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The fixed-target mode with TeV beams: why and what for ?
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@ accessing the high x frontier (x| = 1% - 1]

@ achieving high luminosities,

@ varying the atomic mass of the target almost at will,
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The fixed-target mode at the LHC

The fixed-target mode with TeV beams: why and what for ?

4 decisive features

@ accessing the high x frontier (x| = 1% - 1]
@ achieving high luminosities,

@ varying the atomic mass of the target almost at will,

@ polarising the target.

3 physics cases

e High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
@ Transverse dynamics and spin of gluons inside (un)polarised nucleons

@ Heavy-ion physics between SPS & RHIC energies towards large rapidities

All this can be realised at CERN in a parasitic
mode with the most energetic beams ever !

Nota: all (past) colliders with E, > 100 GeV have had a fixed-target program (Tevatron, HERA, SPS, RHIC)
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Fixed-target collisions at the LHC: main kinematical features
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The fixed-target mode at the LHC

Fixed-target collisions at the LHC: main kinematical features

Energy range
7 TeV proton beam on a fixed target

c.m.s.energy: +s=./2m,E, ~115GeV

Boost: y=+/s/(2m,) ~60

Rapidity shift:
yCJ‘H.b, =0—> ylab =48

2.76 TeV Pb beam on a fixed target

C.M.S. energy:/Sw =+2mEy, = 72GeV

Boost: y~40

Rapidity shift:
yc.m.s. = 0 - YIab = 43
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The fixed-target mode at the LHC

Fixed-target collisions at the LHC: main kinematical features

Energy range
7 TeV proton beam on a fixed target

c.m.s.energy: +s=,[2mE, ~115GeV | Rapidity shift: , 5Gev ;
Boost: 7 =+/s/(2m,) ~ 60 Yems =0 Vi, =4.8 @
2.76 TeV Pb beam on a fixed target

c.m.s. energy:\/ﬂa/ZmN Ep, #72GeV | Rapidity shi(;t: 43 &ﬂ ;

Boost: v~ 40 Yems. =V Vi =4 @

Such /s allow, for the first time, for systematic studies of W boson, bottomonia,
pr spectra, associated production, ..., in the fixed target mode
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Fixed-target collisions at the LHC: main kinematical features

Energy range
7 TeV proton beam on a fixed target

c.m.s.energy: +s=,[2mE, ~115GeV | Rapidity shift:

Boost: y=+/s/(2m,) ~ 60 Yoms =0 ¥, =4.8 @
2.76 TeV Pb beam on a fixed target

C.M.S. energy: /sy =+2m,E,, ~72GeV | Rapidity Shgt; .l &ﬁv’ é
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Such /s allow, for the first time, for systematic studies of W boson, bottomonia,
pr spectra, associated production, ..., in the fixed target mode
Effect of boost :

[particularly relevant for high energy beams]

@ LHCD and the ALICE muon arm become backward detectors [Ye.m.s. < 0]
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Energy range
7 TeV proton beam on a fixed target

c.m.s.energy: +s=./2m,E, ~115GeV

Rapidity shift:

Boost: y=+/s/(2m,) ~60
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Rapidity shift:

Boost: y~40

yc.m.s. =0— YIab =43

115 GeV

e g
&
o

& 72 GeV
e

Such /s allow, for the first time, for systematic studies of W boson, bottomonia,
pr spectra, associated production, ..., in the fixed target mode
Effect of boost :

@ LHCb and the ALICE muon arm become backward detectors

@ With the reduced /s, their acceptance for physics grows and nearly covers
half of the backward region for most probes
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The fixed-target mode at the LHC

Fixed-target collisions at the LHC: main kinematical features

Energy range
7 TeV proton beam on a fixed target

c.m.s.energy: +s=,[2mE, ~115GeV | Rapidity shift: , 5Gev ';
Boost: 7 =+/s/(2m,) ~ 60 Yems =0 Vi, =4.8 @
2.76 TeV Pb beam on a fixed target

c.m.s. energy:\/ﬂa/ZmN Ep, #72GeV | Rapidity shi(;t: 43 sﬂ ;

