^+ \mu^-$) (2016) and $B_s \rightarrow \varphi \mu^+ \mu^-$ (2015), updated $B \rightarrow V$ FFs from v2 of Bharucha et al. 1503 05534
- Best fit point: 4.5σ pull from SM

see also Altmannshofer and Straub 1411.3161, Descotes-Genon et al. 1510.04239, Hurth et al. 1603.00865

A closer look

Pulls for individual modes:

- ► $B \rightarrow K^* \mu^+ \mu^-$: **2**.7 σ
- ► $B_s \rightarrow \varphi \mu^+ \mu^-$: **3.4** σ
- ► $B \rightarrow K\mu^+\mu^-$: **2.6** σ

Comment on "flavour sigmas"

- Clearly crucial to understand the source of these tensions
- In my opinion, we (theorists) should not give in to the temptation of inflating errors just because of "tensions" with data. Might be statistical fluctuations, experimental problems, new physics!
- Nevertheless, use tensions as opportunity to scrutinize whether uncertainties have been estimated conservatively enough

Scrutinizing uncertainties: form factors?

David Straub (Universe Cluster)

Cartoon: q^2 dependence of $B \to K^* \ell^+ \ell^-$

 $d\Gamma/dq^2$

David Straub (Universe Cluster)

- イロト (品) (注) (注) (注) うくで

Scrutinizing uncertainties: charm loops?

Culprit: matrix element of O_{1,2}

 $\langle \bar{K}^* | T\{j^{\mu}_{em}(x)C_{1,2}O_{1,2}(0)\} | \bar{B} \rangle$

 $O_2 = (\bar{s}_L \gamma_\mu c_L)(\bar{c}_L \gamma^\mu b_L)$

- Since O₉ ∝ ℓ̄γ^μℓ, h_λ could mimic a new phyiscs effect in C₉
- ► can be parametrised as q²-dependent effective shift of C₉: ∆C₉^{+,-,0}(q²) for the 3 helicity amplitudes

see e.g. Khodjamirian et al. 1006.4945, Lyon and Zwicky 1406.0566

q^2 dependence of ΔC_9^{λ}

- ► Bin-by-bin fit of ΔC_9^0 vs. ΔC_9^- from low- q^2 $B \rightarrow K^* \mu^+ \mu^-$ data
- New physics: expect $\Delta C_9^0 = \Delta C_9^-$ equal for all bins

Current data **not precise enough** to exclude new physics hypothesis!

see also Altmannshofer and Straub 1503.06199,

David Straub (Universe Cluster)

<ロト <回ト < 三ト < 三ト < 三ト < 三 ・ のへで

Violation of lepton flavour universality?

$$R_{K} = \frac{\mathsf{BR}(B \to K\mu^{+}\mu^{-})_{[1,6]}}{\mathsf{BR}(B \to Ke^{+}e^{-})_{[1,6]}}$$
$$= 0.745^{+0.090}_{-0.074} \pm 0.036$$
$$R_{K}^{\mathsf{SM}} \simeq 1.00$$

- 2.6σ deviation from lepton flavour universality (LFU)
- This cannot be explained by a hadronic effect!

The plot thickens ...

- ▶ Belle measurement of $B \rightarrow K^*ee$ vs. $\mu\mu$ angular observables
- 2.6 σ tension in $\mu\mu$, 1.1 σ agreement in ee
- (S. Wehle @ CKM 2016, Mumbai, November 30)

David Straub (Universe Cluster)

LFU in $B \to D^{(*)} \ell v$

Charged-current decays $B \rightarrow D^{(*)} \ell v$:

- with $\ell = e, \mu$ used to measure CKM element V_{cb}
- $B \rightarrow D^{(*)} \tau v$ known in SM up to form factor uncertainties

Violation of μ - τ universality?

