Updated studies for Higgs measurements LHCb and CMS

Miguel Vidal¹ for the LHCb and CMS Collaborations

¹Université catholique de Louvain - CP3

ECFA High Luminosity LHC Experiments - 2016

Miquel Vidal

Outline

- CMS results
 - Introduction
 - SM Higgs projections:
 - $H \rightarrow \gamma \gamma$
 - $H \rightarrow ZZ$
 - Double Higgs projections
 - $HH \rightarrow bb\gamma\gamma$
 - $HH \rightarrow bbbb$
 - $HH \rightarrow bb\tau\tau$
 - $HH \rightarrow bbWW$
 - $HH \rightarrow bbWW$ Phase II study
 - BSM Higgs projections
 - $H \rightarrow \tau \tau$
 - $H \rightarrow inv$.
- LHCb results
- Summary

CMS Results

Introduction

From the discovery machine to the Higgs factory

High Luminosity-LHC:

- Precision measurements
- Rare decays and couplings
- HH production Higgs self-coupling

Performance studies at 3000 fb⁻¹:

- Projections from current analyses
- Studies using the CMS upgraded detector simulated with Delphes

Higgs physics & upgraded detector

The expected performance of the CMS upgrades is described in the following documents:

- LHCC-P-008
- LHCC-G-165

Studies from these documents are taken into account to define the projection scenarios presented here

Higgs studies show the gain in:

- Performance
- Extended coverage

Extrapolation strategy

Public results are extrapolated to larger data sets 300 and 3000 fb⁻¹. In order to summarize the future physics potential of the CMS detector at the HL-LHC, extrapolations are presented under different uncertainty scenarios:

- S1 All systematic uncertainties are kept constant with integrated luminosity. The performance of the CMS detector is assumed to be the unchanged with respect to the reference analysis
- S1+ All systematic uncertainties are kept constant with integrated luminosity. The effects of higher pileup conditions and detector upgrades on the future performance of CMS are taken into account
- S2 Theoretical uncertainties scaled down by a factor 1/2, while experimental systematic uncertainties are scaled down by the square root of the integrated luminosity until they reach a defined lower limit based on estimates of the achievable accuracy with the upgraded detector. The effects of higher pileup conditions and detector upgrades on the future performance of CMS are not taken into account
- S2+ Theoretical uncertainties scaled down by a factor 1/2, while experimental systematic uncertainties are scaled down by the square root of the integrated luminosity until they reach a defined lower limit based on estimates of the achievable accuracy with the upgraded detector. The effects of higher pileup conditions and detector upgrades on the future performance of CMS are taken into account

Extrapolation strategy

Public results are extrapolated to larger data sets 300 and 3000 fb⁻¹. In order to summarize the future physics potential of the CMS detector at the HL-LHC, extrapolations are presented under different uncertainty scenarios:

	systematics	exp. sys.	theo. sys.	high PU
	unchanged	scaled* $1/\sqrt{L}$	scaled 1/2	effects
ECFA16 S1	\checkmark	×	×	×
ECFA16 S1+	\checkmark	×	×	\checkmark
ECFA16 S2	×	\checkmark	\checkmark	×
ECFA16 S2+	×	\checkmark	\checkmark	\checkmark

(*) until they reach a defined lower limit based on estimates of the achievable accuracy with the upgraded detector.

$\mathbf{H} \to \gamma \gamma$

CMS-PAS-HIG-16-020

Higgs properties in the H $\rightarrow \gamma\gamma$ channel using **12.9 fb⁻¹** of data at 13 TeV

Selected measurements have been projected to 300 (3000) fb^{-1} :

- Signal strength per production mode
- Fiducial cross section measurement

For 3000 fb⁻¹, the effect of high pileup and detector performance are considered (based on LHCC-P-008):

- The beamspot is simulated to be \sim 5cm
- Vertex identification reduced from 80% to 40%
- Photon ID efficiency decreased by 2.3% (10%) in EB (EE)

${\rm H} \rightarrow \gamma \gamma$ - Signal strength

Extrapolation to 300 fb⁻¹

Extrapolation to 3000 fb⁻¹

${\rm H} \rightarrow \gamma \gamma$ - Fiducial cross section

Projected relative uncertainty for the $H \rightarrow \gamma \gamma$ fiducial cross section (σ_{fid})

Fiducial volume defined on generator-level quantities

Theoretical uncertainty on the signal cross section decoupled

Selected measurements have been projected to 300 (3000) fb^{-1} :

