A nuclear astrophysics facility for the LSC.

The sources of neutrons in the stars and other reactions of astrophysical interest

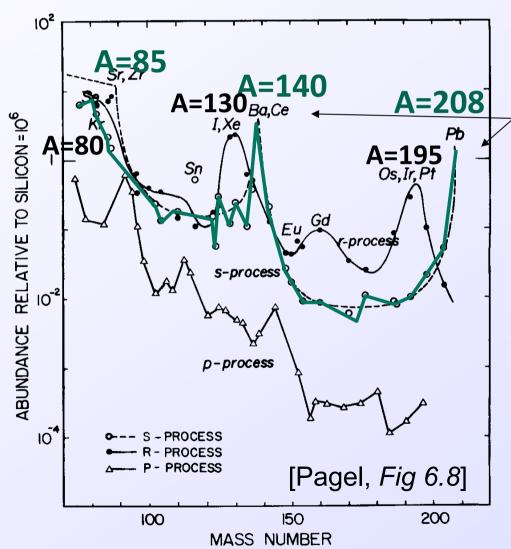
L.M. Fraile, GFN-UCM

- C. Abia, A. Algora, J. Benlliure, R. Caballero, F. Calviño,
- D. Cano-Ott, I. Domínguez, L.M. Fraile,
- M.B Gómez-Hornillos, M. Hernanz, I. Irastorza,
- M.D. Jordán, J. José, R. Longland, G. Luzón,
- T. Martínez, B. Olaizola, A. Parikh, J.L. Taín, J.M. Udías

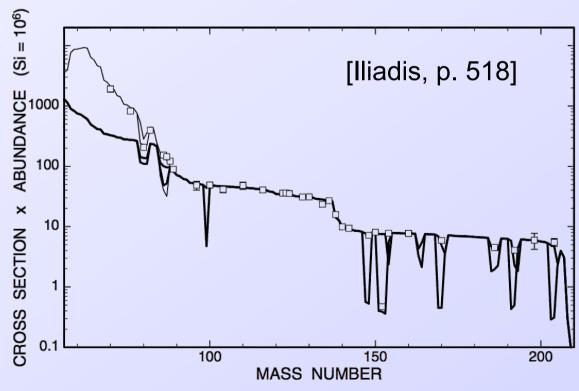
Letter of Intent

Canfranc Underground Nuclear Astrophysics

EoI-12-2009-CUNA


October 2012

Summary


The s-process

The origin of heavy elements in the solar system

Abundance peaks: n capture along valley of stability → s-process

- slow neutron captures
- 50% of the isotopes above Fe

Stellar evolution: s-process

Main component

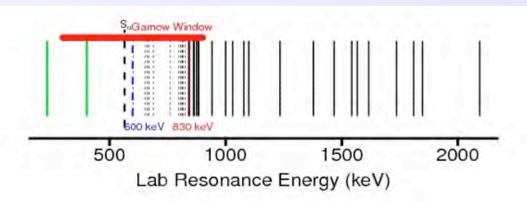
Thermally pulsing, low mass

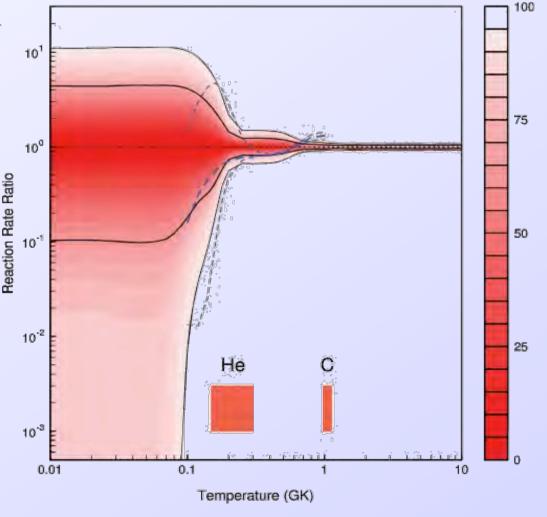
 $(M = 1.5 - 3 M_{\odot}) AGB stars$

- Originate from main sequence stars, ejection of the outermost layers of the star
- AGB stage: Combination of H- & Heburning shells produces s-process elements A = 90-209

Weak component

Massive stars (M > 13 M_{\odot}) during He- and C-burning Red Giant phase

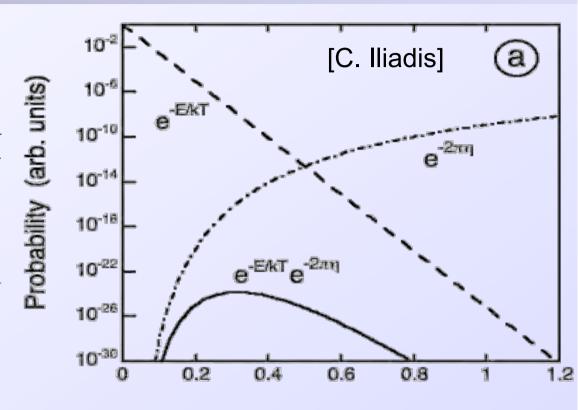

- produces species with A = 60 90
- ¹⁴N quickly converted to ²²Ne
- 22 Ne(α ,n) 25 Mg provides the neutron source


Impact of reaction rates for 22 Ne(α ,n) 25 Mg

- ✓ 22 Ne(α , γ) 26 Mg reaction also has impact on n flux
- ✓ Improved ²²Ne + α reaction rates based on new experimental information since NACRE and Jäger et al.
- ✓ Computational method [22]
 - Much improved uncertainties
 - Changes for AGB starts: increase of production by up to a factor of 2 for higher masses.

