

Ceph development in HEP

Sébastien Ponce sebastien.ponce@cern.ch

Outline

Our problem

Why going to Ceph?

Building a complete solution

Our problem

The big picture

The big picture

Anatomy of a Mass Storage System

Anatomy of a Mass Storage System

Mass Storage in Physics specificities

- mainly used for archiving of big files
 - · with tape backend, disk being a cache
 - average file size 2GB, but up to 100GB
- we are big
 - total current data volume above 150PB
 - disk cache in 10s of PB
 - constant throughput in 10s of GB/s
 - single stream throughput to tape: 400MB/s
- we have specific protocols
 - xrootd and gridFTP

Why going to Ceph?

Why using Ceph?

- delegate disk management to external software
 - · avoid duplication of effort
 - homogenize our solutions for different services
- benefit from new features
 - rebalancing, striping, erasure coding, ...
- improve scheduling eficiency
- solve the tape bandwidth issue

What does (did) ceph provide?

- LibRados
 - Object store
 - No striping
- RadosGW
 - S3 compatible
- RBD
 - Block device
- Ceph FS
 - kernel code

Best candidate was librados

- Has most things we need :
 - Scalability
 - External attributes
 - Number of replicas tunable per object
 - Erasure coding was under work
 - Rebalancing, draining, easy management
- Is missing two features :
 - Striping
 - Support for big files
 - Objects should be rather small (1-100 MB max)

Striping could be added

- File is mapped to a set of objects
- Objects' names are <filename>_<nb>
- Excellent performances

libradosstriper

- We added a Striper interface to Ceph
 - API very similar to Rados
 - implemented on top of Rados
 - reusing existing ceph striping code
- Available since the hammer release
 - stable from infernalis onwards
 - enhancements to come in kraken (see coming slides)

Building a complete solution

Interfacing our code with Ceph

- mainly change POSIX semantic to object store
 - convert open/read/write/close to read/write
 - listing not supported
- introduce plugins to the transfer protocols
- slightly modify some tools
 - e.g. garbage collection daemon approach

Example of the Xrootd protocol

- very popular protocol for data transfers in High Energy Physics
- provides more than a protocol, a framework
 - supporting client redirection
 - · embedding data federation
 - integrating seamlessly with ROOT, the main physics data format

Xrootd plugins

- different levels of interfaces
 - protocol (defaults xrootd)
 - filesystem (default POSIX)
 - storage (open/read/write/close)
- used storage
 - based on radosstriper
 - 100 lines of code mapping fds to ceph objects
 - and reused in our tools

Protocol Driver Plugin

Xrootd

FileSystem Plugin

Storage Plugin

Ceph as a generic Xrootd backend

- allows integrate Ceph into the computing Grid
- one can build a storage element on top of ceph
- several collaborations and institutes interested

But

no directory listing

GridFTP

Build on Xroot case

- reuse mapping of fds to objects
- first prototype took 2h

Production is another story

- pool mapping
- low throughput and chunk size issues
- authentification to be solved

see next talk

Conclusions

Ceph is suitable for our usage

- after a bit of learning
- and a couple of fixes (pull requests begin prepared)
- see next talk on optimization for throughput

Next steps

- stress testing (ongoing)
- test tape streams
- production for the Alice experiment

