

LHC Injectors Upgrade

Proton throughput in the LHC Injectors Upgrade (LIU) era

Giovanni Rumolo

Special thanks to: H. Bartosik and R. Steerenberg

With the input of: G. Arduini, M. Calviani, C. Carli, R. Catherall, E. Chiaveri,

- H. Damerau, A. Fabich, M. Fraser, L. Gatignon, S. Gilardoni, M. Giovannozzi,
- B. Goddard, E. Gschwendtner, K. Hanke, M. Lamont, M. Meddahi, E. Métral,

B. Mikulec, E. Shaposhnikova

Outline of the talk

- CERN's accelerator complex
 - Overview
 - Timeline out to 2035 and LHC Injectors Upgrade (LIU)
- Foreseen proton throughput including LIU upgrades
 - Outlook for non-LHC physics users (existing and future?)
 - · General considerations
 - Optimisation of the delivery rates
 - Limitations and challenges
- Conclusions

CERN accelerator complex

neutrons

ion

p (antiproton)

electron

CERN's Accelerator Complex

p (proton)

----- proton/antiproton conversion

Timelines up to 2035

- LHC Injectors Upgrade (LIU) installations during Long Shutdown 2
 - Preparation (studies, hardware design/production) until LS2
 - LIU beam commissioning during Run 3
- High Luminosity LHC (HL-LHC) installations during Long Shutdown 3

LHC Injectors Upgrade (LIU)

⇒AIM of the project

- Increase intensity/brightness in the injectors for LHC beams to match High Luminosity LHC (HL-LHC) requirements
- Increase injector reliability and lifetime to cover HL-LHC run (until ~2035)

Main baseline items

- Replace Linac2 with Linac4 → H⁻ charge exchange injection at 160 MeV into the PS-Booster
- 2 GeV PS-Booster to PS transfer
- Upgrade of main RF system in SPS

LHC Injectors Upgrade (LIU)

	\mathcal{N} (x 10 11 p/b)	ε (μ m)
HL-LHC	2.3	2.1

- LIU era: beam commissioning towards the ultimate goal of matching the desired (HL-LHC) parameters at LHC injection
- After LS3 proton delivery rate to LHC of about 3 x 10¹⁷ p/year (and a similar, probably higher, number dumped in SPS for beam preparation)

LHC Injectors Upgrade (LIU)

Intensity at 450 GeV [p/b]

	\mathcal{N} (x 10 11 p/b)	ε (μm)
HL-LHC	2.3	2.1

- LIU era: beam commissioning towards the ultimate goal of matching the desired (HL-LHC) parameters at LHC injection
 - After LS3 proton delivery rate to LHC of about **3** x **10**¹⁷ p/year

1e11

ics beams r, probably higher, ped in SPS for beam preparation)

PSB & ISOLDE

CERN's Accelerator Complex

Perspectives for the Medium Term

- HIE being implemented (SC linac for post-accelerated beam to 10 MeV/u)
- Higher intensity available from PSB after connection to Linac4 (LS2)
- Option: Upgrade of extraction energy of beams to ISOLDE to 2 GeV (post-LS2)

Future beam to ISOLDE after LIU upgrades

- Higher intensity thanks to
 - H- charge exchange injection at 160 MeV
 - Increased RF power with new RF system

Limitations

- Current at the end of Linac4
- Injection and extraction losses

1.6 x 10¹³ p per pulse and per ring with 40 mA (unchopped) from Linac4 and

Twice as much as available today from PSB

100 turns injection

J. Abelleira et al, in LIU-PSB Injection meetings

PS & users

CERN's Accelerator Complex

- Expected to run until 2030 and beyond
 - Target exchange during LS2
 - To increase present limit of 1.66 x 10¹² pot/s to 3 x 10¹² pot/s
 - To accept up to $1.5 2 \times 10^{13}$ pot/pulse
 - Expected lifetime of target ~10 years, many clients
- Protons to nTOF: present and future
 - 8 x 10¹² pot/pulse (17% of supercycle dedicated, 17% parasitic with half intensity)
 - RF power for acceleration and bunch rotation before extraction
 - Transverse instability
 - Losses at extraction septum
 - \rightarrow This results in the delivery of 1.9 x 10¹⁹ pot/year
 - Beam after LS2 and LIU upgrades (>10¹³ pot/pulse?)
 - More intensity from the PS-Booster
 - Enhanced beam stability
 - Lower transverse emittance

