AFTER@LHC: A fixed-target programme at the LHC for heavy-ion, hadron, spin and astroparticle physics

Jean-Philippe Lansberg
IPN Orsay, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay

AFTER@LHC Study group: http://after.in2p3.fr/after/index.php/Current_author_list
Part I

Assets, Kinematics, Possible Implementations and Luminosities
The fixed-target mode at the LHC

The fixed-target mode with TeV beams: why and what for?

Four fitted decisive features:

1. Accessing the high-x frontier

2. Achieving high luminosities, varying the atomic mass of the target at will, polarising the target.

Three fitted physics cases:

1. High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
2. Transverse dynamics and spin of gluons inside (un)polarised nucleons
3. Heavy-ion physics between SPS & RHIC energies towards larger rapidities

All this can be realised at CERN in a parasitic mode with the most energetic beams ever!

Note: all (past) colliders with E_{p}C GeV have had a fixed-target program (Tevatron, HERA, SPS, RHIC).

J.P. Lansberg (IPNO, Paris-Sud U.)
The fixed-target mode with TeV beams: why and what for?

4 decisive features
The fixed-target mode with TeV beams: why and what for?

4 decisive features

- accessing the high x frontier
- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

\[|x_F| \equiv \frac{|p_z|}{p_{z\text{ max}}} \to 1 \]
The fixed-target mode with TeV beams: why and what for?

4 decisive features

- accessing the high x frontier
- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

3 physics cases

\[|x_F| \equiv \frac{|p_z|}{p_{z\text{ max}}} \rightarrow 1 \]
The fixed-target mode with TeV beams: why and what for?

4 decisive features

- accessing the high x frontier
- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

3 physics cases

- High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

\[|x_F| \equiv \frac{|p_z|}{p_{z\text{max}}} \rightarrow 1 \]
The fixed-target mode with TeV beams: why and what for?

4 decisive features

- accessing the high x frontier
- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

3 physics cases

- High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Transverse dynamics and spin of gluons inside (un)polarised nucleons

\[|x_F| \equiv \frac{|p_z|}{p_{z \text{max}}} \rightarrow 1 \]
The fixed-target mode with TeV beams: why and what for?

4 decisive features
- accessing the high x frontier
- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

3 physics cases
- High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Transverse dynamics and spin of gluons inside (un)polarised nucleons
- Heavy-ion physics between SPS & RHIC energies towards large rapidities

\[|x_F| \equiv \frac{|p_z|}{p_{z \text{ max}}} \rightarrow 1 \]
The fixed-target mode with TeV beams: why and what for?

4 decisive features

bullet accessing the high x frontier
bullet achieving high luminosities,
bullet varying the atomic mass of the target almost at will,
bullet polarising the target.

3 physics cases

bullet High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
bullet Transverse dynamics and spin of gluons inside (un)polarised nucleons
bullet Heavy-ion physics between SPS & RHIC energies towards large rapidities

$[|x_F| \equiv \frac{|p_z|}{p_{z\text{max}}} \to 1]$

All this can be realised at CERN in a parasitic mode with the most energetic beams ever!

Nota: all (past) colliders with $E_p \geq 100$ GeV have had a fixed-target program (Tevatron, HERA, SPS, RHIC)
Fixed-target collisions at the LHC: main kinematical features

7 TeV proton beam on a fixed target
c.m.s. energy: Rapidity shift:
Boost:

Such allow, for the first time, for systematic studies of W boson, bottomonia, pT spectra, associated production,..., in the fixed-target mode

Effect of boost: [particularly relevant for high energy beams]

LHC and the ALICE muon arm become backward detectors [particularly relevant for high energy beams]

With the reduced acceptance for physics grows and nearly covers half of the backward region for most probes [particularly relevant for high energy beams]

Allows for backward physics up to high x target (particularly relevant for p-p with large x)
Fixed-target collisions at the LHC: main kinematical features

Energy range

<table>
<thead>
<tr>
<th>7 TeV proton beam on a fixed target</th>
<th>2.76 TeV Pb beam on a fixed target</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115$ GeV</td>
<td>c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72$ GeV</td>
</tr>
<tr>
<td>Boost: $\gamma = \sqrt{s} / (2m_N) \approx 60$</td>
<td>Boost: $\gamma \approx 40$</td>
</tr>
<tr>
<td>Rapidity shift: $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$</td>
<td>Rapidity shift: $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$</td>
</tr>
</tbody>
</table>

Such options allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, ... in the fixed-target mode.

Effect of boost: [particularly relevant for high energy beams] the LHC and the ALICE muon arm become backward detectors. With the reduced s, their acceptance for physics grows and nearly covers half of the backward region for most probes. Allows for backward physics up to high x_T target (uncharted for proton-nucleus; most relevant for p-p with large x_T).
Fixed-target collisions at the LHC: main kinematical features

Energy range

7 TeV proton beam on a fixed target

- c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115$ GeV
- Boost: $\gamma = \sqrt{s} / (2m_N) \approx 60$
- Rapidity shift: $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

- c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72$ GeV
- Boost: $\gamma \approx 40$
- Rapidity shift: $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode.
Fixed-target collisions at the LHC: main kinematical features

Energy range

7 TeV proton beam on a fixed target

<table>
<thead>
<tr>
<th>Energy range</th>
<th>(\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost</td>
<td>(\gamma = \sqrt{s} / (2m_N) \approx 60)</td>
</tr>
</tbody>
</table>

Rapidity shift:

\[y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8 \]

2.76 TeV Pb beam on a fixed target

<table>
<thead>
<tr>
<th>Energy range</th>
<th>(\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost</td>
<td>(\gamma \approx 40)</td>
</tr>
</tbody>
</table>