- 3.9σ combined tension with SM (HFAG)
- Note that SM (FF) uncertainties are insignificant for the tension

David Straub (Universe Cluster)

EFT analysis

$$\mathcal{H}_{\mathrm{eff}} = -rac{4\,G_F}{\sqrt{2}} V_{cb} \sum_i C_i O_i + \mathrm{h.c.}$$

David Straub (Universe Cluster)

ふつか (目) (目) (目) (目) (日) (日) (日) (

$B_c \rightarrow \tau v$ constraint

- Not a single B_c branching ratio has been measured but its lifetime!
- Even with conservative assumptions, scalar operators cannot explain R^{*}_D

see Li et al. 1605.09308, plot from Alonso et al. 1611.06676

David Straub (Universe Cluster)

The $R_K - P'_5 - R_D^{(*)}$ connection

The operators

$$egin{aligned} O_9 &- O_{10} \propto (ar{s}_L \gamma^\mu b_L) (\ell_L \gamma_\mu \ell_L) \ O_V &= (ar{c}_L \gamma^\mu b_L) (\ell_L \gamma_\mu v_L) \end{aligned}$$

can explain all "anomalies"

they could arise from a common source at short distance:

$$Q_{ql}^{(3)} = (\bar{Q}_L \gamma^\mu \sigma^i Q_L) (L_L \gamma_\mu \sigma_i L_L)$$

especially compelling when NP couples dominantly to 3rd generation

Bhattacharya et al. 1412.7164, Greljo et al. 1506.01705

David Straub (Universe Cluster)

< □ > < □ > < 亘 > < 亘 > < 亘 > < 亘 < ○ < ○

Unified "one-particle" models

Spin	$SU(3)_c$	$SU(2)_L$	Name	Suggested
1	1	3	W', Z'	Greljo et al. 1506.01705
0	3	1	S ₁	Bauer and Neubert 1511.01900
0	3	3	S ₃	Medeiros Varzielas and Hiller 1503.01084
1	3	1	U_1	Barbieri et al. 1512.01560
1	3	3	U_3	Fajfer and Košnik 1511.06024

... and many more studies in the last 2 years

* See Bečirević et al. 1608.08501 for a LQ model with RH neutrinos

David Straub (Universe Cluster)

Indirect constraints

- ► U_3, S_3 : strong constraint from $B \to K \nu_\tau \bar{\nu}_\mu$ cf. Buras et al. 1409.4557
- ► S₁:
 - ▶ $b \rightarrow s\mu^+\mu^-$ generated at 1-loop level Bauer and Neubert 1511.01900
 - ▶ Problem with μ/e non-universality in $B \rightarrow D\ell v$ Bečirević et al. 1608.07583
- ► RG effects lead to purely leptonic LFV ($\tau \rightarrow \mu \ell \ell$, ...) Feruglio et al. 1606.00524

Direct constraints

- Strong constraints from $b\bar{b} \rightarrow \tau^+ \tau^-$ searches at ATLAS/CMS Greljo et al. 1506.01705, Faroughy et al. 1609.07138
 - ▶ both Z' (s-channel) and LQ (t-channel)

- ► U₁ LQ on the verge of being excluded
- W'/Z' only allowed if light (M < 500 GeV) or broad ($\Gamma/M > 30\%$)

Anomalies in B decays?

2 NP in radiative B decays

David Straub (Universe Cluster)

イロト イヨト イヨト イヨト 三目 - のへの

The $b \rightarrow s\gamma$ transition

$$Q_{7} = \frac{e}{16\pi^{2}}m_{b}(\bar{s}_{L}\sigma_{\mu\nu}b_{R})F^{\mu\nu} \qquad Q_{7}' = \frac{e}{16\pi^{2}}m_{b}(\bar{s}_{R}\sigma_{\mu\nu}b_{L})F^{\mu\nu}$$

David Straub (Universe Cluster)

▲ロト ▲屈 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - - - の Q ()~

Strongest constraint: inclusive decay

$$\begin{split} &\mathsf{BR}(B\to X_s\gamma)^{\mathsf{SM}}_{E_{\gamma}>1.6\,\mathsf{GeV}} = (3.36\pm0.23)\times10^{-4} \\ &\mathsf{BR}(B\to X_s\gamma)^{\mathsf{exp}}_{E_{\gamma}>1.6\,\mathsf{GeV}} = (3.43\pm0.22)\times10^{-4} \end{split}$$