Boost: v~ 40 Yems. =V Vi =4 @

Such /s allow, for the first time, for systematic studies of W boson, bottomonia,
pr spectra, associated production, ..., in the fixed target mode

Effect of boost : [particularly relevant for high energy beams]

@ LHCD and the ALICE muon arm become backward detectors [Vem.s. < 0]

@ With the reduced /s, their acceptance for physics grows and nearly covers
half of the backward region for most probes

[-1< xp < 0]
Allows for backward physics up to high xrget (= x2)

[uncharted for proton-nucleus; most relevant for p-p! with large x' ]
AFTER@LHC
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The fixed-target mode at the LHC

Possible implementations

@ Internal gas target (see next slide)
- can be installed in one of the existing LHC caverns, and coupled to existing experiments
- currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
- bears on the high LHC particle current
- proton flux: 3.4 x 10" 57! & lead flux: 3.6 x 104 57!
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- can be installed in one of the existing LHC caverns, and coupled to existing experiments
- currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
- bears on the high LHC particle current
- proton flux: 3.4 x 10" 57! & lead flux: 3.6 x 104 57!

@ Internal wire target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
@ Beam line extracted by a bent crystal [see S. Radaelli’s talk]
- the most ambitious solution [civil engineering]

- provides a new facility with 7 TeV proton beam
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The fixed-target mode at the LHC

Possible implementations

Internal gas target (see next slide)
- can be installed in one of the existing LHC caverns, and coupled to existing experiments
- currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
- bears on the high LHC particle current
- proton flux: 3.4 x 10" 57! & lead flux: 3.6 x 104 57!

@ Internal wire target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
@ Beam line extracted by a bent crystal [see S. Radaelli’s talk]
- the most ambitious solution [civil engineering]
- provides a new facility with 7 TeV proton beam
- the LHC beam halo is recycled
- proton flux: 5x 108 s71 & lead flux: 2 x 10° 57!
@ Beam splitted by a bent crystal

- intermediate option which reduces the civil enginneering  [see W. Scandale’s & A. Stocchi’s talk]
- might be coupled to an existing experiment

- similar fluxes
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The fixed-target mode at the LHC

Possible implementations

@ Internal gas target (see next slide)
- can be installed in one of the existing LHC caverns, and coupled to existing experiments
- currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
- bears on the high LHC particle current
- proton flux: 3.4 x 10" 57! & lead flux: 3.6 x 104 57!
Internal wire target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
Beam line extracted by a bent crystal [see S. Radaelli’s talk]
- the most ambitious solution [civil engineering]
- provides a new facility with 7 TeV proton beam
- the LHC beam halo is recycled
- proton flux: 5x 103 s7! & lead flux: 2 x 10° 7!
Beam splitted by a bent crystal

- intermediate option which reduces the civil enginneering  [see W. Scandale’s & A. Stocchi’s talk]

- might be coupled to an existing experiment
- similar fluxes
Similar luminosities with an internal gas target or a crystal-based solution
pp pA PbA
o010 fb'yr™)  0(01-17'yr)  O@1-50nb'yr ")
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The fixed-target mode at the LHC

Internal gas targets

SMOG(-like) system HERMES(-like) system
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The fixed-target mode at the LHC

Internal gas targets

SMOG(-like) system

- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination

- Noble gas directly injected in the VELO
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Internal gas targets

SMOG(-like) system HERMES(-like) system
- SMOG: System for Measuring Overlap with Gas L .
- Injection of gas in an open-end storage cell

- Designed for precise luminosity determination
& P HRROSTY ' - Used e.g. at DESY for 10 years

- Noble gas directly injected in the VELO
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The fixed-target mode at the LHC

Internal gas targets

SMOG(-like) system HERMES(-like) system
- SMOG: System for Measuring Overlap with Gas L .
- Injection of gas in an open-end storage cell

- Designed for precise luminosity determination
& P HRROSTY ' - Used e.g. at DESY for 10 years

- Noble gas directly injected in the VELO
v p(He,Ne,Ar), Pb(Ne,Ar) tested : completely
parasitic [up to one week, so far]
v/ New pressure monitoring to be installed
v/ Could be coupled to ALICE: ideal demonstrator
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SMOG(-like) system

- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO
v p(He,Ne,Ar), Pb(Ne,Ar) tested : completely
parasitic [up to one week, so far]
v/ New pressure monitoring to be installed

v/ Could be coupled to ALICE: ideal demonstrator
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- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years

Dedicated pumping system  [turbo-molecular pumps]
Pressure in the cell significantly higher
[diameter < 2cm in the closed position]
Polarised H and D can be injected ballistically with
high polarisation
Polarised *He or unpolarised heavy gas (Kr, Xe)
can also be injected
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SMOG(-like) system

- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO
v p(He,Ne,Ar), Pb(Ne,Ar) tested : completely
parasitic [up to one week, so far]
New pressure monitoring to be installed
Could be coupled to ALICE: ideal demonstrator
No specific pumping system: limit in the gas inject

[pressure and duration]

> NN

X No possibility to use polarised gases

X Gas flows in the beampipe; pressure profile not
optimised

X Krand Xe maybe only at end of a run
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[diameter < 2cm in the closed position]
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Not compatible with an injection inside ALICE;
only upstream

May need complementary vertexing capabilities
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- Noble gas directly injected in the VELO

> NN

p(He,Ne,Ar), Pb(Ne,Ar) tested : completely
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The fixed-target mode at the LHC

Internal gas targets

SMOG(-like) system

- SMOG: System for Measuring Overlap with Gas
- Designed for precise luminosity determination
- Noble gas directly injected in the VELO

> NN

p(He,Ne,Ar), Pb(Ne,Ar) tested : completely
parasitic [up to one week, so far]

New pressure monitoring to be installed

Could be coupled to ALICE: ideal demonstrator

No specific pumping system: limit in the gas inject

[pressure and duration]

No possibility to use polarised gases

Gas flows in the beampipe; pressure profile not
optimised

Kr and Xe maybe only at end of a run
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HERMES(-like) system

- Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years

Dedicated pumping system  [turbo-molecular pumps]
Pressure in the cell significantly higher
[diameter < 2cm in the closed position]
Polarised H and D can be injected ballistically with
high polarisation
Polarised *He or unpolarised heavy gas (Kr, Xe)
can also be injected
Not compatible with an injection inside ALICE;
only upstream

May need complementary vertexing capabilities

The simulations showed in
Part III are based on this
set-up coupled to a LHCb
like detector
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High-x frontier

Advance our understanding of the high-x gluon, antiquark and
heavy-quark content in the nucleon & nucleus
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High-x frontier

Advance our understanding of the high-x gluon, antiquark and
heavy-quark content in the nucleon & nucleus

- Very large PDF uncertainties for x 2 0.5.
[could be crucial to characterise possible BSM discoveries]

Gluon-Gluon, luminosity
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High-x frontier

Advance our understanding of the high-x gluon, antiquark and
heavy-quark content in the nucleon & nucleus

- Very large PDF uncertainties for x 2 0.5.

[could be crucial to characterise possible BSM discoveries]
Proton charm content important to high-energy neutrino & cosmic-rays physics

Gluon-Gluon, luminosity
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R
High-x frontier

Advance our understanding of the high-x gluon, antiquark and
heavy-quark content in the nucleon & nucleus

- Very large PDF uncertainties for x 2 0.5.
[could be crucial to characterise possible BSM discoveries]
- Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions

Gluon-Gluon, luminosity
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Best to take data at large x and small scale, than at large scale: advantange of low E; provided HT are under control
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High-x frontier

Advance our understanding of the high-x gluon, antiquark and
heavy-quark content in the nucleon & nucleus

- Very large PDF uncertainties for x 2 0.5.
[could be crucial to characterise possible BSM discoveries]

- Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions

- Search and study rare proton fluctuations
where one gluon carries most of the proton momentum

Gluon-Gluon, luminosity

1.
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Best to take data at large x and small scale, than at large scale: advantange of low E; provided HT are under control
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3D mapping of the parton momentum

Advance our understanding dynamics and spin of gluons and quarks inside
(un)polarised nucleons
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3D mapping of the parton momentum

Advance our understanding dynamics and spin of gluons and quarks inside
(un)polarised nucleons
- Possible missing contribution to the proton spin: Orbital Angular Momentum Ly :