Rapidity shift:

\[y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3 \]

Such \(\sqrt{s} \) allow, for the first time, for systematic studies of \(W \) boson, bottomonia, \(p_T \) spectra, associated production, \ldots, in the fixed target mode

Effect of boost:

- LHCb and the ALICE muon arm become *backward detectors* [particularly relevant for high energy beams] \([y_{c.m.s.} < 0]\)
Fixed-target collisions at the LHC: main kinematical features

Energy range

7 TeV proton beam on a fixed target

<table>
<thead>
<tr>
<th>c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115$ GeV</th>
<th>Rapidity shift: $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost: $\gamma = \sqrt{s}/(2m_N) \approx 60$</td>
<td></td>
</tr>
</tbody>
</table>

2.76 TeV Pb beam on a fixed target

<table>
<thead>
<tr>
<th>c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72$ GeV</th>
<th>Rapidity shift: $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boost: $\gamma \approx 40$</td>
<td></td>
</tr>
</tbody>
</table>

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Effect of boost:

- LHCb and the ALICE muon arm become **backward detectors** [$y_{c.m.s.} < 0$]
- With the reduced \sqrt{s}, their acceptance for physics grows and nearly covers half of the backward region for most probes [$-1 < x_F < 0$]
Fixed-target collisions at the LHC: main kinematical features

Energy range

<table>
<thead>
<tr>
<th>7 TeV proton beam on a fixed target</th>
<th>2.76 TeV Pb beam on a fixed target</th>
</tr>
</thead>
<tbody>
<tr>
<td>c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115$ GeV</td>
<td>c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72$ GeV</td>
</tr>
<tr>
<td>Boost: $\gamma = \sqrt{s}/(2m_N) \approx 60$</td>
<td>Boost: $\gamma \approx 40$</td>
</tr>
<tr>
<td>Rapidity shift:</td>
<td>Rapidity shift:</td>
</tr>
<tr>
<td>$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$</td>
<td>$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$</td>
</tr>
</tbody>
</table>

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, …, in the fixed target mode

Effect of boost:

- LHCb and the ALICE muon arm become **backward detectors** [$y_{c.m.s.} < 0$]
- With the reduced \sqrt{s}, their acceptance for physics grows and nearly covers half of the backward region for most probes [−1 < x_F < 0]
- Allows for backward physics up to high x_{target} (≡ x_2) [uncharted for proton-nucleus; most relevant for p-p^\uparrow with large x^\uparrow]
Possible implementations

Internal gas target (seen next slide) can be installed in one of the existing LHC caverns and coupled to existing experiments currently validated by the LHCb collaboration via an luminosity monitor (SMOG) on the high LHC particle current.

Internal wire target [used by HERA-B at the nine fitted two fitted zero fitted GeV HERA p beam and by STAR at RHIC].

Beam line extracted by a bent crystal [see S. Radaelli's talk].

The most ambitious solution [civil engineering] provides a new facility with seven fitted TeV proton beam the LHC beam halo is recycled.

Beams split by a bent crystal intermediate option which reduces the civil engineering [see W. Scandale's & A. Stocchi's talk]. It might be coupled to an existing experiment similar fluxes.

Similar luminosities with an internal gas target or a crystal-based solution.
Possible implementations

- **Internal gas target (see next slide)**
 - can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - bears on the high LHC particle current
 - proton flux: 3.4×10^{18} s$^{-1}$ & lead flux: 3.6×10^{14} s$^{-1}$
Possible implementations

- **Internal gas target** (see next slide)
 - can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - bears on the high LHC particle current
 - proton flux: 3.4×10^{18} s$^{-1}$ & lead flux: 3.6×10^{14} s$^{-1}$

- **Internal wire target**
 - [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
Possible implementations

- **Internal gas target** (see next slide)
 - can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - bears on the high LHC particle current
 - proton flux: 3.4×10^{18} s$^{-1}$ & lead flux: 3.6×10^{14} s$^{-1}$

- **Internal wire target**
 - [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
 - [see S. Radaelli’s talk]
 - [civil engineering]

- **Beam line extracted by a bent crystal**
 - the most ambitious solution
 - provides a new facility with 7 TeV proton beam
 - the LHC beam halo is recycled
 - proton flux: 5×10^8 s$^{-1}$ & lead flux: 2×10^5 s$^{-1}$
The fixed-target mode at the LHC

Possible implementations

- **Internal gas target** (see next slide)
 - can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - bears on the high LHC particle current
 - proton flux: $3.4 \times 10^{18} \text{ s}^{-1}$ & lead flux: $3.6 \times 10^{14} \text{ s}^{-1}$

- **Internal wire target**
 - used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC
 - [see S. Radaelli’s talk]
 - [civil engineering]

- **Beam line extracted by a bent crystal**
 - the most ambitious solution
 - provides a new facility with 7 TeV proton beam
 - the LHC beam halo is recycled
 - proton flux: $5 \times 10^{8} \text{ s}^{-1}$ & lead flux: $2 \times 10^{5} \text{ s}^{-1}$

- **Beam splitted by a bent crystal**
 - intermediate option which reduces the civil engineering
 - might be coupled to an existing experiment
 - similar fluxes

J.P. Lansberg (IPNO, Paris-Sud U.)
The fixed-target mode at the LHC

Possible implementations

- **Internal gas target** (see next slide)
 - can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - bears on the high LHC particle current
 - proton flux: $3.4 \times 10^{18} \text{ s}^{-1}$ & lead flux: $3.6 \times 10^{14} \text{ s}^{-1}$

