COMBINED ANALYSIS OF CHARM-QUARK FRAGMENTATION-FRACTION MEASUREMENTS

Mykhailo Lisovyi^a, Andrii Verbytskyi^b, **Oleksandr Zenaiev**^c

^aPhysikalisches Institut der Universität Heidelberg, ^bMax-Planck-Institut für Physik, ^cDESY

Vienna Central European Seminar 2016, 1-2 December 2016

Eur.Phys.J. C76 (2016) 397 [arXiv:1509.01061]

$\sigma = PDF \otimes ME \otimes FF$

• **Fragmentation** process cannot be described perturbatively \Rightarrow comparison to experimental data is essential.

• An important parameter of the fragmentation is a probability to form a given hadron in the end of the process, fragmentation fraction (FF):

 $f(c \rightarrow H) = \sigma(H) / \sigma(c)$

• Are FF universal, i.e. independent of the hard production mechanism? • Do FF of all known weakly decaying (w.d.) charm hadrons sum up to 1?

• Provide combined FF with best precision

• sufficient number of measured w.d. states • sufficient data precision

Selected data form following groups of measurements:

 $\star e^+e^-$, B-factories [BELLE, BaBar, ARGUS, CLEO]

 $\star e^+e^-$, Z decays [OPAL, ALEPH, DELPHI]

 $\star e^{\pm}p$, DIS [H1, ZEUS]

 $\star e^{\pm}p$, PHP [ZEUS]

 $\star pp$ [LHCb, ALICE, ATLAS] \leftarrow LHC Run I & and Run II data included!

Combination procedure

- χ^2 minimisation with MINUIT
- Free parameters: FF, charm x-sections, kinematic phase space factors
- Correlation of branching fractions uncertainties are taken into account
- Experimental correlation uncertainties are taken into account if available

• Additionaly calculated:

$$R_{u/d} = \frac{f(c \to c\bar{u})}{f(c \to c\bar{d})} \approx \frac{f(c \to D^0) - f(c \to D^{*+})\mathcal{B}_{D^{*+} \to D^0}}{f(c \to D^{+}) + f(c \to D^{*+})\mathcal{B}_{D^{*+} \to D^0}} \qquad \gamma_s = \frac{2f(c \to c\bar{s})}{f(c \to c\bar{u}/\bar{d})} (J = 0) \approx \frac{2f(c \to D^+)}{f(c \to D^+) + f(c \to D^0)} \\ P_V^d = \frac{f(c \to c\bar{u}/\bar{d})(J = 1)}{f(c \to c\bar{u}/\bar{d})(J = 0)} \approx \frac{f(c \to D^{*+}) + f(c \to D^{*0})}{f(c \to D^+) + f(c \to D^0)} \qquad \gamma_s^* = \frac{2f(c \to c\bar{s})}{f(c \to c\bar{u}/\bar{d})} (J = 1) \approx \frac{2f(c \to D^{*+})}{f(c \to D^{*+}) + f(c \to D^{*0})} \\ \gamma_s^* = \frac{2f(c \to c\bar{s})}{f(c \to c\bar{u}/\bar{d})} (J = 1) \approx \frac{2f(c \to D^{*+})}{f(c \to D^{*+}) + f(c \to D^{*0})}$$

fractions

fragmentation

Charm

• Need to know $\sigma(c)$ $(e^+e^- \text{ only})$, can check $S = \sum_{w,d} f(c \to H) = 1$

2. $f(c \rightarrow H) = \sigma(H) / \sum_{w.d.} \sigma(H)$

• More model independent, but needs all weakly decaying states measured

		Fix $\sigma(e^+e^- \rightarrow c\bar{c})$	Constrained S	
ctories	$f(c \!\rightarrow\! D^{*+})$	0.2470 ± 0.0137	0.2525 ± 0.0155	
	$f(c \!\rightarrow\! D^{*0})$	0.2241 ± 0.0304	0.2291 ± 0.0316	U
	$f(c \!\rightarrow\! D_s^{*+})$	0.0532 ± 0.0082	0.0544 ± 0.0085	CAV
3-fa	$f(c \!\rightarrow\! D^+)$	0.2639 ± 0.0139	0.2698 ± 0.0125	ЧР
, -	$f(c \!\rightarrow\! D^0)$	0.5772 ± 0.0241	0.5901 ± 0.0140	
e^+	$f(c \!\rightarrow\! D_s^+)$	0.0691 ± 0.0045	0.0707 ± 0.0048	+
Ð	$f(c \!\rightarrow\! \Lambda_c^+)$	0.0526 ± 0.0031	0.0611 ± 0.0060	J
	$\chi^2/n_{ m dof}$	19.2/21	17.0/20	
	S	0.9701 ± 0.0284	1.0000 ± 0.0005	
	$R_{u/d}$	0.9508 ± 0.0752	0.9508 ± 0.0752	
	P_V^d	0.5601 ± 0.0432	0.5601 ± 0.0431	
	γ_s	0.1644 ± 0.0121	0.1644 ± 0.0121	
	γ^*_s	0.2257 ± 0.0385	0.2257 ± 0.0385	

