DarkSide-20k
and the Darkside Program
for Dark Matter Searches

Cristiano Galbiati
Princeton University
Physics Beyond Colliders
CERN
September 7, 2016
Coherent neutrino-nucleus scattering floor
An Ambitious Discovery Program

• Complementary to LHC

• Raising the bar: from 1 tonne × yr → 1,000 tonne × yr

• “Zero Background” necessary for a discovery program

• Two crucial technologies
 • Liquid argon target depleted in the radioactive 39Ar
 • SiPMs replacing cryogenic PMTs
Liquid Argon TPC
153 kg 39Ar-Depleted Underground Argon Target
4 m Diameter
30 Tonnes
Liquid Scintillator
Neutron Veto
10 m Height
11 m Diameter
1,000 Tonnes
Water Cherenkov
Muon Veto
Liquid Argon TPC
153 kg 39Ar-Depleted
Underground Argon
Target

4 m Diameter
30 Tonnes
Liquid Scintillator
Neutron Veto

10 m Height
11 m Diameter
1,000 Tonnes
Water Cherenkov
Muon Veto
“Zero Background” condition (<0.1 background events) necessary to conduct discovery program
What are the instrumental backgrounds for large scale, high mass dark matter searches?
Minimum Ionizing Events:
• Scatters of pp solar neutrinos on electrons
• Radioactive noble gases (39Ar)

Nuclear Recoils:
• v-induced coherent scattering of atm neutrinos [$\sim 1/(100 \text{ tonne } \times \text{yr})$]
Elastic Scatters of pp Solar Neutrinos on Electrons

- 200 events/tonne×yr in ROI
- 200,000 background events @neutrino floor
- Defeated in argon thanks to $β/γ$ rejection better than $1\div1.6\times10^7$
16M 39Ar events
$1,422$ kg × day (AAr)

$\div 1400$ 39Ar depletion
AAr/UAr

16M 39Ar events
5.5 tonne × yr (UAr)

additional active isotopic depletion
higher light yield

1,000 tonne × yr (DAr)
Urania to Aria to LNGS
Aria

- Production Column
 - 150 cm diameter
 - 350 m height

- R&D Column
 - 30 cm diameter
 - 350 m height

- Volatilità relative => 1.007
- Valori tipici >1.5
- Numero di stadi teorici => ordine delle migliaia
- HETP = 10 cm
- H=200-400 m
- Usuali = 20-30 m
- Fuori terra
- A sezioni separate
Based on what we know today, can a depleted argon experiment be free of any instrumental (other than ν-induced recoils) background at the scale of 1000 tonnes×yr?

Yes.
SiPM Status

• Photon Detection Efficiency (PDE): 45% requirement met and surpassed

• Dark Count Rate (DCR): 0.1 Hz/mm2 requirement met and surpassed

• Challenge in tiling due to 50 pf/mm2 capacity. Signal-to-Noise Ratio (SNR) rapidly decreases with increasing surface. The steps:

 • 2×2 cm2 tile: fully demonstrated

 • 3.5×3.5 cm2 tile: on the way, success projected on the basis of available data

 • 5×5 cm2 tile: in 2017, some R&D necessary to improve SNR due to the increase in capacity
Baseline: mean = -2 pVs, $\sigma = 67$ pVs
SPE peak: mean = 801 pVs, $\sigma = 76$ pVs
SNR: 12.0
DarkSide-20k

- 20-tonnes fiducial dark matter detector
- Start of operations at LNGS within 2021
- 100 tonne/year search for dark matter free of instrumental background
- INFN-NSF science review: ✓
- Yellow Book to LNGS: ✓
- INFN-NSF budget and schedule review: ongoing

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-20k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARGO</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Argo

- 300-tonnes depleted argon detector
- Start of operations at LNGS within 2027
- 100 tonne/year search for dark matter free of instrumental background
- Precision measurement of solar neutrinos
The End