- **Internal wire target**
 - [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

- **Beam line extracted by a bent crystal**
 - the most ambitious solution
 - provides a new facility with 7 TeV proton beam
 - the LHC beam halo is recycled
 - proton flux: $5 \times 10^{8} \text{ s}^{-1}$ & lead flux: $2 \times 10^{5} \text{ s}^{-1}$

- **Beam splitted by a bent crystal**
 - intermediate option which reduces the civil engineering
 - [see W. Scandale’s & A. Stocchi’s talk]
 - might be coupled to an existing experiment
 - similar fluxes

- **Similar luminosities with an internal gas target or a crystal-based solution**

<table>
<thead>
<tr>
<th></th>
<th>pp</th>
<th>pA</th>
<th>PbA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\mathcal{O}(10 \text{ fb}^{-1}\text{yr}^{-1})$</td>
<td>$\mathcal{O}(0.1 - 1 \text{ fb}^{-1}\text{yr}^{-1})$</td>
<td>$\mathcal{O}(1 - 50 \text{ nb}^{-1}\text{yr}^{-1})$</td>
</tr>
</tbody>
</table>

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

September 7, 2016
Internal gas targets

SMOG(-like) system

- Designed for precise luminosity determination
- Noblegas directly injected in the VELO
- $p(\text{He, Ne, Ar}), \text{Pb(Ne, Ar)}$ tested: completely parasitic [up to one week, so far]
- New pressure monitor to be installed

HERMES(-like) system

- No specific pumping system: limit in the gas injection [pressure and duration]
- No possibility to use polarised gases
- Gas flows in the beam pipe; pressure profile not optimised
- K and Xe maybe only at end of a run
Internal gas targets

SMOG(-like) system

- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO

HERMES(-like) system
Internal gas targets

SMOG(-like) system
- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO

HERMES(-like) system
- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
Internal gas targets

SMOG(-like) system
- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO
 - \(p(\text{He,Ne,Ar}), \text{Pb(Ne,Ar)} \) tested: completely parasitic
 - [up to one week, so far]
- New pressure monitoring to be installed
- Could be coupled to ALICE: ideal demonstrator

HERMES(-like) system
- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
Internal gas targets

SMOG(-like) system
- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- **Noble gas directly injected** in the VELO
 - p(He,Ne,Ar), Pb(Ne,Ar) tested: completely parasitic
 - [up to one week, so far]
- New pressure monitoring to be installed
- Could be coupled to ALICE: ideal demonstrator

HERMES(-like) system
- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
- **Dedicated pumping system** [turbo-molecular pumps]
- **Pressure in the cell significantly higher**
 - [diameter ≤ 2cm in the closed position]
- **Polarised H and D** can be injected ballistically with high polarisation
- **Polarised** 3He or unpolarised heavy gas (Kr, Xe) can also be injected

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

September 7, 2016

6 / 19
Internal gas targets

SMOG(-like) system

- **SMOG:** System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- **Noble gas directly injected** in the VELO
 - 3He, Ne, Ar, Pb(Ne, Ar) tested: completely parasitic [up to one week, so far]
- New pressure monitoring to be installed
- Could be coupled to ALICE: ideal demonstrator
- No specific pumping system: limit in the gas inject [pressure and duration]
- No possibility to use polarised gases
- Gas flows in the beampipe; pressure profile not optimised
- Kr and Xe maybe only at end of a run

HERMES(-like) system

- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
- **Dedicated pumping system** [turbo-molecular pumps]
- **Pressure** in the cell significantly higher [diameter ≤ 2cm in the closed position]
- Polarised H and D can be injected ballistically with high polarisation
- Polarised 3He or unpolarised heavy gas (Kr, Xe) can also be injected

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC September 7, 2016
Internal gas targets

SMOG(-like) system

- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- **Noble gas directly injected** in the VELO
 - p(He,Ne,Ar), Pb(Ne,Ar) tested: completely parasitic
 - [up to one week, so far]
 - New pressure monitoring to be installed
 - Could be coupled to ALICE: ideal demonstrator
- **No specific pumping system:** limit in the gas inject
 - [pressure and duration]
- **No** possibility to use polarised gases
- Gas flows in the beampipe; pressure profile not optimised
- Kr and Xe maybe only at end of a run

HERMES(-like) system

- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
 - **Dedicated pumping system** [turbo-molecular pumps]
 - Pressure in the cell significantly higher
 - [diameter ≤ 2cm in the closed position]
 - **Polarised** H and D can be injected ballistically with high polarisation
 - Polarised 3He or unpolarised heavy gas (Kr, Xe) can also be injected
- **Not compatible** with an injection inside ALICE; only upstream
- **May need** complementary vertexing capabilities
Internal gas targets

SMOG(-like) system

- **SMOG**: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO
 - p(He,Ne,Ar), Pb(Ne,Ar) tested: completely parasitic [up to one week, so far]
- New pressure monitoring to be installed
- Could be coupled to ALICE: ideal demonstrator
- No specific pumping system: limit in the gas inject [pressure and duration]
- No possibility to use polarised gases
- Gas flows in the beampipe; pressure profile not optimised
- Kr and Xe maybe only at end of a run

![LHCb preliminary 2015 pNe data](image)

HERMES(-like) system

- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
 - **Dedicated pumping system** [turbo-molecular pumps]
 - **Pressure in the cell significantly higher** [diameter ≤ 2cm in the closed position]
 - Polarised H and D can be injected ballistically with high polarisation
- Polarised 3He or unpolarised heavy gas (Kr, Xe) can also be injected
- Not compatible with an injection inside ALICE; only upstream
- May need complementary vertexing capabilities
The fixed-target mode at the LHC