3= IAS+AGH+Lg+ Ly [First hint by COMPASS that £, # 0]

«Gluon Spin  Gluon angular momentum
«Quark Spin - Quark Angular Momentum
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3D mapping of the parton momentum

Advance our understanding dynamics and spin of gluons and quarks inside
(un)polarised nucleons
- Possible missing contribution to the proton spin: Orbital Angular Momentum Ly :
‘ 3= IAS+AGH+Lg+ Ly [First hint by COMPASS that £, # 0]
- Test of the QCD factorisation framework [beyond the DY Ay sign change]

«Gluon Spin  Gluon angular momentum
«Quark Spin - Quark Angular Momentum

J.P. Lansberg AFTER@LHC September 7, 2016 9/19



3D mapping of the parton momentum

Advance our understanding dynamics and spin of gluons and quarks inside

(un)polarised nucleons
- Possible missing contribution to the proton spin: Orbital Angular Momentum Ly :

3= IAS+AGH+Lg+ Ly ‘ [First hint by COMPASS that £, # 0]
- Test of the QCD factorisation framework [beyond the DY Ay sign change]
- Determination of the linearly polarised gluons in unpolarised protons

[once measured, allows for spin physics without polarised proton, e.g. at the LHC]

«Gluon Spin  Gluon angular momentum
«Quark Spin - Quark Angular Momentum

September 7, 2016 9/19
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heavy-ion collisions from one colliding nucleus rest frame

Heavy-ion collisions towards large rapidities
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heavy-ion collisions from one colliding nucleus rest frame

Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies
[needed to calibrate the quarkonium thermometer (J/y, ', xc, Y, D, J/y < b + pairs)]

The Phases of QCD

Quark-Gluon Plasma
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heavy-ion collisions from one colliding nucleus rest frame

Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies
[needed to calibrate the quarkonium thermometer (J/y, ', xc, Y, D, J/y < b + pairs)]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation

The Phases of QCD -
2
| ham @

o | i 220 —,

o1 92 93 04 [0
TiGey)

Au+Au 200GeV 10-20%
pr>0.15 GeV
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heavy-ion collisions from one colliding nucleus rest frame

Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies

[needed to calibrate the quarkonium thermometer (J/y, ', xc, Y, D, J/y < b + pairs)]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- Explore the longitudinal expansion of QGP formation

The Phases of QCD
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> i
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Fluid Imperfection
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heavy-ion collisions from one colliding nucleus rest frame

Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies
[needed to calibrate the quarkonium thermometer (J/y, ', xc, Y, D, J/y < b + pairs)]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- Explore the longitudinal expansion of QGP formation
- Test the factorisation of cold nuclear effects from p + A to A + B collisions

The Phases of QCD
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Part I1I

A selection of projected performances

What is not covered by lack of time

@ Azimuthal anisotropies [Heavy-Ion, Spin]
@ Photon related observables [High-x, Spin, Heavy-lon]
@ W boson [High-x, Spin]
@ Antiproton and related x-section measurements for astroparticle MC tuning [High-x]
@ (C-even quarkonia [High-x, Spin, Heavy-Ion]
@ Associated production [Spin, Heavy-Ion]
@ Ultra-peripheral collisions [Spin, High-x ]
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Drell-Yan simulation

Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for
nuclear PDF fit (E866 & E772 @ Fermilab).

Drell-Yan, pXe@ {s=115GeV ,2< v'::< 5,pi>12GeV/c, L =100 pb™*
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Drell-Yan simulation

Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for
nuclear PDF fit (E866 & E772 @ Fermilab).
- Same acceptance for pp collisions

Drell-Yan, pXe@ {s=115GeV ,2< v'::< 5,pi>12GeV/c, L =100 pb™*
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Drell-Yan simulation

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for
nuclear PDF fit (E866 & E772 @ Fermilab).

- Same acceptance for pp collisions
- Extremely large yields up to x, — 1 [plot made for pXe with a Hermes like target]

Drell-Yan, pXe@ {s=115GeV ,2< v'::< 5,pi>12GeV/c, L =100 pb™*
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Drell-Yan simulation

Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for
nuclear PDF fit (E866 & E772 @ Fermilab).

