

CERN Ceph Ops

Dan van der Ster, CERN IT Storage Group daniel.vanderster@cern.ch

Ceph HEP Day, 13 June 2016

Our Ceph Clusters

- Beesly + Wigner (3.6 PB + 433 TB, v0.94.7):
 - Cinder (various QoS types) + Glance + RadosGW
 - Isolated pools/disks for volumes, volumes++, RadosGW
 - Hardware reaching EOL this summer.
- Dwight (0.5 PB, v0.94.7):
 - Pre-prod cluster for development (client side), testing upgrades / crazy ideas.
- Erin (2.9 PB, v10.2.1++):
 - New cluster for CASTOR: disk buffer/cache in front of tape robots
- Bigbang (~30 PB, master):
 - Playground for short term scale tests whenever CERN receives new hardware.

Growth of the beesly cluster

From ~200TB total to ~450 TB of RBD + 50 TB RGW

OpenStack Glance + Cinder

OpenStack is still Ceph's killer app. We've doubled usage in the past year.

NFS on Ceph

- ~50TB of servers (28 in total):
 - OpenStack VM + RBD volume
 - CentOS 7.2 with ZFSonLinux 0.6.5.x
- Used for Puppet masters, Gitlab, Twiki, LSF, BOINC, ElasticSearch, MICroelectronics \$HOME, ...
- Not highly-available, but...
- cheap, thinly provisioned, resizable, easily add new filers
- disaster recovery via zrep to 2nd data centre
- (ZoL stability is pretty good, though it still locks up from time to time)

Example: ~25 puppet masters reading node configurations at up to 40kHz

Provisioning Large Clusters

- We still use puppet-ceph (originally from eNovance, but heavily modified)
 - Install software/configuration/tuning, copy in keys, but don't touch the disks
- New: ceph-disk-prepare-all
 - Inspect the system to discover empty non-system drives/SSDs
 - Guess an optimal layout (with or w/o dedicated journals, then map journals to OSDs)
 - https://github.com/cernceph/ceph-scripts/blob/master/ceph-disk/ceph-disk-prepare-all
- ceph-disk prepare --no-locking
 - Currently ceph-disk prepares one disk at a time, so large servers take *hours* to prepare.
 - PR to remove this global prepare lock: https://github.com/ceph/ceph/pull/8829
- Deploying a large cluster takes one afternoon.

Hardware Replacement

- Starting next month we will begin replacing our 48 beesly servers (each with 20x3TB drives)
 with 48 new servers (each 24x6TB drives)
- How not to do it... add new OSDs and remove old OSDs all at once
 - Would lead to massive re-peering, re-balancing, unacceptable IO latency.
- Our plan: gradually add new & remove old OSDs
 - How quickly we can do this: OSD-by-OSD, server-by-server, rack-by-rack?
- Considerations:
 - We want to reuse the low OSD id's (implies add/remove/add/remove/... loop)
 - We don't want to have to babysit (need to automate the process)
 - We want to move rgw pools to another cluster!
- This is an area where high level cluster management tools could help.
 - Watching Apache Mesos work with interest.

RadosGW: One endpoint, many clusters

*.cs3.cern.ch is a DNS load balanced alias

HaProxy (>=1.6) listens on public side

Mapping file from bucket name to cluster

RadosGW listens on loopback

https://gist.github.com/cernceph/4a03316a31ce7abe49167c392fc827da

Bigbang Part II

- Bigbang II is a second 30PB test during May 2016
 - Previous scaling issues seem all solved. Create/delete 128k PG pools. Three mons w/ 5588 OSDs is working well.
- Benchmarking: ~30GB/s is doable (internally)
 - On these large clusters we replicate/EC across core routers. (broke a line card, taking out 6 racks)
 - Network limits the throughput.. Should investigate more clever replication (shingled...?)
- New jewel features:

ms type = async

- reduces threads, eliminates temalloc thrashing, and noticeably decreases OSD memory usage
- Rare peering glitches, hopefully fixed in next jewel.

op queue = wpq

- better recovery transparency
- Seems to be working.

BigBang II Throughput (GB/s) (5588 OSDs, 32 PB)

FileStore BlueStore

- FileStore is the stable supported OSD backend.
- **XFS-only**. Don't bother with btrfs/ext4.
- Double write penalty: first write synchronous, 2nd async.
- Trivial to tune for max write bandwidth: filestore max sync interval = 60
- RHEL 6->7 XFS upgrade issue (64k directories)
 - We cannot upgrade our OSDs to EL7

- Bluestore is the promised solution to the double write penalty (and all the other XFS-induced seeks)
- Tested with one host out of 18: loadavg on the bluestore machine was lower. Seems.. pretty ok ☺
- But after a short test I saw inconsistent objects, so aborted the test.
- We really need BlueStore to work!!

Ceph exposes the real performance of your hardware (data must be written durably)
Mixed read/write workloads will always be a challenge. (Because we cannot cheat and buffer writes)

Block Storage: Latency

Single threaded users are latency bound.

KPI: 10ms 4kB write latency SSD journals still essential.

Leverage extra SSD capacity?
Trying different flash caching options.

Scrubbing

- Scrubbing has been a problem historically
 - Too many concurrent scrubs kills latency
- Hammer / jewel randomize the scrub schedule. See plot →

- Better fair sharing of disk time ©
- But still needs tuning ③
- Need to throttle on high-BW clusters →

Minimal scrubbing:

```
osd scrub chunk max = 1
osd scrub chunk min = 1
osd scrub priority = 1
osd scrub sleep = 0.1
```


Balancing OSD data

- We need to fill our clusters: Imagine not being able to use 10% of a 10PB cluster!!
- Best practises suggests 100-300 PGs per OSD
 - But more PGs == increased RAM, so we're cautious
- Hammer 0.94.7 and Jewel have a new (test-) reweight-by-utilization feature
 - Test reweight before making changes
 - Change only 4 OSDs at a time, only +- 0.05
 - This is a good workaround, but it decreases the flexibility of the OSD tree
- Q: Current reweight is between [0,1]. Why don't we allow reweight > 1? It should help boost underutilized OSDs

Papercuts

- OpenStack-related:
 - Thanks to libnss / cephx crashes (< 0.94.7) our IT colleagues now know that Ceph exists
 - ceph-mon IPs hard-coded in each VM's libvirt xml
 - No live-migration for VMs with attached Ceph volumes. (wb worries)
 - Tracking connected client versions is hard. We don't know if we can enable firefly tunables:-/
 - Large clusters need increased ulimits; causes endless confusion
- PG repair gymnastics:
 - Repair often doesn't start because of osd_max_scrubs limits
 - Workaround: Disable scrubbing, increase max scrubs, ceph pg repair, reset max scrubs, enable scrubbing