R. Longland et al.

PHYSICAL REVIEW C 85, 065809 (2012)


Measurements

✓ Cross-sections

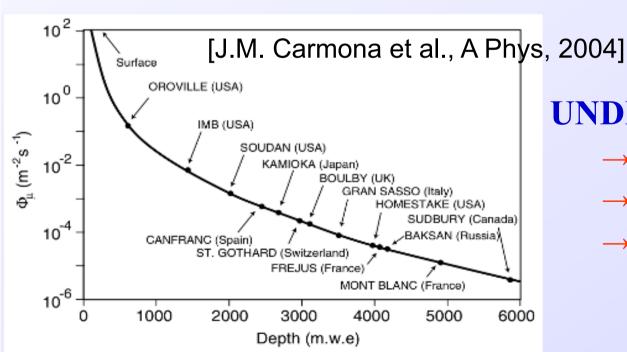
- → parameterized models
- → Typical stellar T (10⁷-10¹⁰ K) and Coulomb barrier translates into very low LAB energies (0.001-1 MeV): Gamow peak
- \rightarrow Cross-sections are extremely small $(10^{-12} 10^{-20} \text{ barn})$
- → Low energies resonances may appear

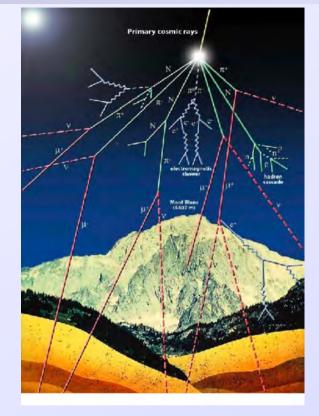
✓ Measure at (close) the relevant E

- → Requires high luminosity (beam current)
- → Requires large signal/noise ratio
- → Extrapolations

Rate
$$\propto \langle \sigma v \rangle \propto \int \Phi(E) \sigma(E) dE$$

$$\Phi(E) \propto \mathrm{E} \, \mathrm{e}^{-\mathrm{E}/\mathrm{kT}}$$


$$\sigma(E) = \frac{1}{E} e^{-2\pi\eta} S(E)$$



Solution: going underground

✓ Background sources

- → Cosmic ray muons
- → Muon-induced neutrons & radioactivity
- → Rn and A=210 Pb-Bi-Po daughters
- → Gamma and n emission from materials
- → Rn emanation from materials
- → Beam induced reactions

UNDERGROUND

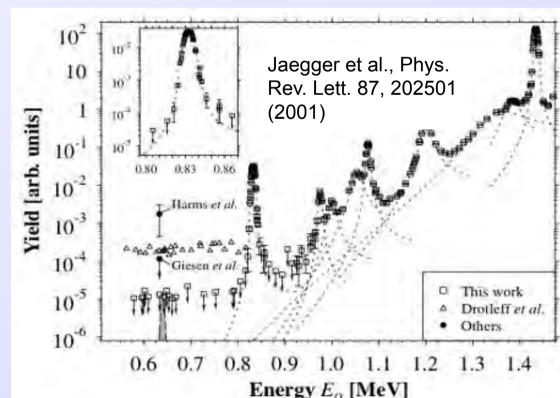
- → Cosmic rate reduction
- → Significant below 1000 mwe
- → Additional background reduction

S-process in AGBs and massive stars

	$^{13}C(\alpha,n)^{16}O$	22 Ne(α ,n) 25 Mg	22 Ne(α ,n) 25 Mg
Location	AGB - Pocket	AGB - He flash (short, intense burst)	M > 13 M _☉ Red Giant He- & C-burning
Importance	Primary source (weaker but longer)	Secondary source (slight change of abundances)	Weak component
Requirements	Needs ¹³ C	²² Ne is abundant	¹⁴ N converted to ²² Ne
Temperature	$0.9 - 1.0 \times 10^8 \text{ K}$	2.7 x 10 ⁸ K	$2.2 - 3.5 \times 10^8 \mathrm{K}$
Neutron density	$7 \times 10^7 \text{ cm}^{-3}$	10 ¹⁰ cm ⁻³ (peak)	2 x 10 ⁷ cm ⁻³ max
Duration	20,000 yr	few years	Red giant phase
Neutron exposure $\int j_n(t)dt$	0.1 / mb (90% exposure)	0.01 / mb	0.2 / mb

What is the source of the required stellar neutron flux? The rates of these reactions must be accurately known

Countrate estimates 22 Ne(α ,n) 25 Mg


Astrophysically relevant range $E_x = 10.9 - 11.5 \text{ MeV}$

- High density, resonances not resolved, widths not known
- ✓ The α-particle separation energy in 26 Mg is at S_{α} =10.6 MeV
 - Assume hypothetical resonance at $E^{R}_{CM} = 537 \text{ keV} (E_{a} = 635 \text{ keV})$
 - $\omega \gamma < 60 \text{ neV [Jaeger et al.]}$
 - Thick, ²²Ne:Ni = 2:1 target, (active region ≈30 keV thick) e.g., produced

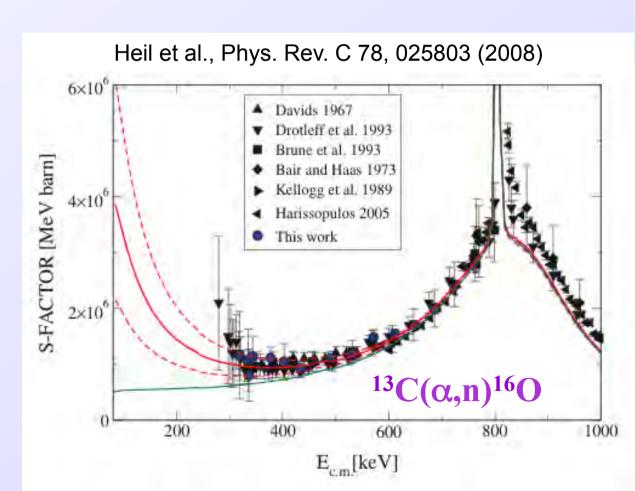
using 80 keV 22 Ne implanted in ≈ 0.5 mm Ni backing

Assumptions:

I (⁴He) \approx 500 μA and detection efficiency of $\eta \approx$ 50% 10 counts / hour

Countrate estimates for ${}^{13}C(\alpha,n){}^{16}O$

✓ Astrophysically relevant region $E_r^{CM} = 150 \text{ keV}$ to $E_r^{CM} = 230 \text{ keV}$


- Free from narrow resonances
- Assume slowly vayring S-factor down to $E^{R}_{CM} = 200 \text{ keV} (E_{a} = 260 \text{ keV})$ [Drotleff et al.]
- S-factor is approximately $S = 10^6 \text{ MeV} \cdot \text{barn}$
- $\sigma \approx 10^{-13} \text{ b}$
- Thick, ¹³C + Cu target (evaporated/implanted, active region ≈ 30 keV thick)

Assumptions:

I (⁴He) ≈ 500 μA and detection efficiency of $\eta \approx 50\%$

2.5 counts/hour

Minimum measured E: 270 keV [Drotleff]

International framework

Existing and proposed facilities

LUNA 400kV - LNGS

LUNA-MV - LNGS

Funded "premium project"
Italian Ministry - 5 M€
2018/2019

CASPER – Sandford - USA

Proton and Helium beam from a 200 kV to 1 MV electrostatic accelerator Extended ²²Ne gas target surrounded by ³He neutron detector

LSC Proposal – LOI-12-2012

✓ European expert committee (of ESF) statement in Long Range Plan for Nuclear physics:

The effort to put into operation a machine of geveral MV in a European deep underground laboratory should be considered with the highest priority. This could be achieved in the next three to five points with the appointurity to magazine page or two first machines within the result decade. Considering the high extention interest in measuring sectors more nuclear reactions, the case could be made to complete the programme with a second facility designed for a complementary set of measurements."