Internal gas targets

SMOG(-like) system
- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO
 - p(He,Ne,Ar), Pb(Ne,Ar) tested: completely parasitic
 - [up to one week, so far]
- New pressure monitoring to be installed
- Could be coupled to ALICE: ideal demonstrator
- No specific pumping system: limit in the gas inject
 - [pressure and duration]
- No possibility to use polarised gases
- Gas flows in the beampipe; pressure profile not optimised
- Kr and Xe maybe only at end of a run

![SMOG System Diagram](image)

HERMES(-like) system
- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
- Dedicated pumping system [turbo-molecular pumps]
- Pressure in the cell significantly higher
 - [diameter ≤ 2cm in the closed position]
- Polarised H and D can be injected ballistically with high polarisation
- Polarised 3He or unpolarised heavy gas (Kr, Xe) can also be injected
- Not compatible with an injection inside ALICE; only upstream
- May need complementary vertexing capabilities

The simulations showed in Part III are based on this set-up coupled to a LHCb like detector
High-x frontier

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
High-\(x \) frontier

Advance our understanding of the high-\(x \) gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large PDF uncertainties for \(x \gtrsim 0.5 \).

[could be crucial to characterise possible BSM discoveries]
High-x frontier

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large PDF uncertainties for $x \gtrsim 0.5$.
 [could be crucial to characterise possible BSM discoveries]
- Proton charm content important to high-energy neutrino & cosmic-rays physics
High-x frontier

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large PDF uncertainties for $x \gtrsim 0.5$.
 [could be crucial to characterise possible BSM discoveries]
- Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions

Best to take data at large x and small scale, than at large scale: advantage of low E; provided HT are under control.
High-x frontier

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large PDF uncertainties for $x \gtrsim 0.5$.
 [could be crucial to characterise possible BSM discoveries]
- Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- Search and study rare proton fluctuations

where one gluon carries most of the proton momentum

Best to take data at large x and small scale, than at large scale: advantange of low E; provided HT are under control
3D mapping of the parton momentum

Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons
3D mapping of the parton momentum

Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

- Possible missing contribution to the proton spin: Orbital Angular Momentum $L_{g,q}$:

$$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_g + L_q$$

[First hint by COMPASS that $L_g \neq 0$]
3D mapping of the parton momentum

Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

- Possible missing contribution to the **proton spin**: Orbital Angular Momentum $\mathcal{L}_{g,q}$:

 \[
 \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + \mathcal{L}_{g} + \mathcal{L}_{q}
 \]

- Test of the QCD factorisation framework

 [First hint by COMPASS that $\mathcal{L}_g \neq 0$]

 [beyond the DY A_N sign change]
Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

- Possible missing contribution to the proton spin: Orbital Angular Momentum $L_{g; q}$:
 \[
 \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_{g} + L_{q}
 \]
 [First hint by COMPASS that $L_{g} \neq 0$]
- Test of the QCD factorisation framework
- Determination of the linearly polarised gluons in unpolarised protons
 [once measured, allows for spin physics without polarised proton, e.g. at the LHC]

3D mapping of the parton momentum

J.P. Lansberg (IPNO, Paris-Sud U.)
Heavy-ion collisions from one colliding nucleus rest frame

Heavy-ion collisions towards large rapidities
Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies
 [needed to calibrate the quarkonium thermometer ($J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftrightarrow b + \text{pairs}$)]
Heavy-ion collisions from one colliding nucleus rest frame

Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies [needed to calibrate the quarkonium thermometer (J/ψ, ψ', χ_c, Υ, D, $J/\psi \leftrightarrow b +$ pairs)]
- Test the formation of **azimuthal asymmetries**: hydrodynamics vs. initial-state radiation
Heavy-ion collisions from one colliding nucleus rest frame

Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies
 [needed to calibrate the quarkonium thermometer (J/ψ, ψ', χ_c, Υ, D, $J/\psi \rightarrow b +$ pairs)]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- Explore the longitudinal expansion of QGP formation

J.P. Lansberg (IPNO, Paris-Sud U.)
Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies
 [needed to calibrate the quarkonium thermometer (ψ, ψ', χ_c, Υ, D, $J/\psi \rightarrow b + \text{pairs}$)]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- Explore the longitudinal expansion of QGP formation
- Test the factorisation of cold nuclear effects from $p + A$ to $A + B$ collisions
Part III

A selection of projected performances

- Azimuthal anisotropies [Heavy-Ion, Spin]
- Photon related observables [High-x, Spin, Heavy-Ion]
- W boson [High-x, Spin]
- Antiproton and related x-section measurements for astroparticle MC tuning [High-x]
- C-even quarkonia [High-x, Spin, Heavy-Ion]
- Associated production [Spin, Heavy-Ion]
- Ultra-peripheral collisions [Spin, High-x]
Drell-Yan simulation

Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF/fitted/six.fitted & seven.fitted/two.fitted@Fermilab. Same acceptance for pp collisions. Extremely large yields up to x/two.fitted/one.fitted[plot made for pXe with a Hermes-like target]. Combinatorial background well under control. Combinatorial background easily subtracted using the large like-sign yields [although accessible by other means]. One could re/fit with mixing event techniques [needed for PbAs systems]. No existing measurements at RHIC (per 0.10)

![Graph](image_url)

Counts per 100 MeV/c

<table>
<thead>
<tr>
<th>M (GeV)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
<th>0.9</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

After@LHC

J.P. Lansberg (IPNO, Paris-Sud U.)
Drell-Yan simulation

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
Drell-Yan simulation

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Same acceptance for pp collisions
Drell-Yan simulation

