
10.05.16

Tagging ACTS-0.1.0Tagging ACTS-0.1.0
ACTS developers meeting

2016-05-10

10.05.16

What is missing?What is missing?
● formal stuff:

– a license !!!
– change log – not that important for first tag…
– contribution guide
– better cmake configuration with more options

● code-wise:
– documentation !!!
– unit tests
– standalone geometry example
– fitter (probably only in 0.2.X)

● target: we have postponed this many times, but we should aim to have
ACTS-0.1.0 by the end of this week

10.05.16

LicenseLicense
● HSF recommendations and information on licencing
● clearly: should be usable by others
● should allow for extensions/modifications (under same/modified

licence?)
● usable in commercial/proprietary software? probably not an issue
● restrictions on the licence of the incorporating project?
● who are the copyright holders? technically this is everyone who

contributed some piece of code, we should keep a list...

https://github.com/HEP-SF/documents/blob/master/HSF-TN/draft-2016-PROJ/draft-HSF-TN-2016-PROJ.md
https://github.com/HEP-SF/documents/raw/master/HSF-TN/2016-01/HSF-TN-2016-01.pdf

10.05.16

Other formal stufOther formal stuf
● change log: can be easily generated in the future from JIRA

=> requirements:
– no direct commits on master (not even a single one)
– all merge requests must close one (or more) JIRA tickets
– JIRA tickets should contain a decent descriptions
– strive for more careful review of merge requests

● cmake configurations and options:
– add more build options to cmake, make it more robust
– implement 'configure –help' functionality similar to how it is

done in ROOT cmake
● add version.h

10.05.16

Contribution guideContribution guide
● Who can contribute?

– Anyone with access to CERN gitlab and CERN e-groups
=> (external) CERN users

● Contribution possible through:
– forked repositories (CI setup not yet tested for this, will do)
– directly in ACTS repository (based on e-group membership?)

=> which option do we want to support?
● workflow proposal:

– semi-ff approach: rebase before merge, then no-ff merge
=> linear project history, easy to remove feature branches from
master again

● some conventions on code style, naming etc

10.05.16

Documentation and testingDocumentation and testing
● doxygen, doxygen, doxygen
● every method, member variable and function must be documented
● all documentation should go into header files
● in many cases the documentation is still improvable:

– do not repeat the function name
– state any pre-/post-conditions, pit fails, things to look out for
– describe all input parameters and the return value

● NO @author statements

● unit tests are completely missing:
– coordinate transformations
– geometry consistency (correctly linked, containment...)
– propagation, navigation, extrapolation

10.05.16

Next stepsNext steps
● once we are happy with the state of the repository, create a new

branch 'release-0.1.X'
● in this branch set version number etc
● make a first tag 0.1.0
● all bugs of this version are fixed in this branch, new tags 0.1.1 etc

are created, the bug fixes are cherry-picked into master if needed

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