- ✓ Second underground facility
 - → one is not enough to measure all the important reactions in a reasonable time frame
 - → independent confirmation of the results is always important, so even if LUNA could measure everything, more facilities are needed

Proposal – LOI-12-2012

- ✓ Underground accelerator-based facility at LSC
 - → Ideal location: significant cosmic rate reduction below 1000 mwe
 - → Competitive at the world scale
 - → Impact on visibility of LSC as a whole
- ✓ Questions towards construction and implementation:
 - → Ideal energy
 - measurements at low energy
 - matching high energy /surface reactions
 - resonances/tails can be relevant
 - → Detection techniques
 - Can we achieve the sensitivity with "standard" detectors?
 - → Background level
 - Limiting factor (beam induced, rock, concrete ...)

Letter of intent

L.M. Fraile (spokesperson), B. Olaizola, J.M. Udías

Grupo de Física Nuclear, Universidad Complutense de Madrid, Madrid, Spain

J. José, R. Longland, A. Parikh

GAA, Universitat Politecnica de Catalunya, Barcelona, Spain

M. Hernanz, J. Isern

Institut de Ciencies de l'Espai-CSIC, Bellaterra, Spain

C. Abia, I. Domínguez

Universidad de Granada, Granada, Spain

F. Calviño, B. Gómez-Hornillos,

GREENER, Universitat Politecnica de Catalunya, Barcelona, Spain

D. Cano, T. Martínez

Centro de Investigaciones Energéticas y Medioambientales, Madrid, Spain

J. Benlliure, M. Caamaño

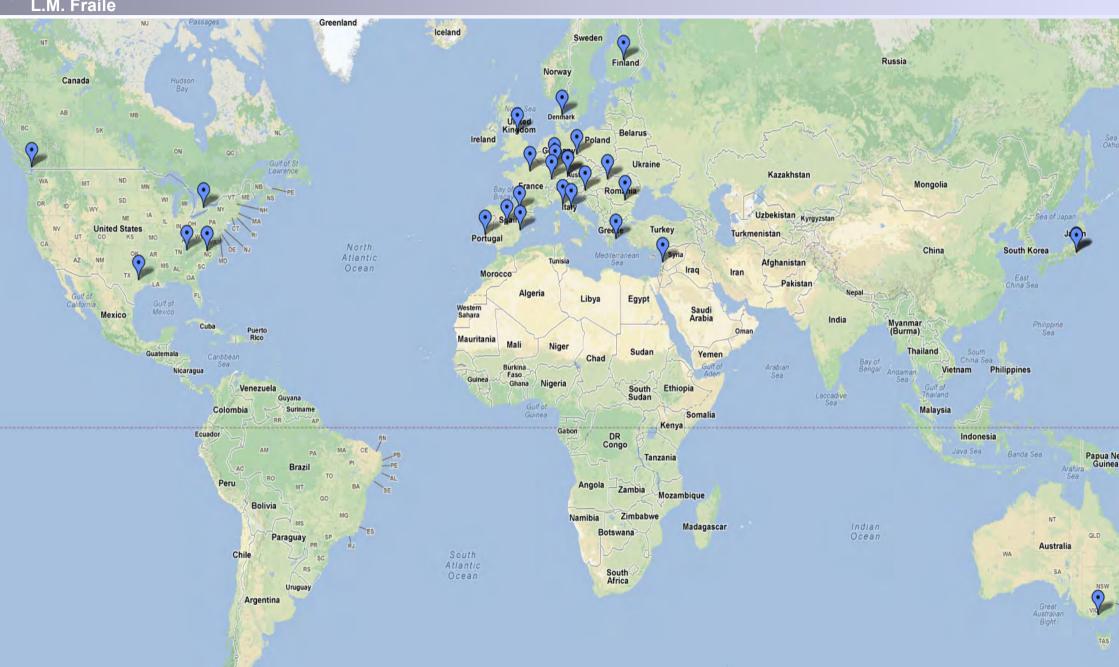
Universidad de Santiago de Compostela, Santiago de Compostela, Spain

A. Algora, D. Jordán, J.L. Taín

Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain

I. Irastorza, G. Luzón

Lab. de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain


Global support from community

- → C. Iliadis (UNC CHapel Hill, USA)
- → F.-K. Thieleman (U Basel, Switzerland)
- → H. Leeb (TU Wien, Austria)
- → J. Lattanzio, M. Lugaro (Monash, Australia)
- → T. Kajino (U Tokyo, Japan)
- \rightarrow B. Fulton, A. Laird (U York, UK)
- → S. Harissopoulos (INP Athens, Greece)
- \rightarrow N. Soic (Zagreb, Croatia)
- → B. Davids (TRIUMF Vancouver, Canada)
- → S. Bishop (TUM Munich, DE)
- \rightarrow L. Trache (NIPNE Bucharest, RO)
- \rightarrow K.-L. Kratz (MPI Mainz, DE)
- → D. Bemmerer (HZDR Dresden, DE)
- → Z. Fülöp, G. Gyurky (ATOMKI Debrecen, HU) → T. Motobayashi (RIKEN, Japan)
- → R. Tribble, C. Bertulani (Texas A&M, USA)

- → M. Smith, D. Bardayan (Oak Ridge, USA)
- → A.P de Jesús, D. Galaviz (CFNUL, Lisbon, PT)
- \rightarrow F. Hammache (IPN Orsay, FR)
- \rightarrow A. Coc (CNSMN Orsay, FR)
- \rightarrow M. Busso (U Perugia, IT)
- → H. Fynbo (Aarhus, Denmark)
- → F. Kaeppeler (Karlsruhe, DE)
- \rightarrow R. Diehl (MPI Garching, DE)
- → M. El Eid (AUB Beirut, Lebanon)
- → B. Rubio (IFIC, Valencia, ES)
- \rightarrow E. Moya (UCMadrid, ES)
- \rightarrow S. Shore (U Pisa, IT)
- → A. Chen (U McMaster, Canada)
- → J. Aysto (U Jyväskylä, Finland)

Letter of intent

Infrastructure

Accelerator

3.5 MV HVee Singletron (2.0 MV HVee)

Terminal V: 0.2-3.5 MV

Terminal V ripple: 200 Vpp

V stability (at 2250 kV): ±150 V

X-ray radiation level (at 1 m from the tank): less than 2 µSv/h

H+ beam current (after the magnet): 100 μA

RF ion source (H+, He+)

Other options considered for future upgrades

D.J.W. Mous et al., NIM B130 (1997) 31-36

✓ AIFIRA (CENBG Bordeaux)

- \rightarrow measured Ripple: $V_{pp} = 28 \text{ V}$ at 2250 keV
- \rightarrow Beam current @ 3.5 MeV > 80 μ A (He⁺), good beam brightness

Possibility of beam induced background measurements at their lab

Other options... recycle!

