Standard Model measurements

(excluding Higgs and heavy flavour physics) **– updated studies –**

Markus Cristinziani (Bonn)

on behalf of the ATLAS, CMS and LHCb Collaborations

Aix-les-Bains, October 2016 3rd ECFA High Luminosity LHC Experiments Workshop

Physics opportunities at the HL-LHC

Examine Higgs boson and boundaries of the Standard Model

- precise determination of mass, couplings, decay modes
- searches for New Physics and dark matter

Need to understand SM processes

- production of γ , W, Z, or top quarks + jets
- always appear as irreducible or reducible background

Have their own intrinsic interest, e.g.

- SM electroweak parameters, *t*t cross section, ...
 - need improved theoretical understanding and inclusion in event generators
- improved determination of PDF
- searches for anomalous gauge boson couplings
- tests of the unitarity-cancellation mechanism in the SM
- top-quark mass

Topics for this presentation

universität**bonn**

erc

Standard Model studies

HC Analysistor boson scattering ard jets well separated wz self-tering e-sign leptons forward region physics

t backgrounds: SSWW OCD and WZ

Top quark studies

- mass
 - classic methods
 - with less dependence on jet systematics
 - indirect pole mass determination
- forward region
- flavour changing neutral currents
 - single top quark $qg \rightarrow t\gamma$ production
 - $t \rightarrow Zq \rightarrow \ell \ell q \text{ decay}$
 - $t \rightarrow Hq \rightarrow b\bar{b}q$ decay

tagging jet (4)

[M. Cristinziani | Updated results on SM measurements | 3rd ECFA HL-LHC Experiments Workshop | 04–Oct–2016]

100

200

300

CMS

Events / bin 01

5

VBS – motivation and current results

Electroweak VV→VVjj scattering

- via TGC, QGC or Higgs boson exchange
- cancellation → sensitive probe of new physics
- distinct signature in detector, good S/B ratio (VV QCD, tt, V+jets, ...)

Events

30F

25ŀ

20

15-

10

5

ATLAS

m_{ii} > 500 GeV

20.3 fb⁻¹, $\sqrt{s} = 8$ TeV \boxtimes

3

5

PRL 113 (2014) 141803 PRL 114 (2015) 051801 Latest result

- fiducial $W^{\pm}W^{\pm}jj \rightarrow \ell^{\pm}\ell^{\pm} + \text{tag jets} + E_{T}^{\text{miss}}$
 - evidence of EWK production at 3.6 σ (1.9 σ), with 2.8 σ (2.9 σ) expected by ATLAS (CMS)
 - fiducial cross-sections with $\Delta\sigma/\sigma = 30\%$ (60%)
 - interpret as limit on anomalous QGC (or H^{±±})

Data 2012

Prompt

Syst. Uncertainty

W[±]W[±]jj Strong

Conversions Other non-prompt

W[±]W[±]jj Electroweak

8

9

l∆y_"l

19.4 fb⁻¹ (8 TeV)

SM $F_{T_0} / \Lambda^4 = 0.0 \text{ TeV}^{-4}$

- - aQGC $F_{T0} / \Lambda^4 = +5.0 \text{ TeV}^{-4}$

aQGC $F_{\tau_0} / \Lambda^4 = -5.0 \text{ TeV}^4$

400

m_{II} (GeV)

500

Data

 $W^{\pm}V_{jj} \rightarrow \ell^{\pm} + had + tag jets + E_{T}^{miss}$

1609.05122 subm. to PRD

VBS – previous HL-LHC studies

Before 2015

- exploring all channels $pp \rightarrow W^{\pm}W^{\pm}jj$, WZjj, ZZjj
- discovery potential for observing longitudinal VBS & aQGC

Scoping document: W[±]W[±]jj

- backgrounds from Run-1 analysis
 - dominant ones scaled to account for all
- main gains from extended tracking
 - greater lepton coverage (reduces WZ)
 - greater pile-up jet rejection
- expectations for EKW W[±]W[±]jj
 - $Z_{\sigma B}$ significance ~11, $\Delta \sigma / \sigma = 5.9\%$

Technical Proposal: W[±]Vjj

- use global fake rate scale factor
- main gains from
 - better jet-l fake rate, larger coverage
 - better pile-up rejection (fwd calorimeter)
- expectations for
 - $W^{\pm}W^{\pm}jj$ with $\Delta\sigma/\sigma = 5\%$, WZjj
 - polarisation: $V_L V_L \rightarrow V_L V_L$ at 2.75 σ

ATL-PHYS-PUB-2012-001

ATL-PHYS-PUB-2012-005

ATL-PHYS-PUB-2013-006

CMS PAS FTR-13-006

- presence of additional dim-8 operators in EFT framework
- partial unitarization