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Same acceptance for pp collisions
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
Drell-Yan simulation

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Same acceptance for pp collisions
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
- Combinatorial Background well under control

\begin{itemize}
 \item Drell-Yan, pXe, $\sqrt{s} = 115$ GeV, $2 < Y_{\mu\mu}^{lab} < 5$, $\mu_T > 1.2$ GeV/c, $L = 100$ pb$^{-1}$
 \item $p+Xe$, $\sqrt{s} = 115$ GeV, $L = 100$ pb$^{-1}$, $p_T^{\nu} > 1.2$ GeV/c, $2 < Y_{\mu\mu} < 3$
 \item Comb - MB bkg

\end{itemize}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Drell-Yan_simulation}
\caption{Drell-Yan simulation for pXe, $\sqrt{s} = 115$ GeV, $L = 100$ pb$^{-1}$, $2 < Y_{\mu\mu}^{lab} < 5$, $\mu_T > 1.2$ GeV/c, $L = 100$ pb$^{-1}$, $p_T^{\nu} > 1.2$ GeV/c, $2 < Y_{\mu\mu} < 3$.}
\end{figure}
Drell-Yan simulation

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Same acceptance for pp collisions
- Extremely large yields up to $x_2 \to 1$ [plot made for pXe with a Hermes like target]
- Combinatorial Background well under control
 - combinatorial background easily subtracted using the large like-sign yields

![Graph showing Drell-Yan simulation results](image-url)
Drell-Yan simulation

- **Unique acceptance** (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- Same acceptance for pp collisions
- Extremely large yields up to $x_2 \to 1$ [plot made for pXe with a Hermes like target]
- Combinatorial Background well under control
 - combinatorial background easily subtracted using the large like-sign yields
 - left over charm and beauty interesting on their own [although accessible by other means]
Drell-Yan simulation

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 at Fermilab).
- Same acceptance for pp collisions
- Extremely large yields up to $x_2 \to 1$ [plot made for pXe with a Hermes like target]
- Combinatorial Background well under control
 - combinatorial background easily subtracted using the large like-sign yields
 - left over charm and beauty interesting on their own [although accessible by other means]
 - one could refine with mixing event techniques [needed for PbA systems]
Drell-Yan simulation

- **Unique acceptance** (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- **Same acceptance for pp collisions**
- **Extremely large yields** up to $x_2 \to 1$ [plot made for pXe with a Hermes like target]
- **Combinatorial Background** well under control
 - combinatorial background easily subtracted using the large like-sign yields
 - left over charm and beauty interesting on their own [although accessible by other means]
 - one could refine with mixing event techniques [needed for PbA systems]
- **No existing measurements at RHIC**
Drell-Yan simulation

DY pair production on a transversely polarised target is the aim of several experiments (COMPASS, E/one.fitted/zero.fitted/three.fitted/nine.fitted, STAR, E/one.fitted/zero.fitted/three.fitted/nine.fitted). [See O. Denisov's talk]

Check the sign change in A_N DY vs SIDIS: a hot topic in spin physics!

With a highly polarised gas target, one simply goes from an exploration phase to a consolidation phase.

Novel constraints on the quark nuclear PDF with DY in pA collisions. Statistical uncertainties smaller than PDF: discriminating power [only one fitted bin out of five fitted shown; global system: pp vs pA luminosity].

With the muon spectrometer of ALICE and its absorber, opportunity to study DY in PbA collisions. [Only done once at SPS; no effect seen].
Drell-Yan simulation

- DY pair production on a transversely polarised target is the aim of several experiments (COMPASS, E1039, STAR, E1039)

 [See O. Denisov’s talk]
Drell-Yan simulation

- DY pair production on a transversely polarised target is the aim of several experiments (COMPASS, E1039, STAR, E1039) [See O. Denisov’s talk]
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics!
Drell-Yan simulation

- DY pair production on a **transversely polarised** target is the aim of several experiment (COMPASS, E1039, STAR, E1039)

 [See O. Denisov’s talk]

- Check the **sign change** in A_N DY vs SIDIS:
 hot topic in spin physics!

- With a highly polarised gas target, one simply goes from an **exploration phase** to a **consolidation phase**

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC September 7, 2016 13 / 19
Drell-Yan simulation

- DY pair production on a **transversely polarised** target is the aim of several experiments (COMPASS, E1039, STAR, E1039)
 - [See O. Denisov's talk]
- Check the **sign change** in A_N DY vs SIDIS: hot topic in spin physics!
- With a highly polarised gas target, one simply goes from an **exploration** phase to a **consolidation** phase

- Novel constraints on the **quark nuclear PDF** with DY in pA collisions
Drell-Yan simulation

- DY pair production on a transversely polarised target is the aim of several experiments (COMPASS, E1039, STAR, E1039) [See O. Denisov’s talk]
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics!
- With a highly polarised gas target, one simply goes from an exploration phase to a consolidation phase

- Novel constraints on the quark nuclear PDF with DY in pA collisions
- Stat. uncertainties smaller than nPDF: discriminating power [only 1 bin out of 5 shown; global syst.: pp vs pA lumi.]

J.P. Lansberg (IPNO, Paris-Sud U.)
Drell-Yan simulation

- DY pair production on a **transversely polarised** target is the aim of several experiments (COMPASS, E1039, STAR, E1039) [See O. Denisov’s talk]
- Check the **sign change** in A_N DY vs SIDIS: hot topic in spin physics!
- With a highly polarised gas target, one simply goes from an **exploration** phase to a **consolidation** phase

- Novel constraints on the **quark nuclear PDF** with DY in pA collisions
- Stat. uncertainties smaller than nPDF: discriminating power [only 1 bin out of 5 shown; global syst. : pp vs pA lumi.]
- With the muon spectrometer of ALICE and its absorber, opportunity to study DY in PbA coll. [Only done once at SPS; no effect seen]
Open heavy flavour: charm

Extremely good prospects to measure charm down to zero.