- Signal strength per production mode
- Differential cross section for p_T(H)
- Constraints on anomalous couplings

- Lepton efficiency
- Misidentification rates

$H \rightarrow ZZ$ - Signal Strength

Extrapolation to 3000 fb⁻¹

Extrapolation to 300 fb⁻¹

Miquel Vidal

ECFA 2016

$H \rightarrow ZZ$ - Differential $p_T(H)$ Cross Section

Extrapolation to 300 fb⁻¹

Extrapolation to 3000 fb⁻¹

$H \rightarrow ZZ$ - Anomalous couplings

Generic decay amplitude of $H \rightarrow ZZ$ for spin-0 particle:

$$A(H \to VV) \sim \left[a_1 - e^{i\phi_{\Lambda Q}} \frac{(q_{V1} + q_{V2})^2}{\Lambda_Q^2} - e^{i\phi_{\Lambda 1}} \frac{(q_{V1}^2 + q_{V2}^2)}{\Lambda_1^2}\right] m_V^2 \epsilon_1^* \epsilon_2^* + a_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$$

• Test for anomalous HZZ couplings *a_i*:

$$f_{ai} = rac{|a_i|^2 \sigma_i}{\sum_j |a_j|^2 \sigma_j}, \, \phi_{ai} = an^{-1}(a_i/a_1)$$

 Interference contribution becomes more dominant at smaller values of f_{ai} × cos(φ_{ai})

Comparison with previous results (Snowmass13)

ECFA16 vs Snowmass13

Snowmass assumptions:

- Energy from 8 TeV to 14 TeV
- Theory uncertainties from YR3
- S2 scenario does not include any lower bound when scaling down the experimental uncertainties
- ECFA16 theory uncertainties from YR4 (ducument in preparation)

Higgs boson Pair Production

Next milestone in Higgs physics

Access to the H self-coupling λ

Scalar potential structure

- Very low production cross section
 - Destructive interference
 - σ (pp \rightarrow HH)SM_{NNLO+NNLL} = 33.45 fb (@ 13TeV)

Four results at 13 TeV:

• $HH ightarrow bb\gamma\gamma$	CMS-PAS-HIG-16-032
• $HH ightarrow bbbb$	CMS-PAS-HIG-16-026
• $HH ightarrow bb au au$	CMS-PAS-HIG-16-012
• $HH \rightarrow bbWW \rightarrow bbl\nu l\nu$	CMS-PAS-HIG-16-024

Projections from public analyses using 2015 data at 13 TeV

Channel	Median expected			Z-value		Uncertainty			
	limits in μ_r					as fraction of $\mu_r = 1$			
	ECFA16 Stat.		ECFA16 Stat.		ECFA16		Stat.		
	S1	S2	Only	S1	S2	Only	S1	S2	Only
$gg \rightarrow HH \rightarrow \gamma\gamma bb (S1+/S2+)$	1.3	1.3	1.3	1.6	1.6	1.6	0.64	0.64	0.64
gg ightarrow HH ightarrow au au bb	7.4	5.2	3.9	0.28	0.39	0.53	3.7	2.6	1.9
gg ightarrow HH ightarrow VVbb		4.8	4.6		0.45	0.47		2.4	2.3
gg ightarrow HH ightarrow bbbb		7.0	2.9		0.39	0.67		2.5	1.5

Results compatible with previous studies assuming the HL-LHC conditions CMS-PAS-FTR-15-002

Higgs boson Pair Production

ECFA 2016

Miguel Vidal

$\rm HH \rightarrow bbWW \rightarrow bbjjl\nu$ in Phase II

Study based on **Delphes** simulation of the **upgraded CMS detector**

- Energy: 14 TeV
- Pile up 200
- Integrated luminosity: 3000 fb⁻¹

Analysis features:

- Only background considered: tt
- Signal optimisation via BDT

Similar performance compared to previous studies on HH \rightarrow bbWW \rightarrow bblvlv (CMS-PAS-FTR-15-002)

MSSM H $\rightarrow \tau \tau$

CMS-PAS-HIG-16-006

Search using 2.3 fb⁻¹ of data at 13 TeV

One of the most sensitive channels for constraining extended Higgs sectors

19/24

VBF H \rightarrow inv.