Misiak et al. 1503.01789, Amhis et al. 1412.7515

• Excellent agreement, but no information on Im $C_7^{(\prime)}$ or C_7^{\prime}/C_7

David Straub (Universe Cluster)

Probing C'_7

- Exclusive decays
 - ► $B^0 \rightarrow K^{*0} \gamma$
 - ► $B^+ \to K^{*+} \gamma$
 - $B_s \rightarrow \varphi \gamma$
 - $B \to K^* e^+ e^-$ at very low $q^2_{e^+e^-}$ (close to the photon pole)
- challenge: form factors
 - consider observables where FFs drop out!
- hadronic uncertainties beyond FFs: less problematic than in SL

Observables less sensitive to form factors

• Mixing-induced CP asymmetry in $B^0 \to K^*(\to K_S \pi) \gamma$

$$\Gamma_{\bar{B}\to K_{S}\pi\gamma}(t) - \Gamma_{\bar{B}\to K_{S}\pi\gamma}(t) = \frac{e^{-t/\tau}}{2\tau} \left[\frac{S}{S} \sin(\Delta M_{q}t) - C\cos(\Delta M_{q}t) \right]$$

• Mass-eigenstate rate asymmetry in $B_s o arphi \gamma$

$$\Gamma_{B_{s}
ightarrow arphi \gamma}(t) + \Gamma_{B_{s}
ightarrow arphi \gamma}(t) = rac{\mathrm{e}^{-t/ au}}{2 au} \left[\mathrm{cosh}(rac{\Delta\Gamma_{q}t}{2}) - A_{\Delta\Gamma} \sinh(rac{\Delta\Gamma_{q}t}{2})
ight]$$

► $B \to K^* e^+ e^-$ angular observables P_1, A_7^{Im} All these observables directly probe C_7' !

David Straub (Universe Cluster)

Measurements

Observable	SM prediction	Measurement	
${\cal S}(B^0 o {\cal K}^* \gamma)$	-0.023 ± 0.015	-0.16 ± 0.22	
${\sf A}_{\Delta \Gamma}(B_s o arphi \gamma)$	0.031 ± 0.021	-1.0 ± 0.5	2
$\langle P_1 angle (B^0 o K^* e^+ e^-)_{[0.002, 1.12]}$	$\textbf{0.04} \pm \textbf{0.02}$	-0.23 ± 0.24	1
$\langle A_T^{Im} \rangle (B^0 ightarrow K^* e^+ e^-)_{[0.002, 1.12]}$	0.0003 ± 0.0002	$\textbf{0.14} \pm \textbf{0.23}$	1

- ¹ LHCb 2015
- ² LHCb 2016

David Straub (Universe Cluster)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ つへぐ

Global constraints on C'_7 Paul and Straub 1608.02556

$$\begin{array}{c} \hline & \text{branching ratios} \\ \hline & A_{\Delta\Gamma}(B_s \to \phi\gamma) \\ \hline & \langle P_1 \rangle (B^0 \to K^{*0} e^+ e^-) \\ \hline & S_{K^*\gamma} \\ \hline & \langle A_T^{lm} \rangle (B^0 \to K^{*0} e^+ e^-) \end{array}$$

David Straub (Universe Cluster)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

flavio

► a Python package for flavour phenomenology in the SM & beyond

- repository: http://github.com/flav-io/flavio
- documentation: http://flav-io.github.io
- Features
 - SM predictions with uncertainties
 - NP predictions for arbitrary Wilson coefficients
 - Fitting SM parameters and Wilson coefficients to data
- Click on logo in slides
 to reproduce plots!

Conclusions

- Anomalies in $b \rightarrow s \mu^+ \mu^-$ and $b \rightarrow c \tau v$
 - Model-independent NP explanation possible
 - Could be due to conspiracy of underestimated hadronic effects & underestimated exp. systematics
 - Simultaneous explanations increasingly challenged, even by direct searches
- ▶ NP in radiatie *B* decays
 - exclusive decays constrain C'₇
 - new observables measured by LHCb
 - clean null tests excellent future prospects for improvement (LHCb & Belle-II)