Total section over a wider rapidity coverage with extremely high statistical precision in pp, pA, and AA collisions.

With a LHCb-liked detector, the background is well under control. See below.

Looking at $D K \pi$ gives direct access to charm–anticharm asymmetries.

1e+06

D_0 yield per year [per 1 GeV bin]

P_T, D_0 (GeV)

10 fb$^{-1}$ of pp collisions at $\sqrt{s}=115$ GeV

$\langle \varepsilon \rangle = 10\%$; $Br_{K\pi}=3.93\%$

Same yields for D_0^-

$2<y_{lab} < 3$

$3< y_{lab} < 4$

$4< y_{lab} < 5$

K invariant mass (MeV/c)

1750

1800

1850

1900

1950

2000

2 entries / 8 MeV/c

LHCb preliminary 2015 pNe data
Open heavy flavour: charm

- Extremely good prospects to measure charm
Open heavy flavour: charm

- Extremely good prospects to measure charm
 - down to zero p_T
 - over a wide rapidity coverage
 - with extremely high statistical precision in pp, pA and AA collisions
Extremely good prospects to measure charm
 - down to zero p_T
 - over a wide rapidity coverage
 - with extremely high statistical precision in pp, pA and AA collisions

With a LHCb-like detector, the background is well under control [see below]

$\text{Same yields for } \bar{D}^0$

10 fb^{-1} of pp collisions at $\sqrt{s}=115$ GeV
$\langle \varepsilon \rangle = 10\%$; $\text{Br}_{K\pi}=3.93\%$

Same yields for \bar{D}^0

$2<y_{\text{lab}}^{D^0}<3$
$3<y_{\text{lab}}^{D^0}<4$
$4<y_{\text{lab}}^{D^0}<5$

10^0 yield per year [per 1 GeV bin]

$P_T, D^0 (\text{GeV})$

$10^{-1} fb^{-1}$ of pp collisions at $\sqrt{s}=115$ GeV
$\langle \varepsilon \rangle = 10\%$; $\text{Br}_{K\pi}=3.93\%$

Same yields for \bar{D}^0

$2<y_{\text{lab}}^{D^0}<3$
$3<y_{\text{lab}}^{D^0}<4$
$4<y_{\text{lab}}^{D^0}<5$

$10^{-1} fb^{-1}$ of pp collisions at $\sqrt{s}=115$ GeV
$\langle \varepsilon \rangle = 10\%$; $\text{Br}_{K\pi}=3.93\%$

Same yields for \bar{D}^0

$2<y_{\text{lab}}^{D^0}<3$
$3<y_{\text{lab}}^{D^0}<4$
$4<y_{\text{lab}}^{D^0}<5$
Open heavy flavour: charm

- Extremely good prospects to measure charm
 - down to zero p_T
 - over a wide rapidity coverage
 - with extremely high statisticical precision in pp, pA and AA collisions
- With a LHCb-like detector, the background is well under control
- Looking at $D \rightarrow K\pi$ gives direct acces to charm – anticharm asymmetries

![Graph showing D^0 yield per year vs P_T,D^0 (GeV)]

10 fb^{-1} of pp collisions at $\sqrt{s} = 115$ GeV
$<\varepsilon> = 10\%$; $\text{Br}_{K\pi} = 3.93\%$

Same yields for D^-

$2<y_{\text{lab}}<3$
$3<y_{\text{lab}}<4$
$4<y_{\text{lab}}<5$

πK invariant mass (MeV/c^2)

LHCb preliminary 2015 pNe data

J.P. Lansberg (IPNO, Paris-Sud U.)
Open charm projections

Longstanding debate in the QCD community: perturbative vs. non-perturbative origin relevant for cosmic neutrinos [not well constrained by lack of inputs]

Yield relative uncertainty due to c(x)

$|P|_{T,D}^0$ (GeV)

10 fb$^{-1}$ of pp collisions at $\sqrt{s}=115$ GeV

ϵ = 10%; 2 < y_D^0 < 3, $Br_{K\pi}=3.93\%$

Coloured curves: yield uncertainty from IC central c(x) with scale uncertainty.

AFTER at LHC projected uncertainty

Differences in $A_{D/zero.fitted}^N$ and $A_{\bar{D}/zero.fitted}^N$ gives access to C_{-odd} correlators [No other facility can measure this]

Precision at the percent level [GeV/c] T_p

Stat. unc. projection q [PRD 72 (2005)] g [JHEP 09 (2016)] g [pos. bound] $-1 = 10 \text{ fb}^{-1}$ pp at $L = 115$ GeV $s_{p+p} = 2.25$, CMS $y = 0.03 \pm 0.6$ $P_{\text{eff. pol.}}$ SIDIS1

As for AA collisions, nuclear modification factors vs p_T, y, centrality as well as azimuthal anisotropies ($v_{two.fitted}$) can be of course measured [not time to cover them]
Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x
Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin

![Graph showing yield relative uncertainty due to c(x)]
Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]
Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]

D^0 can also be collected with a transversely polarised target [Never measured]
Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]

- D^0 can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect [related to L_g]

J.P. Lansberg (IPNO, Paris-Sud U.)
Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]

- D^0 can also be collected with a **transversely polarised target** [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect [related to L_g]
- Differences in $A_N^{D^0}$ and $A_N^{\bar{D}^0}$ gives access to C-odd correlators [No other facility can measured this]
Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]