Search using **2.3 fb**⁻¹ of data at 13 TeV

Main backgrounds:

- Z(νν)+ jets
- $W(I\nu)$ + jets
- QCD multijet

Current expected limits:

• BR(H \rightarrow inv.) < 0.63

Miquel Vidal

Expected 95% CL upper limits on BR(H \rightarrow inv.) as a function of luminosity

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ECFA16 S1	ECFA16 S2	$1/\sqrt{L}$ scaling
$3000 f b^{-1}$ 0.200 0.056 0.028	$300 fb^{-1}$	0.210	0.092	0.084
	$3000 fb^{-1}$	0.200	0.056	0.028

ECFA 2016

LHCb Results

LHCb Strategy

Disadvantages

- lower luminosity
- reduced acceptance, $\lesssim 5\%$
- not a hermetic detector
- ECAL saturation

Advantages

- very flexible trigger
- Iow pile-up
- particle ID
- excellent secondary vertex resolution
- complementary forward region

LHCb should focus on channels which utilize strengths

- exclusive final states requiring PID and/or secondary vertices
- inclusive c and b-jet final states

JHEP 05 (2013) 132

$V[\ell(\ell)]H[c\bar{c}/b\bar{b}]$

• **new** limits set with 1.98 fb⁻¹ of data at $\sqrt{s} = 8$ TeV

- two heavy flavor tagged jets, one or two muons or electrons
- approximate pseudorapidity $2 < \eta < 4$

 $\sigma(pp \rightarrow Z/W + H) \times B\mathcal{F}(H[b\bar{b}]) < 1.6 \text{ pb} (\times 50 \text{ SM})$ $\sigma(pp \rightarrow Z/W + H) \times B\mathcal{F}(H[c\bar{c}]) < 9.4 \text{ pb} (\times 6400 \text{ SM})$

Summary

CMS:

- Projections for 300/3000 fb⁻¹ using 13 TeV analyses and studies based on Delphes simulation of the upgraded CMS detector have been shown (CMS DP-2016/064)
 - Properties measured with uncertainties at percent level
 - Access to HH production
- Additional studies with more detailed description of the upgraded detector will be performed in the coming months

LHCb:

- Identification of the upgrade strengths
- Focus on final states with c and b-jets

Backup Slides

CMS Phase II Upgrades

Endcap Calorimeter

- High-granularity calorimeter
- Radiation-tolerant scintillator
- 3D capability and timing

Barrel Calorimeter

- New BE/FE electronics
- ECAL: lower temperature
- HCAL: partially new scintillator

Tracker

- Radiation tolerant, high
- granularity, low material budget
- Coverage up to $|\eta|=3.8$
- Triggering capability at L1

Muon System

- New DT/CSC BE/FE electronics
- GEM/RPC coverage in 1.5<|η|<2.4
- Muon-tagging in 2.4<|η|<3.0

Trigger and DAQ

- Track-trigger at L1
- L1 rate ~ 750kHz
- HLT output ~ 7.5kHz
- Scouting opportunities?

Extrapolation strategy - Naming

Projections from run II (13 TeV) results are labeled as ECFA16 uncertainty scenario:

- ECFA16 S1
- ECFA16 S1+
- ECFA16 S2
- ECFA16 S2+

Comparison with Snowmass results:

Previous extrapolations from 8 TeV analyses to 14 TeV are presented for comparison in some results and labeled as Snowmass13 uncertainty scenario. In this case S2 does not include any lower bound when scaling down the experimental uncertainties.

e.g. Snowmass13 S2

Fidutial σ

ECFA 2016

Resonant HH \rightarrow bbbb production

Table 5: Projection of the sensitivity to the resonant HH production at 3 ab⁻¹ expected to be collected during the HL-LHC program. The projections are based on 13 TeV analysis performed with data collected in 2015. The 95% CL expected limits are provided for different spin-0 resonances masses assuming: preliminary analysis from 2015; Scenario 2 - reduced systematic uncertainties taking advantage of a larger data sample and upgraded detector; no systematic uncertainties. For each resonant mass the value of the mass scale $\Lambda_{\rm R} = \sqrt{6} \exp[-kl] \overline{M}_{\rm Pl}$ excluded at 95% CL is also provided.

$m_X(\text{TeV})$		Median expect	$\sigma_{\rm R}(\Lambda_{\rm R}=1{ m TeV})$	$\Lambda_{\rm R}$ (TeV)	
		limits on σ (fb	(fb)	excluded	
	$2.3\mathrm{fb}^{-1}$	ECFA16 S2+	Stat. Only		
0.3	2990	46	41	7130	13
0.7	129.4	7.3	3.4	584	8.9
1.0	81.5	4.4	2.4	190	6.6