NEC 5SDH-2 Pelletron

"Recycled" from Aarhus laboratory

In working condition

Similar to Jyväskylä VTT (materials)

Tandem 1.7 MV terminal voltage

H and He source, maximum ⁴He⁺⁺

energy 5.1 MeV

Currents ~1 µA

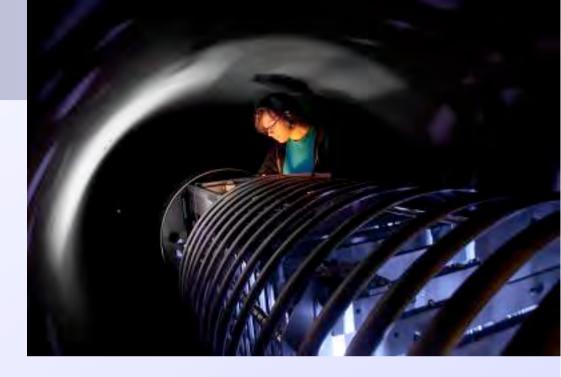
Still available

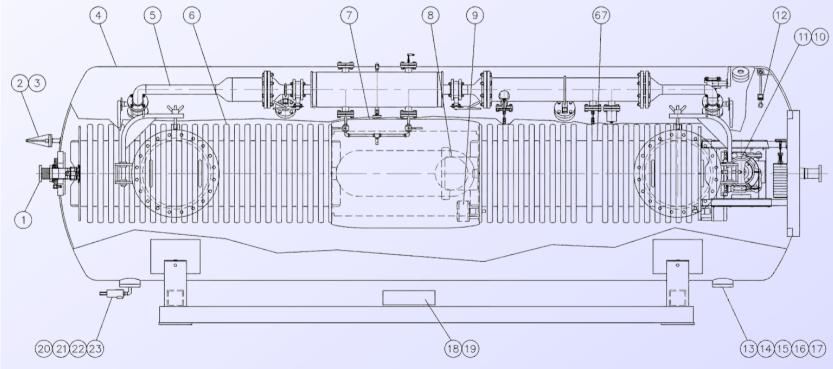
A similar NEC pelletron under exploration

Needs to be refurbished

Lower energy

???