Comparing scenarios (current, aged, upgraded)

detector upgrade recovering performance lost from ageing of CMS detector

VBS – new study (CMS)

Same channels as in Technical Proposal

- now including all sources of background, including reducible and fakes
- report results as a function of data/MC fake rate scale factor
- expect $\Delta\sigma/\sigma \le 10\%$ for WW and WZ VBS and 2.75 σ for V_LV_L scattering

CMS PAS SMP-14-008

6/21

W+b,c at LHCb

Run 1 results agree with SM predictions

- expect factors of 10 (Run-2) to 600 (HL-LHC) more W+HF events
- allows for double-differential measurements

Proton charm content

highly sensitive to a possible "intrinsic" (non-perturbative) charm at HL-LHC

Boettcher, Ilten and Williams, PRD 93 (2016) 074008

m_{top} – motivation and current results

Fundamental parameter of theory

- related to other EWK parameters stringent tests of SM
- important for m_W or BF($B_s \rightarrow \mu\mu$) predictions
- vacuum stability depends on exact value of m_{top}

Most precise measurements, with $\Delta m_{top}/m_{top} < 1$ GeV

- 172.35 ± 0.51 GeV (CMS *l*+jets)
- 172.32 ± 0.64 GeV (CMS all had.)
- 174.98 ± 0.75 GeV (DØ l+jets)
- 172.99 ± 0.81 GeV (ATLAS dilepton)
 - → extracting the Monte-Carlo mass

Alternative approaches

- indirect extraction of pole mass, e.g. $\sigma_{t\bar{t}}$
- less dependence on JES: using $m(J/\psi, l)$, m(SV, l), $p_T(ll)$, m_{T_2}
- different environment: single top

m_{top} – previous studies

universitätbonn

erc

m_{top} – new extrapolation (CMS)

universitätbonn

soon to become public

DP-2016/064

erc

Updated projections with 8 TeV analysis experience

- additional channels: single top, $\sigma_{t\bar{t}}$, sec. vtx
- pile-up expected to be kept under control

*m*top measurements will be an important element of HL-LHC

Top quarks at LHCb

Top production in the forward region

- universität**bonn** *Kagan, Kamenik, Perez, Stone, PRL 107 (2011) 082003*
- Gauld, JHEP02(2014)126
- probes the large-x gluon PDF and may be more sensitive to BSM
- LHCb observed top using a reduced fiducial region of the W+b analysis
 - 50 < $p_T(jet)$ < 100 GeV; enriches sample in top

Top sample

- expect factors of 20 (Run 2) to 1200 (HL-LHC) more top-quark events
- will enable separating tt and single-top and (double) differential measurements

FCNC – motivation

universität**bonn**

FCNC – current status

universität**bonn**

erc

[M. Cristinziani | Updated results on SM measurements | 3rd ECFA HL-LHC Experiments Workshop | 04–Oct–2016]

FCNC – new tqy study

Following 8 TeV analysis

JHEP 04 (2016) 035 → but cut & count

Selection (not reoptimised for 14TeV)

- exactly 1 tight, isolated μ
 - veto loose μ/e
- exactly 1 b-tagged jet
- exactly 1 isolated high E_T photon
 well separated from jet and μ, ΔR = 0.7
- reconstructed 130 < m_{top} < 220 GeV

[M. Cristinziani | Updated results on SM measurements | 3rd ECFA HL-LHC Experiments Workshop | 04–Oct–2016]