- D^0 can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect [related to L_g]
- Differences in $A_{N}^{D^0}$ and $A_{\bar{N}}^{D^0}$ gives access to C-odd correlators [No other facility can measured this]
- Precision at the per cent level

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

September 7, 2016

10 fb$^{-1}$ of pp collisions at sqrt(s)=115 GeV
Syst. : 5%, $\langle \varepsilon \rangle = 10\%$, $2<y_D<3$, Br$_{K\pi}=3.93\%$

Coloured curves: yield uncert. from IC
AFTER at LHC projected uncertainty

$A_{N}^{D^0}$ vs. p_T at CMS $\sqrt{s}=115$ GeV, $y_{eff.\ pol.}=0.6 \pm 0.03$

Stat. unc. projection g [PRD 72 (2005)]
g [JHEP 09 (2016)]
g [pos. bound]

$Y_{\text{CMS}} = 2.25, p+p \sqrt{s} = 115$ GeV
SIDIS

$A_{N}^{D^0}$ vs. p_T at CMS $\sqrt{s}=115$ GeV, $y_{eff.\ pol.}=0.6 \pm 0.03$

Stat. unc. projection g [PRD 72 (2005)]
g [JHEP 09 (2016)]
g [pos. bound]

$Y_{\text{CMS}} = 2.25, p+p \sqrt{s} = 115$ GeV
SIDIS

Precision at the per cent level

Differences in $A_{N}^{D^0}$ and $A_{\bar{N}}^{D^0}$ gives access to C-odd correlators [No other facility can measured this]
Open charm projections

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high x
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos [not well constrained by lack of inputs]

- D^0 can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect [related to L_g]
- Differences in $A_N^{D^0}$ and $A_N^{D^0}$ gives access to C-odd correlators [No other facility can measured this]
- Precision at the per cent level

As for AA collisions, nuclear modification factors vs p_T, y, centrality as well as azimuthal anisotropies (v_2) can be of course measured [no time to cover them]
Quarkonium Projections

Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]
Quarkonium Projections

Our aim is to measure a **complete set of heavy-flavours** to use them as **tools**
[gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]
Quarkonium Projections

Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

- Wide rapidity coverage; P_T up 15 GeV, down to 0 GeV
 [Rapidity coverage important to pin down nuclear effects]
Quarkonium Projections

Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

- **Wide rapidity** coverage; P_T up 15 GeV, down to 0 GeV
 [Rapidity coverage important to pin down nuclear effects]
- Typically 10^9 charmonia, 10^6 bottomonia per year
Quarkonium Projections

Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

- Wide rapidity coverage; P_T up 15 GeV, down to 0 GeV
 - Rapidity coverage important to pin down nuclear effects
- Typically 10^9 charmonia, 10^6 bottomonia per year
- Unique opportunity to access C-even quarkonia ($\chi_{c,b}$, η_c) + associated production
Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

- **Wide rapidity** coverage; P_T up 15 GeV, down to 0 GeV
 [Rapidity coverage important to pin down nuclear effects]
- Typically 10^9 charmonia, 10^6 bottomonia per year
- Unique opportunity to access C-even quarkonia ($\chi_{c,b}, \eta_c$) + associated production
- Full background simulations show very good prospects in all systems
 [worst scenario (PbA) shown below]
Quarkonium Projections

Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

- Wide rapidity coverage; P_T up 15 GeV, down to 0 GeV
 [Rapidity coverage important to pin down nuclear effects]
- Typically 10^9 charmonia, 10^6 bottomonia per year
- Unique opportunity to access C-even quarkonia ($\chi_{c,b}$, η_c) + associated production
- Full background simulations show very good prospects in all systems [worst scenario (PbA) shown below]
- In PbA collisions, one can repeat the celebrated $\Upsilon(nS)$ CMS analysis in a new energy domain

![Graph for PbXe, $L = 7$ nb$^{-1}$, $p_T^\mu > 0.7$ GeV/c, $2 < Y_{\mu\mu} < 5$]

![Graph for PbXe, $L = 7$ nb$^{-1}$, $3 < Y_{\mu\mu} < 5$, $p_T^\mu > 0.7$ GeV/c]
forall quarkonia (J ~ ψ, ψœ, χc, Υ^nS, χb, ηc) can be measured [So far, only ~ψ by PHENIX with large uncertainties].

Completely new perspectives to study the gluon Sivers effect and beyond.

\(\psi \rightarrow J/\psi \rightarrow B \)

\(R = 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4 \)

EPS09 central

EPS09 min./max. shadowing

EPS09 min./max. EMC effect

\(s = 115 \text{ GeV} \)
Quarkonium Projections 2

- A_N for all quarkonia (J/ψ, ψ', χ_c, $\Upsilon(nS)$, χ_b & η_c) can be measured

 [So far, only J/ψ by PHENIX with large uncertainties]
A_N for all quarkonia (J/ψ, ψ', χ_c, $\Upsilon(nS)$, χ_b & η_c) can be measured
[So far, only J/ψ by PHENIX with large uncertainties]
\(A_N \) for all quarkonia \((J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)\) can be measured

[So far, only \(J/\psi\) by PHENIX with large uncertainties]

Completely new perspectives to study the gluon Sivers effect

[and beyond \(\mathcal{L}_g\)]
- A_N for all quarkonia (J/ψ, ψ', χ_c, $\Upsilon(nS)$, χ_b & η_c) can be measured

 [So far, only J/ψ by PHENIX with large uncertainties]

- Completely new perspectives to study the gluon Sivers effect

 [and beyond $\to L_g$]