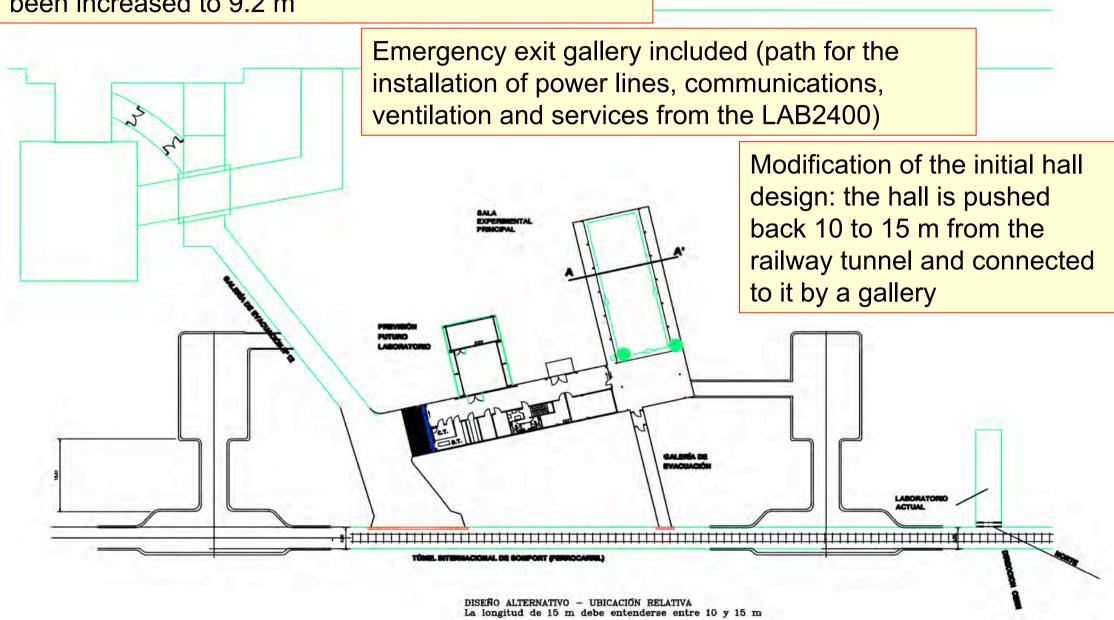

NEC single-ended / tandem Pelletron


10.5SDH-4 Pelletron

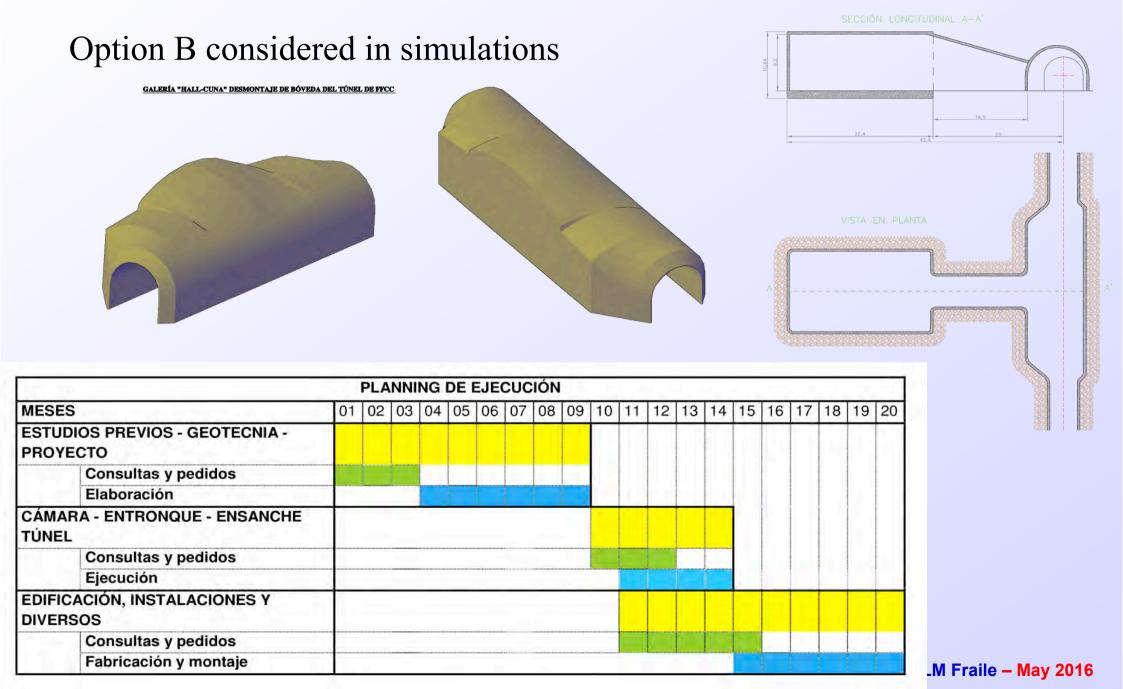
3.5 MV and 600 µA nominal

Terminal V ripple via corona probe and the generating voltmeter

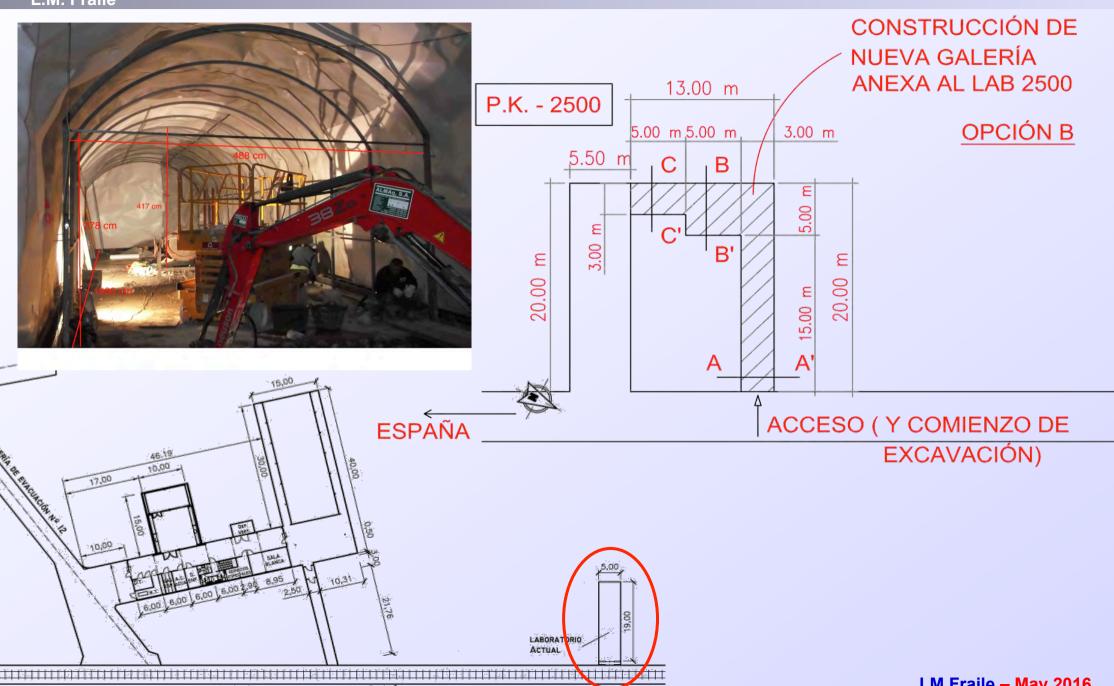
#7 m long tank, SF₆



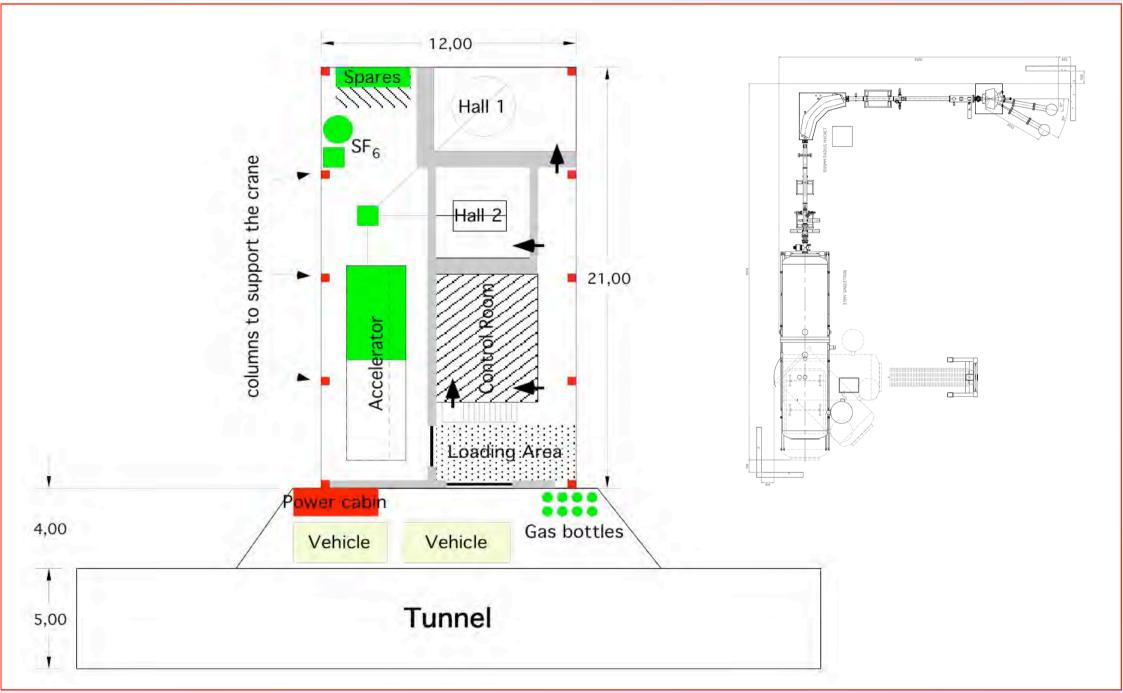
In principle this solution will perfectly fit