soon to become public

FCNC – new tZq study

Selection

- three leptons, one OSSF in Z-mass window
- ≥1 *b*-jet, ≥ 1 non-*b*-jet

u, c

ATLAS-PUB-2016-019

FCNC – new tZq study

Systematic uncertainties: two scenarios considered

Set A

- 2% lumi
- 6% WZ and signal
- 62% Z+jets, tt
- 50% tZ, tWZ
- 30% ttV

Set B

- 2% lumi
- 6% WZ and signal
- 30% Z+jets, tt
- 10% tZ, tWZ
- 6% tĪV

Layout	Set	$i''\gamma'' t \rightarrow Zu$	"σ" t →Z u	" γ " $t \rightarrow Zc$	" σ " $t \rightarrow Zc$	" γ " $t \rightarrow Zu + Zc$	" σ " $t \rightarrow Zu + Zc$		
Reference	A	$18 \cdot 10^{-5}$	$16 \cdot 10^{-5}$	$41 \cdot 10^{-5}$	$36 \cdot 10^{-5}$	$13 \cdot 10^{-5}$	$12 \cdot 10^{-5}$		
	B	$13 \cdot 10^{-5}$	$13 \cdot 10^{-5}$	$24 \cdot 10^{-5}$	$23 \cdot 10^{-5}$	$8.9 \cdot 10^{-5}$	$8.3 \cdot 10^{-5}$		
Middle	A	$18 \cdot 10^{-5}$	$18 \cdot 10^{-5}$	$44 \cdot 10^{-5}$	$40 \cdot 10^{-5}$	$13 \cdot 10^{-5}$	$13 \cdot 10^{-5}$		
	B	$13 \cdot 10^{-5}$	$13 \cdot 10^{-5}$	$26 \cdot 10^{-5}$	$25 \cdot 10^{-5}$	$9.0 \cdot 10^{-5}$	$8.9 \cdot 10^{-5}$		
Low	A	$18 \cdot 10^{-5}$	$17 \cdot 10^{-5}$	$48 \cdot 10^{-5}$	$43 \cdot 10^{-5}$	$14 \cdot 10^{-5}$	$13 \cdot 10^{-5}$		
	B	$14 \cdot 10^{-5}$	$13 \cdot 10^{-5}$	$29 \cdot 10^{-5}$	$28 \cdot 10^{-5}$	$9.8 \cdot 10^{-5}$	$9.3 \cdot 10^{-5}$		
$\mathcal{L}_{tZu} = -\frac{g}{2c_W} \bar{u} \gamma^{\mu} \left(X^L P_L + X^R P_R \right) tZ_{\mu} - \frac{g}{2c_W} \bar{u} \frac{i\sigma^{\mu\nu} (p_t^{\nu} - p_u^{\nu})}{M_Z} \left(\kappa^L P_L + \kappa^R P_R \right) tZ_{\mu} + h.c.$									
→ Sensitivity increase by factor 2 to 6 (depending on channel and scenario									

[M. Cristinziani | Updated results on SM measurements | 3rd ECFA HL-LHC Experiments Workshop | 04–Oct–2016]

ATLAS-PUB-2016-019

[M. Cristinziani | Updated results on SM measurements | 3rd ECFA HL-LHC Experiments Workshop | 04–Oct–2016]

FCNC – new tHq study

Consider several final states to cope with acceptance/inefficiency

- 2 b-jets with 4 or ≥5 jets
- 3 b-jets with 3, 4, 5, or ≥6 jets

Discriminant variable

- constructed in each region
- try to identify Higgs, W, top peaks
- using every possible permutation

Event categories

FCNC – new tHq study

Discriminant variable

• here shown for the $t \rightarrow Hu$ case

Systematic uncertainties

- Set A and Set B
- more or less conservative

Layout	Set	$t \rightarrow Hu$	$t \rightarrow Hc$	$t \rightarrow Hu + Hc$
Reference	A B	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$2.0 \cdot 10^{-4}$ $2.0 \cdot 10^{-4}$	$\frac{1.1 \cdot 10^{-4}}{1.1 \cdot 10^{-4}}$
Middle	A B	$\begin{array}{c c} 2.9 \cdot 10^{-4} \\ 2.9 \cdot 10^{-4} \end{array}$	$2.4 \cdot 10^{-4}$ $2.4 \cdot 10^{-4}$	$\frac{1.3 \cdot 10^{-4}}{1.3 \cdot 10^{-4}}$
Low	A B	$\begin{vmatrix} 3.5 \cdot 10^{-4} \\ 3.5 \cdot 10^{-4} \end{vmatrix}$	$3.0 \cdot 10^{-4}$ $3.0 \cdot 10^{-4}$	$\frac{1.7 \cdot 10^{-4}}{1.7 \cdot 10^{-4}}$

→ Sensitivity increase by factor 20

[M. Cristinziani Updated results on SM measurements 3rd ECFA HL-LHC Experiments Workshop 04–Oct–2016]

Summary of FCNC extrapolations

FCNC are a gold mine: need to dig deeper

• possibly these are analyses that do need the full simulation and detector performance to express their full potential

Conclusion

universität**bonn**

Opportunities for SM and top physics offered by the HL-LHC

- re-explored in light of Run-1 analyses and first 13 TeV data
- extrapolation not trivial → first results presented
- actual measurements often beat even optimistic prediction (→ top mass)

For SM physics the large datasets will allow to

- explore extreme regions, very boosted events, high $m_{\ell\ell}$, very high p_T jets
- increase number of dimensions in differential measurements
- study VBS and rare triboson processes

Top physics continues to be an important physics case

- advancing the precision SM measurement
- finding deviation due to new physics in precision measurements
- rare final states, extreme kinematic phase space
- altogether looking for new particles decaying to top quarks