- Expected to run until 2030 and beyond
 - Major renovation of AD target area during LS2. Main items
 - New air-cooled target and magnetic horn
 - Ventilation system and consolidation of buildings/tunnels
 - ELENA expected to start commissioning with beam (from external source) at the end of 2016
 - After commissioning with beam from AD, most experiments will connect to ELENA

- Expected to run until 2030 and beyond
 - Major renovation of AD target area during LS2. Main items
 - New air-cooled target and magnetic horn
 - Ventilation system and consolidation of buildings/tunnels
 - ELENA expected to start commissioning with beam (from external source) at the end of 2016
 - After commissioning with beam from AD, most experiments will connect to ELENA
- Protons to AD/ELENA: present and future
 - ~1.5 x 10¹³ pot/pulse mainly limited by shielding in AD ring
 - Beam on AD target every ~100 s
 - Similar AD beam request in the future (increase depends on improvement of AD shielding)
 - Higher proton rate for stacking (9.6 sec period after upgrade) and high energy antiprotons
 - \rightarrow 2 4 x 10¹⁸ pot/year limited mainly by the repetition rate

- Expected to run until 2030 and beyond
 - Test beams and irradiation facility
 - Major renovation plans during LS2
 - Redesign and renovation of transfer lines during LS2
 - Improvement of RP aspects, consolidation of infrastructure

Protons to East Area: present and future

- Low intensity: 1 − 5 x 10¹¹ p/spill
- 17% of cycles in supercycle
- No change expected in the East beam request in the future, maybe ion beams should be also included for irradiation tests
- → ~10¹⁸ pot/year

SPS & users

CERN's Accelerator Complex

- Both experiments will be active until LS3 and beyond
 - Several clients for HiRadMat to test accelerator components
 - AWAKE: proof of concept for plasma wake acceleration (<LS2), demonstration of plasma wake acceleration with good beam quality, scalability and applications (>LS2)

Protons to AWAKE and HiRadMat: present and future

- HiRadMat: Single bunches (10¹¹ p/pulse) to full LHC beams (pulses of 288 bunches with 1.2 x 10¹¹ p/b) for ~10 experiments/year mainly limited by environmental impact
 - Double intensity expected after LIU upgrades
- AWAKE: Bright intense short single bunches (~3.5 x 10¹¹ p/pulse). With LIU:
 - RF power upgrade and longitudinal impedance reduction (stability, bunch shortening)
 - Lower transverse emittance
- → 2 x 10¹⁶ pot/year for HiRadMat and 10¹⁷ pot/year for AWAKE

North Area (and BDF scenario)

Expected to run until 2030 and beyond

- Several clients
 - T2, T4, T6 (TCC2) beam line users
 - Request for ions to TCC2 for about four weeks/year, expected to continue until 2030
 - Possible future scenario: Beam Dump Facility to share protons to North Area
- Some improvements planned if BDF
 - Replace existing splitter magnet with bipolar version and pulsed TT20 optics
 - Beam instrumentation (e.g. BLMs in area of splitter)

North Area (and BDF scenario)

Expected to run until 2030 and beyond

- Several clients
 - T2, T4, T6 (TCC2) beam line users
 - Request for ions to TCC2 for about four weeks/year, expected to continue until 2030
 - Possible future scenario: Beam Dump Facility to share protons to North Area
- Some improvements planned if BDF
 - Replace existing splitter magnet with bipolar version and pulsed TT20 optics
 - Beam instrumentation (e.g. BLMs in area of splitter)

Protons to North Area: estimates from past experience

- 4 x 10¹³ p/spill to TCC2
- 4.2 x 10¹³ p/spill to BDF
- Both limited by losses and machine activation, margin to improve with smaller LIU beams and RF upgrade in SPS
- → Target for BDF is 4 x 10¹⁹ pot/year how much available to TCC2 targets?