Cave design study - 2012

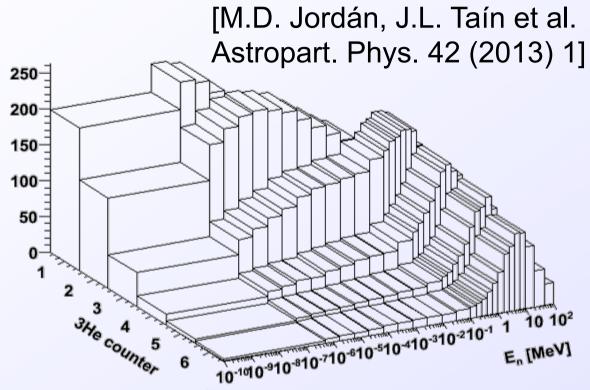
Modifications to dimensions: height at the arch has been increased to 9.2 m



Pre-project for the cave

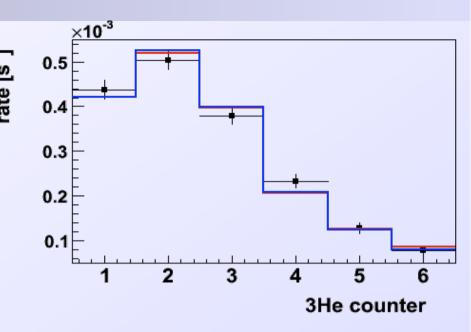


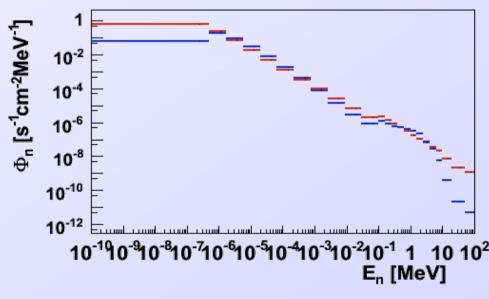
Exploratory LAB2500 option



Neutron detection Background and simulations

response [cm²]


Neutron flux



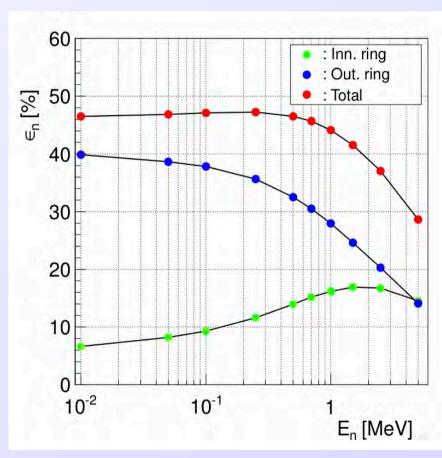
Response used for deconvolution

$$n_i = \sum_{j} \varepsilon_{ij} \Phi_j$$

- ✓ Deconvolution for rates and **fluxes**
- ✓ Good agreement (some exceptions)
- $\checkmark \Phi_{\text{hall A}} = (1.4 \pm 0.2) \times 10^{-5} \text{ n/cm}^2 \text{ s}$

- Expectation-Maximization (EM)
- Maximum Entropy (ME)

Feasibility for measurement (α,n) cross sections


- ✓ ³He proportional chambers embedded in a PE matrix
 - \rightarrow large detection efficiencies ~50%
 - → clean signal (...see below)
- ✓ Simulations of background event rate
 - → EFFICIENCY: MCNPX Monte Carlo
 - 20 ³He tubes in two rings
 - Central hole 11 cm diameter
 - PE neutron moderator of 50 × 50 × 80
 cm³ and above
 - → Background rate from measured distribution

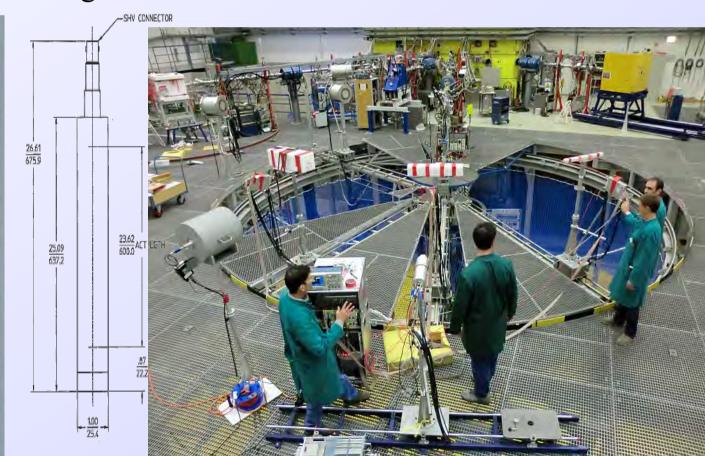
$$6 \times 10^{-4}$$
 to 9×10^{-4} s⁻¹

 8×10^{-6} to 6×10^{-5} s⁻¹ for increased PE

Increased sensitivity for a fraction of picobarn is possible

J.L. Taín et al., J. Phys. Conf. Series 665 (2016) 012031

efficiency for detecting neutrons emitted randomly from the center of the detector as function of energy

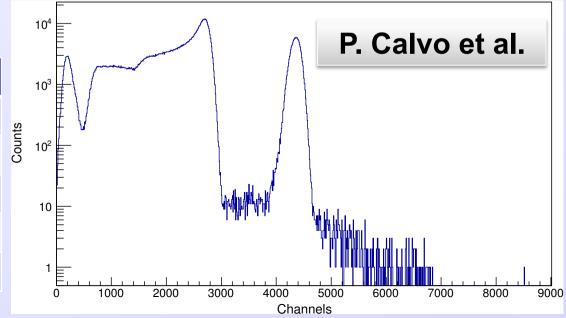


Neutron detector for astrophysical (α,n) reactions

✓ Characterization of ³He counters at PTB

- \rightarrow Response of the full BELEN-48 detector, suited for (α,n) reactions:
 - calibrated with several reactions, **n** energies in the relevant range
 - 48 ³He tubes, about 60% efficiency
 - needs reduction of n background rate