Same acceptance for pp collisions
Extremely large yields up to x, — 1 [plot made for pXe with a Hermes like target]
Combinatorial Background well under control
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Drell-Yan simulation

Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for
nuclear PDF fit (E866 & E772 @ Fermilab).

Same acceptance for pp collisions
Extremely large yields up to x, — 1 [plot made for pXe with a Hermes like target]

Combinatorial Background well under control
combinatorial background easily subtracted using the large like-sign yields
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Drell-Yan simulation

Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for
nuclear PDF fit (E866 & E772 @ Fermilab).

Same acceptance for pp collisions
Extremely large yields up to x, — 1 [plot made for pXe with a Hermes like target]

Combinatorial Background well under control
combinatorial background easily subtracted using the large like-sign yields
- left over charm and beauty interesting on their own [although accessible by other means]
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Drell-Yan simulation

Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for
nuclear PDF fit (E866 & E772 @ Fermilab).

Same acceptance for pp collisions
Extremely large yields up to x, — 1 [plot made for pXe with a Hermes like target]
Combinatorial Background well under control
combinatorial background easily subtracted using the large like-sign yields
- left over charm and beauty interesting on their own [although accessible by other means]
one could refine with mixing event techniques [needed for PbA systems]
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Drell-Yan simulation

Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for
nuclear PDF fit (E866 & E772 @ Fermilab).

Same acceptance for pp collisions
Extremely large yields up to x, — 1 [plot made for pXe with a Hermes like target]
Combinatorial Background well under control
combinatorial background easily subtracted using the large like-sign yields
- left over charm and beauty interesting on their own [although accessible by other means]

one could refine with mixing event techniques [needed for PbA systems]
- No existing measurements at RHIC
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Drell-Yan simulation

- DY pair production on a transversely polarised
target is the aim of several experiment
(COMPASS, E1039, STAR, E1039)

[ See O. Denisov’s talk]
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Drell-Yan simulation

- DY pair production on a transversely polarised
target is the aim of several experiment
(COMPASS, E1039, STAR, E1039)

[ See O. Denisov’s talk]

- Check the sign change in Ay DY vs SIDIS:

hot topic in spin physics !
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Drell-Yan simulation

[« T I T T T

0.2
- DY pair production on a transversely polarised 0.45E 2<y" <3,4<M,, <9GeV/c, dM =1 GevIc
target is the aim of several experiment oib = !
.1 = SIDIS1(Siverseff.) L =10fbt
(COMPASS, E1039, STAR, E1039) 3 °e w
. 5 0.05F —=— stat. unc. projection
[ See O. Denisov’s talk] = o
- Check the sign change in Ay DY vs SIDIS: o0t eff. pol. P= 0.6+ 0.03 (syst)
hot topic in spin physics ! otk
- With a highly polarised gas target, one simply 0150 . < $ * *
goes from an exploration phase to a _020i p+p Vs=115GeV
consolidation phase 01 02 03 04 05 06 07 08
XT
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Drell-Yan simulation

- DY pair production on a transversely polarised
target is the aim of several experiment
(COMPASS, E1039, STAR, E1039)

[ See O. Denisov’s talk]

- Check the sign change in Ay DY vs SIDIS:

hot topic in spin physics !

- With a highly polarised gas target, one simply

goes from an exploration phase to a

[

E M - 2
0.45F 25V <3 4<M,, <9 GeV/c?, dM =1 GeV/c

Eptp 5=115GeV
05102 03 04 05 06 07

0.1F = SIDIS YSverset. - S
: (Siverseff) Ly = 10fb
0.05F —=— stat. unc. projection
z OZ
E eff. pol. P = 0.6 = 0.03 (syst.)
-0.05
-01F
i IR
0.15]

consolidation phase 08
X!
- Novel constraints on the quark nuclear PDF with
DY in pA collisions
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Drell-Yan simulation

- DY pair production on a transversely polarised
target is the aim of several experiment

0.2
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0.1 = SIDIS1(Siverseff.) L. =10fb? =
(COMPASS, E1039, STAR, E1039) ook v = ;
A £ . unc. proj on =
[ See O. Denisov’s talk]  » o 7o :
- Check the sign change in Ay DY vs SIDIS: I 053 ff. pol. P= 0.6+ 0.03 (syst)
hot topic in spin physics ! —oib E
- With a highly polarised gas target, one simply 0150 . G $ * * E
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Drell-Yan simulation

0.2

4

- DY pair production on a transversely polarised 0.45E 2<y" <3,4<M,, <9GeV/c, dM =1 GevIc 7
target is the aim of several experiment oif = SIDIS (Sverse) s E
(COMPASS, E1039, STAR, E1039) ‘ - Lo =107

0.05F —=— Stat. unc. projection E

[ See O. Denisovstalk] - F P :

< & z E

- Check the sign change in Ay DY vs SIDIS: 005k éff. pol. P=0.6:+ 003 (syst)
hot topic in spin physics ! —oib E

- With a highly polarised gas target, one simply 0150 . G L * * E
goes from an exploration phase to a _02(): prp V5= 15 Gev :
consolidation phase 01 02 03 04 05 06 07 08 O
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Yiab{it 1)

- Novel constraints on the quark nuclear PDF with P O L B
DY in pA collisions . P a‘\sN:E::;:;ve e

projected uncertainty ——

- Stat. uncertainties smaller than nPDF: 1 ATICE == -
discrimating power [only 1 bin out of 5 shown; 09 = “mm
global syst. : pp vs pA lumi.] S 0% | Hiﬁh{;g'

- With the muon spectrometer of ALICE and its ° LHCD e

absorber, opportunity to study DY in PbA coll.
[Only done once at SPS; no effect seen]
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Open heavy flavour: charm

- Extremely good prospects to measure charm

p° yield per year [per 1 GeV bin]

- down to zero pr

over a wide rapidity coverage
with extremely high statistiscal precision in pp, pA and AA collisions
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Open heavy flavour: charm

- Extremely good prospects to measure charm

p° yield per year [per 1 GeV bin]

- down to zero pr
over a wide rapidity coverage

[total x-section]

[xr = —1]

with extremely high statistiscal precision in pp, pA and AA collisions
- With a LHCb-like detector, the background is well under control
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Open heavy flavour: charm

- Extremely good prospects to measure charm

- With a LHCb-like detector, the background is well under control

- down to zero pr
over a wide rapidity coverage

[total x-section]

[xr = —1]

- with extremely high statistiscal precision in pp, pA and AA collisions

- Looking at D — K gives direct acces to charm - anticharm asymmetries

p° yield per year [per 1 GeV bin]

LHCb preliminary
2015 pNe data

+
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Open charm projections

- This huge data sample over a wide kinematical
coverage gives a unique handle on the charm
content in the proton at high x
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Open charm projections

This huge data sample over a wide kinematical
coverage gives a unique handle on the charm
content in the proton at high x

Longstanding debate in the QCD community:
pertubative vs. non-perturbative origin

Yield relative uncertainty due to c(x)

10 1o of pp collisions at sqri(s)=115 GaV
Syst. : 5%, <e> = 10%; 2<yp0<3, Brycy=3.93 %
central cfx) with scale uncert.
AFTERatLHC projected uncertainty —
Coloured curves: yield uncert. from IC
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This huge data sample over a wide kinematical
coverage gives a unique handle on the charm
content in the proton at high x

Longstanding debate in the QCD community:
pertubative vs. non-perturbative origin

Yield relative uncertainty due to c(x)

Relevant for cosmic neutrinos
[not well constrained by lack of inputs]
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content in the proton at high x

Longstanding debate in the QCD community:
pertubative vs. non-perturbative origin

Yield relative uncertainty due to c(x)

Relevant for cosmic neutrinos
[not well constrained by lack of inputs]

10 1o of pp collisions at sqri(s)=115 GaV
Syst. : 5%, <e> = 10%; 2<yp0<3, Brycy=3.93 %
central cfx) with scale uncert.
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polarised target [Never measured]
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Open charm projections

10 1o of pp collisions at sqri(s)=115 GaV
Syst. : 5%, <e> = 10%; 2<yp0<3, Brycy=3.93 %
sl central cfx) with scale uncert.
\ AFTERatLHC projected uncertainty —
Coloured curves: yield uncert. from IC