Assumptions

- Running scenario based on SPS operational experience in 2011-2012
- Spill of 9.7 s for beam to TCC2, 1 s for beam to BDF
- Several supercycle compositions considered (e.g. day and night, during LHC set up and filling)

Example of supercycle with CNGS, NA and LHC filling (2011)

BDF scenario: proton sharing

BDF scenario: proton sharing

- 25% less protons to TCC2 to be (reasonably) expected due to
 - HiRadMat (~10 days/year for set up and run)
 - Ions to NA (~4 weeks/year, assuming major set up is done during Machine Development time)
 - AWAKE to be included in the supercycle (for at least 2 months/year) if overlap
- BDF supercycles will limit proton delivery to physics users in PSB/PS

Optimisation of delivery rates

- Increase limits of proton delivery rates on target
 - Better compensation of the time distribution to users on timescale of weeks
 - Ex. nTOF/ISOLDE could increase the number of cycles in supercycle when other not online
- Normal/spare mechanism in supercycle driven by direct request from users
 - When one user's request off, play spares to increase number of other physics users in supercycle compatibly with limitations
 - Concept already applied to AD due to its 'sparse' repetition rate
 - Avoid manual readjustments from the CCC and use all available time
- Fully use the potential of the four PS-Booster rings
 - Concept already applied when playing parasitic nTOF with EAST users
 - Whenever users needing one PS-Booster ring are served, other three rings could serve ISOLDE
 - Fast pulsing of the switching magnet

Outstanding intensity limitations for non-LHC beams

- Beam losses in all accelerators → machine activation
 - PSB: Losses at recombination septum limit vertical emittance of high intensity beams
 - PS: Losses at extraction → With currently operational Multi Turn Extraction (MTE) islands are
 extracted without need of intercepting device and losses are controlled
 - SPS:
 - Losses due to limited vertical acceptance
 - Losses on electrostatic septum (ES) during slow extraction might pose in the future a serious limit on the maximum number of protons per year that can be extracted to the North Area
 - Capture losses

Other intensity limitations

- PS & SPS
 - RF power
 - Beam instabilities
 - Heating/outgassing/sparking of sensitive elements, stress on beam dump

Conclusions

LIU upgrades implemented in LS2

- Goal is to double intensity and brightness of LHC beams
- Benefits for non-LHC physics beams
 - ISOLDE, HiRadMat, AWAKE
 - Potential for nTOF and SPS Fixed Target
 - Still limitations from beam loss and machine activation

Future scenario with BDF at SPS

- Will constrain proton delivery to TCC2 targets and physics users upstream
- Options available to increase proton delivery in LIU era

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

BDF running scenario

Beam parameters

- Based on operationally demonstrated fixed target beam intensity
 - Room for improvement thanks to LIU upgrades (smaller emittance, SPS RF upgrade)

TCC2 target experiments and SHiP (general-purpose fixed target facility to search for hidden particles)

Typical PSB cycles (currently)

User	Kinetic energy (GeV)	Intensity (10 ¹⁰ p/ring)	Duration (s)	
ISOLDE	1.4	800		40% of cycles in supercycle
LHCPROBE/LH CINDIV		1 – 50		Typically only Ring 3
LHC25		160		4 + 2 rings
TOF		800	1.2	Only Ring 2
AD		360	1.2	
SFTPRO		400		
EAST		10 – 50		Only Ring 3 (with possible parasitic TOF)
MD	0.05, 0.16, 1.4	1 – 900		