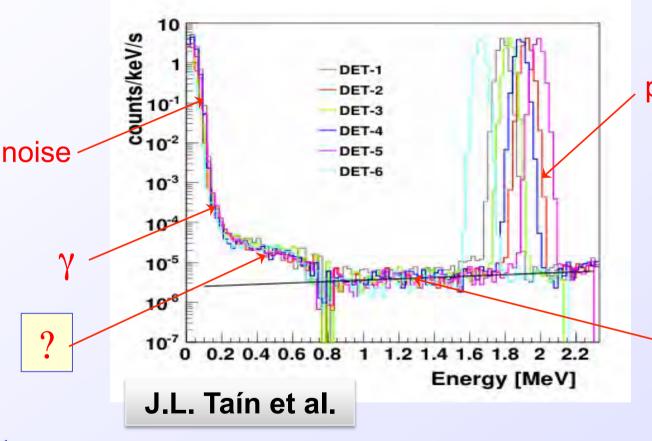
Neutron detector for astrophysical (α,n) reactions


→ Individual ³He tubes embedded in PE blocks

- Irradiated with 5 well-characterized neutron beams at $110 < E_n < 2240 \text{ keV}$
- Complementary to the measurements of the LSC **n background** measurement

• Verification of the detector response & reduce systematic uncertainty on the measured neutron fluence at Hall A.

	Response (cm ²)			
E _n (MeV)	Matrix #1	Matrix #3	Matrix #5	
0.139(7)	7.6(4)	40.7(10)	7.2(2)	
0.565(4)	4.2(10)	52.1(8)	17.9(6)	
1.20(5)	1.91(14)	40.0(10)	21.6(4)	
2.50(6)	2.0(9)	51.5(6)	46(4)	



Low background detectors

Neutron spectra with neutron capture signals removed

M.D. Jordán *et al.*, AP Physics 42 (2013) 1

pulser

Strong intrinsic background of the ³He tubes observed in measurement of neutron field at Hall A

 α

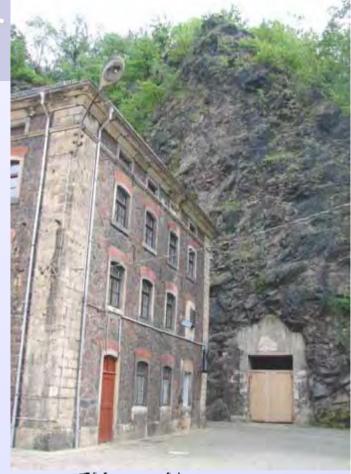
- ✓ Component in the region 200 to 800 keV
 - → not clear origin and overlaps with neutron signals
 - \rightarrow rate from $5 \times 10^{-4} \,\mathrm{s}^{-1}$ to $9 \times 10^{-4} \,\mathrm{s}^{-1}$ (20% from α -component)
 - → needs reduction for measurements

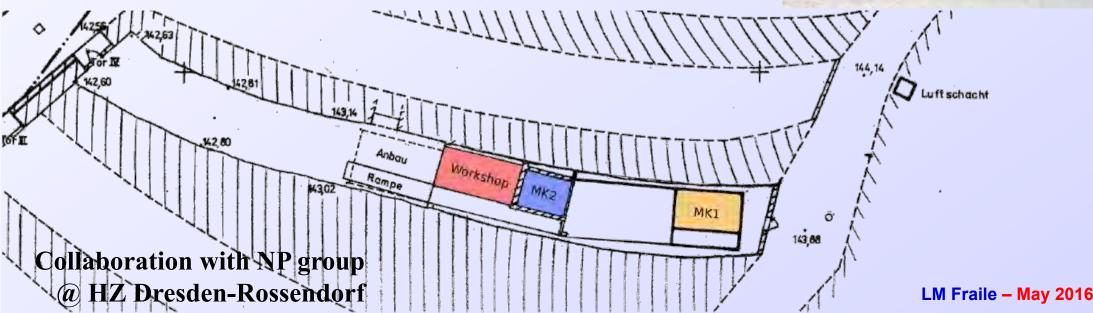
Measurement of intrinsic background in ³He tubes

- ✓ It may limit the lowest measurable (α,n) cross-section
- ✓ Investigate its origin and how to reduce it
 - \rightarrow Two small identical tubes, one with internal C coating for α -particle stopping
 - → Modified DAQ to record pulse shapes and investigate signal origin from PSA
 - → Different preamplifiers to investigate electronics influence

→ Normalization to previous measurements with 1 of the original BELEN ³He

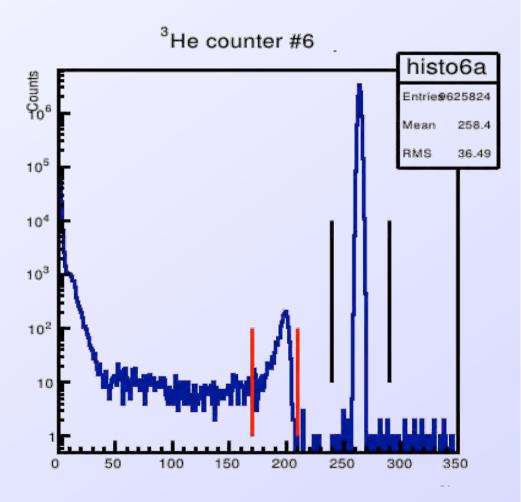
tubes


Under analysis



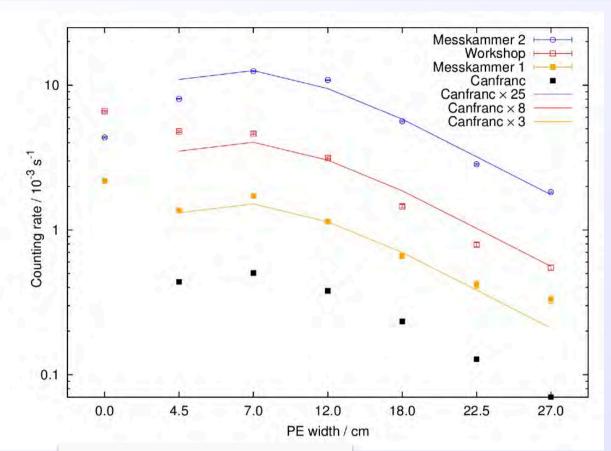
Measurements at Felsenkeller

- ✓ "Shallow" underground facility in Dresden
 - → Seven HDPE n-moderated ³He counters from the BELEN collaboration
 - 6 already employed at the LSC
 - Read out by the gasIFIC-TL digital DAQ
 - → MNCPX simulations
 - → Measurements 15 Dec 2014 12 Feb 2015