This huge data sample over a wide kinematical
coverage gives a unique handle on the charm
content in the proton at high x

Longstanding debate in the QCD community:
pertubative vs. non-perturbative origin

Yield relative uncertainty due to c(x)

Relevant for cosmic neutrinos

[not well constrained by lack of inputs] e ‘S‘Gev) N
02 . ki . . —
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polarised target [Never measured] od g .
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Open charm projections

This huge data sample over a wide kinematical
coverage gives a unique handle on the charm
content in the proton at high x
Longstanding debate in the QCD community:
pertubative vs. non-perturbative origin
Relevant for cosmic neutrinos

[not well constrained by lack of inputs]

Yield relative uncertainty due to c(x)

D can also be collected with a transversely
polarised target [Never measured]
Gives access to the tri-gluon correlation and the
gluon Sivers effect [related to L]

0 0
Differences in AL} and AY gives acces to C-odd
correlators  [No other facility can measured this]
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Open charm projections

This huge data sample over a wide kinematical
coverage gives a unique handle on the charm
content in the proton at high x
Longstanding debate in the QCD community:
pertubative vs. non-perturbative origin
Relevant for cosmic neutrinos

[not well constrained by lack of inputs]

10 1o of pp collisions at sqri(s)=115 GaV
Syst. : 5%, <e> = 10%; 2<yp0<3, Brycy=3.93 %
central cfx) with scale uncert.
AFTERatLHC projected uncertainty —
Coloured curves: yield uncert. from IC

Yield relative uncertainty due to c(x)

D can also be collected with a transversely
polarised target [Never measured]
Gives access to the tri-gluon correlation and the

gluon Sivers effect [related to L]

0 0
Differences in AL} and AY gives acces to C-odd
correlators  [No other facility can measured this]

Precision at the per cent level
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Open charm projections

10 1o of pp collisions at sqri(s)=115 GaV
Syst. : 5%, <e> = 10%; 2<yp0<3, Brycy=3.93 %
central cfx) with scale uncert.
AFTERatLHC projected uncertainty —
Coloured curves: yield uncert. from IC

This huge data sample over a wide kinematical
coverage gives a unique handle on the charm
content in the proton at high x

Longstanding debate in the QCD community:
pertubative vs. non-perturbative origin

Yield relative uncertainty due to c(x)

Relevant for cosmic neutrinos

[not well constrained by lack of inputs] o 2z 4 & 8 10 1
Pr o (GeV)
02 225, p+p 6= 115Gey  SIDISL ' o
: EYous =225 p+p {5=115Ge E|
D can also be collected with a transversely oask ¢ . E
polarised target [Never measured] ot ’ ) -]
Gives access to the tri-gluon correlation and the B0 }
. < 0.05- !
gluon Sivers effect [related to L] E 3
- 0l T,
. . 0 o . E —s— Stat. unc. project 1
Differences in Ay and Ay gives acces to C-odd ool P0s 008 — - “{5’3“5?52 E%gfé‘];; i
s . -0.05 — g 4
correlators  [No other facility can measured this] Flp=iom' ---glposbond 1
P it AP I DA ST
Precision at the per cent level p, [GeVi]

As for AA collisions, nuclear modification factors vs pr, y, centrality as well as
azimuthal anisotropies (v,) can be of course measured [no time to cover them]
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Quarkonium Projections

Our aim is to measure a complete set of heavy-flavours to use them as tools
[gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]
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Quarkonium Projections

Our aim is to measure a complete set of heavy-flavours to use them as tools
[gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

- Wide rapidity coverage; Pr up 15 GeV, down to 0 GeV
[Rapidity coverage important to pin down nuclear effects]
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Quarkonium Projections

Our aim is to measure a complete set of heavy-flavours to use them as tools
[gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

Wide rapidity coverage; Pr up 15 GeV, down to 0 GeV
[Rapidity coverage important to pin down nuclear effects]

Typically 10° charmonia, 10° bottomonia per year
Unique opportunity to access C-even quarkonia (x5, #c) + associated production

Full background simulations show very good prospects in all systems
[worst scenario (PbA) shown below]
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LHCD acceptance as a function of the colliding modes
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Nota: similar for the ALICE spectrometer
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Further readings

Heavy-Ion Physics
°

Gluon shadowing effects on J [y and Y production in p+Pb collisions at \/syN = 115 GeV and Pb+p
collisions at \/sNN = 72 GeV at AFTER@LHC by R. Vogt. Adv.Hi.En.Phys. (2015) 492302.