Plans for the Medium Term

- HIE being implemented (SC linac for post-accelerated beam to 10 MeV/u)
- Higher intensity available from PSB after connection to Linac4 (LS2)
- Upgrade of extraction energy of beams to ISOLDE to 2 GeV? (post-LS2)

	ррр	Current	Power
MT Target**	6.4 x 10 ¹³	6 μΑ	13 kW

** assumes 50% of the cycles to ISOLDE

Beyond MT

- Will be steered also by potential clients and new facilities coming online in the next years (SPES@LNL, Spiral2@GANIL), however it is reasonable to assume long term running
- A long term option is Eurisol with the construction of the "next-generation" European ISOL radioactive ion beam (RIB) facility (~100 kW, will require new injector)

HIE: 10 MeV/u upgrade with SC linac

LS2: LIU upgrades

Run 3: ISOLDE 2 GeV upgrade

LS3

BDF running scenario

- Example of impact of BDF supercycle on other physics users in PSB and PS
 - FT + BDF during day time (i.e. including an MD cycle in all machines)
 - TOF runs in dedicated and parasitic on East cycles (half intensity)
 - Intensity to ISOLDE assumed to be doubled (6.4e13 p/pulse)

$3 \mu A$ to ISOLDE

(50% above present limitation, half of future limitation)

1.65 x **10**¹² p/s for **TOF**

(just compliant with present limitation and 55% of future limitation)

BDF running scenario – improved

- Example of impact of BDF supercycle on other physics users in PSB and PS
 - Implementing the optimisation on the PSB rings, i.e. combining three rings to ISOLDE with both TOF and East users
 - Immediate gain by >50% on ISOLDE, ~15% on TOF could be redistributed

4.7 μ**A** to ISOLDE (80% of future limitation)

1.9 x 10¹² p/s for TOF (65% of future limitation)

Challenges and areas of further exploration for non-LHC beams

PSB

- ☐ Full potential for high intensity beams will be determined by
 - Linac4 current depending on source performance present assumption is 40 mA unchopped
 - Range of energy sweep of the debuncher for longitudinal painting

PS

- Explore intensity limitation after LIU upgrade and impedance reduction
- Extraction beam loss reduction
 - Test MTE with high intensity (2.4 x 10¹³ p/pulse and above)
 - Barrier bucket or bunched beam with MTE to avoid kicker rise time
 - Higher extraction energy, possible with MTE → new kickers required + impact on duty cycle
 - Three injections into SPS (two 3-turn and one 4-turn extractions from PS) → increase of cycle time

SPS

- Beam loss reduction and extension of intensity reach
 - Voltage modulation for individual capture of each batch with new LLRF
 - Use 800 MHz cavity during the cycle to improve beam stability
 - Higher injection energy (smaller beam size + avoid transition crossing)
 - Possibility of gamma jump quadrupoles for transition crossing with high intensity
 - Extraction beam loss on-line monitoring and control (ZS alignment, extraction orbit control)
 - Collimation system to control/localize losses

Conclusions

LIU upgrades implemented in LS2

 Goal is to double intensity and brightness of LHC beams, which will remain below 0.1% of the total proton delivery of the CERN complex even in the HL-LHC era

Perspectives for most of the present physics users up to 2030+

- Some of the beams will clearly benefit from LIU upgrades (e.g. ISOLDE)
- Increase of target limitations is the key to improve throughput
 - Make a better use of potential higher intensity for non-LHC beams
 - Optimise time distribution between users on timescale of weeks and through normal/spare mechanism driven by user request

Beam Dump Facility scenario?

- Target is 4 x 10¹⁹ pot/year
- SPS: Proton delivery to TCC2 users likely to be limited below 10¹⁹ pot/year
- PSB and PS: physics users also well below future target limits with BDF supercycles
 - Potential to improve by optimising the use of the four PSB rings

Main limitations and challenges

- Machine activation especially due to (extraction) losses in all machines
- Several ideas to be tested to reduce losses