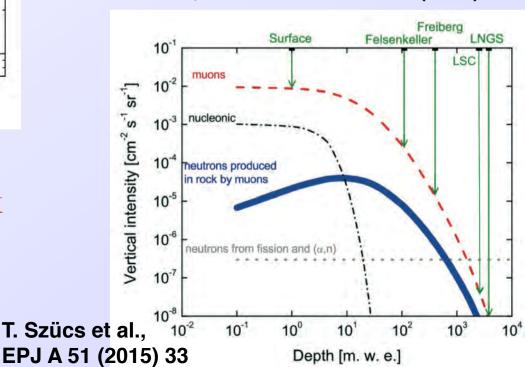
Felsenkeller

- ✓ Depth: 110 m.w.e. (similar for all)
- ✓ Shielding:
 - → Workshop: none
 - → MK1: Serpentinite (radiopure rock)
 - → MK2: Steel, lead



M. Grieger, D. Bemmerer et al.

Preliminary results


M. Grieger et al.

- \rightarrow MK1: less (α ,n) from radiopure rock
- \rightarrow MK2: more neutrons from (μ ,n) and (n,xn) in Pb
- → Interference effects?

- no shielding: thermal neutrons
- 27 cm PE: high E neutrons Needs *bare counter response* + full deconvolution to obtain fluxes

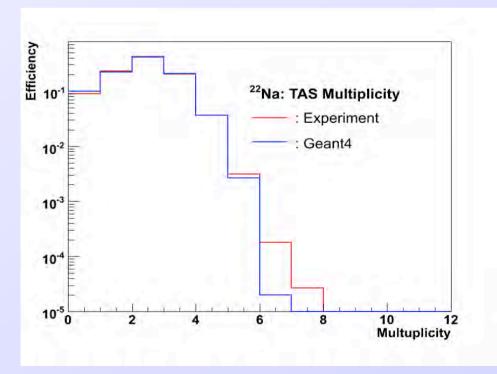
Consistency with previous measurements to be checked: Φ_{PTB} =(5.7 ± 0.7) x 10⁻⁴ cm⁻² s⁻¹

A. Zimbal et al., AIP Conf. Proc. 1549 (2013) 70

Measurements at Felsenkeller

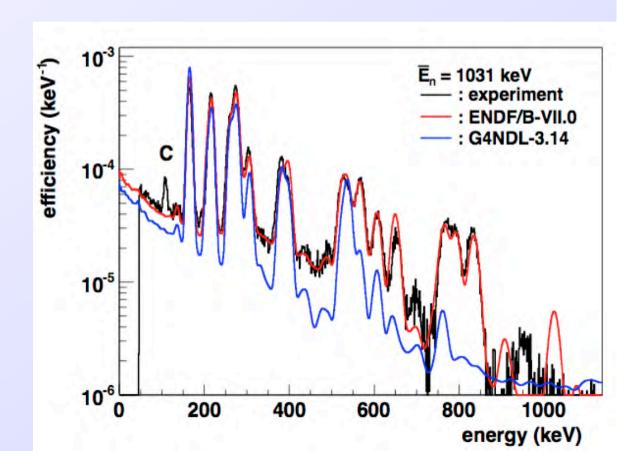
- ✓ Measurements to be complemented
 - → Smaller 3He counters
 - \rightarrow New set of PE
 - \rightarrow PE-Pb-PE matrix with enhanced efficiency at E_n > 10 MeV

June 2016



Detection systems for radiative capture

- ✓ Gamow peak of some α -induced reactions at "high" energy
 - \rightarrow ²²Ne(α , γ)²⁵Mg, T₉=0.35 peaks at E_{LAB} \sim 900 keV
 - \rightarrow ¹²C(α , γ)¹⁶O for T₉=0.35, E_{LAB} ~ 600 keV
- ✓ Total absorption γ -ray spectrometer
 - → Valencia segmented BaF₂ VTAS
 - → Cascade energy + multiplicity distributions



Neutron sensitivity of inorganic scintillators

- \checkmark (p, γ) or (α , γ) measurements
 - → neutrons are easily produced by accelerators
 - → induce signals on scintillation detectors through capture or inelastic scattering
- ✓ LaBr₃(Ce)
 - → n inelastic scattering reproduced by simulations
 - → n energies below the inelastic threshold (42 keV and 128 keV) require new cascade generator
 - → Dependence in Geant4 libraries

Approximate cost estimate

Material	Cost (k€)	Comment
Accelerator, beam lines,	450	Based on refurbishing an existing machine. Includes
analysing magnet		transport.
Hall construction,	1000	Assumes expansion of existing hall. Estimate done
infrastructure & shielding		2012.
Neutron detection and DAQ	500	Based on BELEN costs, assuming low background materials and including support and electronics. Partly existing.
High resolution gamma detection and DAQ	200	Assuming 2 HPGe 130% detectors, with low background materials; includes electronics.
Scintillator array with DAQ	350	Based on Total Absorption Spectrometer with standard scintillators, with electronics. Partly funded.
Experimental mechanics and shielding	400	Rough estimate for reaction chambers, vacuum, supporting structures for 2 beam lines.

[✓] Time line defined by accelerator and infrastructure

^{✓ 2} FTEs (1 Technical + 1 PostDoc) full time + collaboration

Letter of Intent

Canfranc Underground Nuclear Astrophysics

EoI-12-2009-CUNA

October 2012

A nuclear astrophysics facility for the LSC. The sources of neutrons in the stars and other reactions of astrophysical interest

L.M. Fraile (spokesperson), B. Olaizola, J.M. Udías
Grupo de Física Nuclear, Universidad Complutense de Madrid, Madrid, Spain

J. José, R. Longland, <u>A. Parikh</u> GAA, Universitat Politecnica de Catalunya, Barcelona, Spain

M. Hernanz, J. Isern
Institut de Ciencies de l'Espai-CSIC, Bellaterra, Spain

C. Abia, <u>I. Domínguez</u> Universidad de Granada, Granada, Spain

F. Calviño, <u>B. Gómez-Hornillos</u>, GREENER, Universitat Politecnica de Catalunya, Barcelona, Spain

D. Cano, T. Martínez
Centro de Investigaciones Energéticas y Medioambientales, Madrid, Spain

J. Benlliure, M. Caamaño
Universidad de Santiago de Compostela, Santiago de Compostela, Spain

A. Algora, D. Jordán, <u>J.L. Taín</u>
Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain

I. Irastorza, <u>G. Luzón</u>
Lab. de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain