200 MHz: Performance

Luis Medina

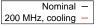
UNIVERSIDAD DE GUANAJUATO División de Ciencias e Ingenierías

CERN-BE-ABP

68th HiLumi WP2 Meeting

May 3rd, 2016

200 MHz: Performance


イロト イヨト イヨト イヨト

- Simulation of the evolution of an optimum fill for the **HL-LHC** and the **200 MHz** alternative scenario.
- Comparison of their performance in terms of integrated luminosity and peak pile-up density.

Parameter	Nominal	200 MHz
Energy [TeV]	7	
Number of bunches	2748	
Colliding bunches	2736	
Bunch population (ppb)	$2.2 imes 10^{11}$	
β^* [cm]	15	
Normalized emittance [µm]	2.5	
Bunch length [cm]	8.1	15.0
Energy spread [10 ⁻⁴]	1.08	1.0

・ロン ・回 ・ ・ ヨン・

- Decrease of beam intensity (particles per bunch, ppb) due to luminosity burn-off.
- Bunch length is kept constant for the baseline, and decreased due to natural cooling for the 200 MHz scenario.
- Emittance evolution takes into account IBS.
- Step-based β^{*}-levelling.
- Luminosity levelling at 2 %, for a **140 pile-up**.
- Peak pile-up density reduced by 9 % w.r.t. the nominal.
- Luminous region.

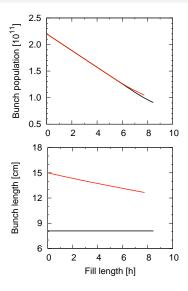
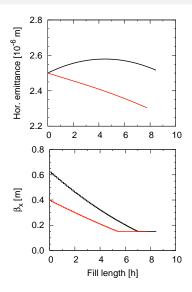



Image: Image:

- Decrease of beam intensity (particles per bunch, ppb) due to luminosity burn-off.
- Bunch length is kept constant for the baseline, and decreased due to natural cooling for the 200 MHz scenario.
- Emittance evolution takes into account IBS.
- Step-based β^* -levelling.
- Luminosity levelling at 2%, for a 140 pile-up.
- Peak pile-up density reduced by 9 % w.r.t. the nominal.
- Luminous region.

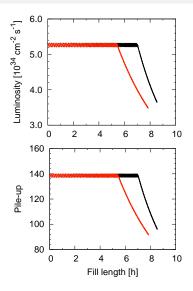
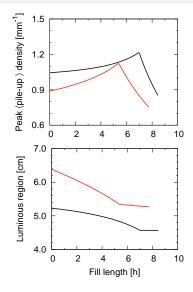

4 E 5

Image: Image:

Nominal -

200 MHz, cooling

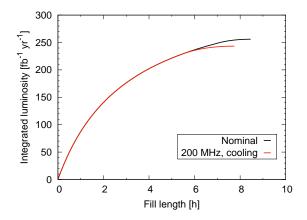
- Decrease of beam intensity (particles per bunch, ppb) due to luminosity burn-off.
- Bunch length is kept constant for the baseline, and decreased due to natural cooling for the 200 MHz scenario.
- Emittance evolution takes into account IBS.
- Step-based β^* -levelling.
- Luminosity levelling at 2%, for a 140 pile-up.
- Peak pile-up density reduced by 9 % w.r.t. the nominal.
- Luminous region.



(4) (3) (4) (4) (4)

Nominal -

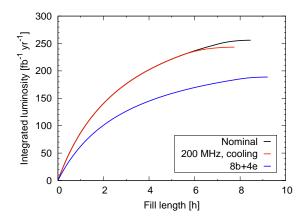
200 MHz, cooling


- Decrease of beam intensity (particles per bunch, ppb) due to luminosity burn-off.
- Bunch length is kept constant for the baseline, and decreased due to natural cooling for the 200 MHz scenario.
- Emittance evolution takes into account IBS.
- Step-based β^* -levelling.
- Luminosity levelling at 2 %, for a **140 pile-up**.
- Peak pile-up density reduced by 9 % w.r.t. the nominal.
- Luminous region.

Nominal

200 MHz. cooling

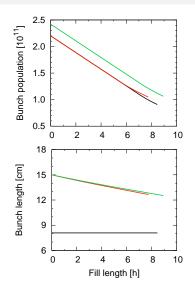
Performance: Baseline and 200 MHz



• Performance is reduced only by 5% in the 200 MHz scenario (with cooling).

• Compare with a reduction of more than **20%** in the **8b+4e** scenario.

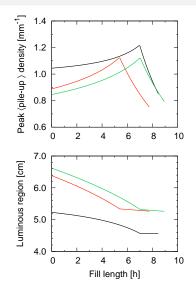
Luis Medina (UG-DCI, CERN)


Performance: Baseline and 200 MHz (and 8b+4e)

- Performance is reduced only by 5% in the 200 MHz scenario (with cooling).
- Compare with a reduction of more than 20% in the 8b+4e scenario.

Luis Medina (UG-DCI, CERN)

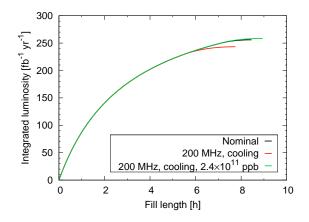
- **10%-increase** of the bunch population.
- Bunch length reduced by natural cooling.
- Longer fill length.
- Negligible impact on the peak pile-up density w.r.t. to the 200 MHz scenario with nominal bunch population.



Nominal

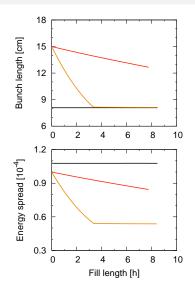
200 MHz, cooling -

200 MHz, cooling, 2.4×10¹¹ ppb


- **10%-increase** of the bunch population.
- Bunch length reduced by natural cooling.
- Longer fill length.
- Negligible impact on the peak pile-up density w.r.t. to the 200 MHz scenario with nominal bunch population.

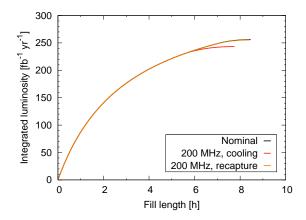
Nominal

200 MHz, cooling


200 MHz, cooling, 2.4×10¹¹ ppb

• Performance is **restored** for the 200 MHz scenario with a 10% increase in bunch population.

Other Alternatives


- Recapture into the 400 MHz RF system in order to restore the performance.
- Bunch length is kept constant or let to shrink due to cooling at the beginning of the fill.
- How to recapture in 400 MHz RF system with bunch length above 12 cm?
- In both cases, the yearly integrated luminosity is similar to the nominal.

Nominal

200 MHz, cooling

200 MHz. recapture

• Performance is restored for the 200 MHz scenario with recapture.

Summary

Parameter	L_{int} [fb ⁻¹ yr ⁻¹]	
Nominal	255.9	100 %
8b+4e	188.7	74%
200 MHz, cooling	243.3	95%
200 MHz, cooling, 2.4×10^{11} ppb	258.5	101 %

- The **200 MHz scenario** has proved to reduce electron-cloud effects, with **little loss in performance**.
- The **reduction** on integrated luminosity can be **compensated** by different means, such as the increase of bunch population, or the recapture into the 400 MHz system.