Constrained SFix $\frac{\Gamma_{c\bar{c}}}{\Gamma_{hadrons}}$ $f(c \rightarrow D^{*+}) | 0.2369 \pm 0.0064 | 0.2454 \pm 0.0071$ $f(c \rightarrow D_s^{*+}) | 0.0545 \pm 0.0144 | 0.0547 \pm 0.0145 |$ $f(c \rightarrow D^+) | 0.2267 \pm 0.0100 | 0.2429 \pm 0.0102 |$ $f(c \rightarrow D^0) | 0.5470 \pm 0.0215 | 0.5894 \pm 0.0132$ $f(c \rightarrow D_s^+) | 0.0925 \pm 0.0082 | 0.0996 \pm 0.0083 |$ $0.0555 \pm 0.0065 \ 0.0600 \pm 0.0066$ $f(c \rightarrow \Lambda_c^+)$ $\chi^2/n_{
m dof}$ 6.7/137.8/13 $0.9292 \pm 0.0261 | 1.0000 \pm 0.0005$ S $R_{u/d}$ $0.9987 \pm 0.0627 | 1.0348 \pm 0.0580$ P_V^d $0.6119 \pm 0.0185 | 0.6000 \pm 0.0177$ $0.2390 \pm 0.0224 | 0.2394 \pm 0.0223$ γ_s

 $S = \sum_{w.d.} f(c \rightarrow H) \approx 1$ within 3 σ

	Constrained S	$+ \text{ fix } \sigma(ee \rightarrow c\bar{c}), \frac{\Gamma_{c\bar{c}}}{\Gamma_{hadman}}$
$f(c \! ightarrow D^{*+})$	0.2429 ± 0.0049	0.2386 ± 0.0046
$f(c \! ightarrow D^{*0})$	0.2306 ± 0.0315	0.2250 ± 0.0299
$f(c\! ightarrow\!D_s^{*+})$	0.0548 ± 0.0074	0.0537 ± 0.0072
$f(c \! ightarrow \! D^+)$	0.2404 ± 0.0067	0.2439 ± 0.0067
$f(c\! ightarrow\!D^0)$	0.6086 ± 0.0076	0.6141 ± 0.0073
$f(c\! ightarrow\!D_s^+)$	0.0802 ± 0.0040	0.0797 ± 0.0040
$f(c\! ightarrow\!\Lambda_c^+)$	0.0623 ± 0.0041	0.0549 ± 0.0026
$\chi^2/n_{ m dof}$	65.6/64	87.1/67
$R_{u/d}$	1.0971 ± 0.0354	1.1164 ± 0.0354
P_V^d	0.5578 ± 0.0375	0.5403 ± 0.0355
γ_s	0.1890 ± 0.0103	0.1859 ± 0.0101
γ^*_s	0.2314 ± 0.0347	0.2316 ± 0.0346
$f(c \rightarrow D_1^+)$	$0.0460^{+0.0269}_{-0.0182}$	
$f(c \rightarrow D_2^{*+})$	$0.0320^{+0.0094}_{-0.0082}$	
$f(c \rightarrow D_1^0)$	0.0297 ± 0.0038	
$f(c \rightarrow D_2^{*0})$	0.039	4 ± 0.0068
$f(c \rightarrow D_{s1}^+)$	0.010	9 ± 0.0014
γ_{s1}	0.2	$87^{+0.079}_{-0.109}$

- Best precise reliable up-to-date charm FF: use them in your analysis!
- Precision driven mainly by e^+e^- data
- LHC data are not dominating at the moment
- Consistent with recent LHCb data at 5 TeV, including these data is straightforward and improves precision of the combined results [work in progress]

Thanks

This contribution was supported by COST

S.

Glazov,

Lohrmann, I. Brock,

- Physical implications of reduced uncertainties are in improved charm cross sections, their ratios etc.
- E.g. charm cross-section ratio extracted from LHCb data $R_{13/7} = 1.97 \pm 0.18$ vs theoretical prediction $R_{13/7}(\text{th}) = 1.39^{+0.12}_{-0.29}$ [arXiv:1506.08025] (based on PDF) fits with 7 TeV data)

U. Karshon, S. Kluth

(action CA15108)

Conclusions

- Summary of measurements of the fragmentation of charm quarks into a specific charm hadron is given
- Measurements in different production regimes agree within uncertainties, supporting the hypothesis of fragmentation universality
- Hypothesis that the sum of known weakly decaying charm hadrons FF is equal to 1 is checked to hold within 3 σ using the e^+e^- data
- Averages have significantly reduced uncertainties compared to individual measurements
- The application of the obtained values can significantly reduce uncertainties in new analyses and published results