Prospects for open heavy flavor measurements in heavy-ion and p+A collisions in a fixed-target
experiment at the LHC by D. Kikola. Adv.Hi.En.Phys. (2015) 783134

Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams by E.
Arleo, S.Peigne. [arXiv:1504.07428 [hep-ph]]. Adv.Hi.En.Phys. (2015) 961951

Anti-shadowing Effect on Charmonium Production at a Fixed-target Experiment Using LHC Beams by
K. Zhou, Z. Chen, P. Zhuang. Adv.High Energy Phys. 2015 (2015) 439689

Lepton-pair production in ultraperipheral collisions at AFTER@LHC
By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087

Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By ].P. Lansberg, S.J.
Brodsky, E Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.
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Further readings

Spin physics

@ Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment by K.
Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. [arXiv:1502.04021 [hep-ph]. Adv.Hi.En.Phys. (2015)
257934.

@ Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a
TMD factorisation scheme by M. Anselmino, U. D’Alesio, and S. Melis. [arXiv:1504.03791 [hep-ph]].
Adv.Hi.En.Phys. (2015) 475040.

@ The gluon Sivers distribution: status and future prospects by D. Boer, C. Lorcé, C. Pisano, and J. Zhou.
[arXiv:1504.04332 [hep-ph]]. Adv.Hi.En.Phys. (2015) 371396

@ Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams
(AFTER) By T. Liu, B.Q. Ma. Eur.Phys.]J. C72 (2012) 2037.

@ Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER By D. Boer, C.
Pisano. Phys.Rev. D86 (2012) 094007.
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Further readings

Hadron structure

Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC).
by J.P. Lansberg, H.S. Shao. [arXiv:1504.06531 [hep-ph]]. Nucl.Phys. B900 (2015) 273-294

Next-To-Leading Order Differential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in
Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC)
by Y. Feng, and ].X. Wang. Adv.Hi.En.Phys. (2015) 726393.

#e production in photon-induced interactions at a fixed target experiment at LHC as a probe of the
odderon
By V.P. Goncalves, W.K. Sauter. arXiv:1503.05112 [hep-ph].Phys.Rev. D91 (2015) 9, 094014.

A review of the intrinsic heavy quark content of the nucleon
by S. J. Brodsky, A. Kusina, F Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt. Adv.Hi.En.Phys.
(2015) 231547,

Hadpronic production of E.c at a fixed-target experiment at the LHC
By G. Chen et al.. Phys.Rev. D89 (2014) 074020.
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Further readings

Feasibility study and technical ideas

@ Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and
lead beams (AFTER@LHC) by L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola,
J.P.Lansberg, and H.S. Shao arXiv:1504.05145 [hep-ex]. Adv.Hi.En.Phys. (2015) 986348

@ A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions
by C. Barschel, P. Lenisa, A. Nass, and E. Steffens. Adv.Hi.En.Phys. (2015) 463141

@ Quarkonium production and proposal of the new experiments on fixed target at LHC by N.S.
Topilskaya, and A.B. Kurepin. Adv.Hi.En.Phys. (2015) 760840
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Fast simulation using LHCb reconstruction parameters

Projection for a LHCb-like detector L. Massacrier, B. Trzeciak, et al., Adv.Hi.En.Phys. (2015) 986348

@ Simulations with Pythia 8.185

@ the LHCD detector is NOT simulated but LHCb reconstruction parameters are
introduced in the fast simulation (resolution, analysis cuts, efficiencies,...)

Requirements:
o Momentum resolution : Ap/p = 0.5%

e Muon identification efficiency: 98%

Cuts at the single muon level
0 2<n,<5
o pry > 0.7 GeV

@ Muon misidentification:

o If m and K decay before the calorimeters (12m), they are rejected by the
tracking

o otherwise a misidentification probability is applied following: F. Achilli et al,
arXiv:1306.0249
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