- pA: constrain the gluon antishadowing and EMC effects; pD: $g_n(x) \equiv g_p(x)$
Quarkonium Projections 2

- A_N for all quarkonia (J/ψ, ψ', χ_c, $\Upsilon(nS)$, χ_b & η_c) can be measured
 [So far, only J/ψ by PHENIX with large uncertainties]
- Completely new perspectives to study the gluon Sivers effect
 [and beyond $\to \mathcal{L}_g$]

- pA: constrain the gluon antishadowing and EMC effects; pD: $g_n(x) \neq g_p(x)$
Quarkonium Projections 2

- A_N for all quarkonia (J/ψ, ψ', χ_c, $\Upsilon(nS)$, χ_b & η_c) can be measured
 [So far, only J/ψ by PHENIX with large uncertainties]

- Completely new perspectives to study the gluon Sivers effect
 [and beyond $\rightarrow L_g$]

- pA: constrain the gluon antishadowing and EMC effects; pD: $g_n(x) \neq g_p(x)$

- One could access η_c production in pA collisions for the first time
A_N for all quarkonia (J/ψ, ψ', χ_c, Υ(nS), χ_b & η_c) can be measured
[So far, only J/ψ by PHENIX with large uncertainties]
Completeness new perspectives to study the gluon Sivers effect [and beyond → L_g]

pA: constrain the gluon antishadowing and EMC effects; pD : g_n(x) ≠ g_p(x)
One could access η_c production in pA collisions for the first time
High stat. → quarkonium polarisation in pA and AA collisions [→ production/suppression mechanisms]
Part IV

Conclusion and outlooks
Conclusions

Three main themes push for a fixed-target program at the LHC

[without interfering with the other experiments]
Conclusions

Three main themes push for a fixed-target program at the LHC [without interfering with the other experiments]

- The high x frontier: new probes of the confinement and connections with astroparticles
Conclusions

- **Three main themes push for a fixed-target program at the LHC** [without interfering with the other experiments]
 - The high x frontier: new probes of the confinement and connections with astroparticles
 - The nucleon spin and the transverse dynamics of the partons

As a slow extraction with a bent crystal

An internal gas target inspired from SMOG@LHC/Hermes/H-jet@RHIC,...

An expression of interest to be submitted to the LHCC is being written
Conclusions

- **Three main themes push for a fixed-target program at the LHC**
 [without interfering with the other experiments]
- **The high x frontier**: new probes of the confinement and connections with astroparticles
- **The nucleon spin and the transverse dynamics of the partons**
- **The approach to the deconfinement phase transition**: new energy, new rapidity domain and new probes
Conclusions

Three main themes push for a fixed-target program at the LHC
[without interfering with the other experiments]

- The high x frontier: new probes of the confinement and connections with astroparticles
- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes

2 ways towards fixed-target collisions with the LHC beams
Conclusions

Three main themes push for a fixed-target program at the LHC
[without interfering with the other experiments]

- The high x frontier: new probes of the confinement and connections with astroparticles
- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes

2 ways towards fixed-target collisions with the LHC beams

- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-jet@RHIC, ...

J.P. Lansberg (IPNO, Paris-Sud U.)
Conclusions

- **Three main themes push for a fixed-target program at the LHC**

 [without interfering with the other experiments]

- The high x frontier: new probes of the confinement and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons

- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes

- **2 ways towards fixed-target collisions with the LHC beams**

 - A slow extraction with a bent crystal

 - An internal gas target inspired from SMOG@LHCb/Hermes/H-jet@RHIC, ...

- An Expression of Interest to be submitted to the LHCC is being written

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

September 7, 2016
Conclusions

- **Three main themes push for a fixed-target program at the LHC**
 [without interfering with the other experiments]
 - **The high x frontier:** new probes of the confinement and connections with astroparticles

- **The nucleon spin and the transverse dynamics of the partons**

- **The approach to the deconfinement phase transition:**
 new energy, new rapidity domain and new probes

- **2 ways towards fixed-target collisions with the LHC beams**
 - A slow extraction with a bent crystal
 - An internal gas target inspired from SMOG@LHCb/Hermes/H-jet@RHIC, ...

- **An Expression of Interest** to be submitted to the LHCC is being written

Part V

Backup slides
LHCb acceptance as a function of the colliding modes

\[y_{\text{beam}} = \ln \left(\frac{\sqrt{s}}{m_{\psi}} \right) \]

Notas: similar for the ALICE spectrometer
Further readings

Heavy-Ion Physics

- Lepton-pair production in ultraperipheral collisions at AFTER@LHC By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087

Further readings

Spin physics

Hadron structure

- **Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC).**

- **Next-To-Leading Order Differential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC)**

- **η_c production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon**

- **A review of the intrinsic heavy quark content of the nucleon**

- **Hadronic production of Ξ_{cc} at a fixed-target experiment at the LHC**
Further readings

Feasibility study and technical ideas

Fast simulation using LHCb reconstruction parameters
Projection for a LHCb-like detector

- Simulations with Pythia 8.185
- the LHCb detector is NOT simulated but LHCb reconstruction parameters are introduced in the fast simulation (resolution, analysis cuts, efficiencies,...)

Requirements:
- Momentum resolution: \(\Delta p/p = 0.5\% \)
- Muon identification efficiency: 98\%

Cuts at the single muon level
- \(2 < \eta_\mu < 5 \)
- \(p_{T\mu} > 0.7 \) GeV

Muon misidentification:
- If \(\pi \) and \(K \) decay before the calorimeters (12m), they are rejected by the tracking
- otherwise a misidentification probability is applied following: F. Achilli et al, arXiv:1306.0249