Updated Projections for BSM Studies ECFA 2016

Kerstin Hoepfner (RWTH Aachen)

on behalf of the ATLAS, CMS and LHCb collaborations

ECFA HL-LHC Workshop October 4th 2016

Run / Event 139779 / 4994190

Motivation

LHC is a **discovery machine**. Many ongoing searches... Indications here and there but no conclusive sign of new physics yet. Try not to leave any stone unturned.

BSM searches at HL not a linear extrapolation from presence. Rather **widen the scope**, e.g.:

- Rare processes, weaker couplings
- New models upcoming including observed LHC results
- Go more model-independent not to miss something

How to prepare for phase-II physics?

- → Continue benchmark analyses
- → Develop new analysis strategies

SCOPE of this talk: show selected examples

Background information about upgraded detectors and their performance given in experimental talks.

Details in Monday

upgrade programs

talks about detector

Selected new results@ECFA2016

- New heavy particles
- Dark matter (DM)
- Supersymmetry
- Long-lived particles (LLP)

3

Analysis Technique for ATLAS

Truth + Smear technique

More details in Higgs talk by Victoria Martin this morning

- Generate truth-only 14 TeV event
- Overlay with jets (full sim) from pileup library, <PU> = 140 or 200
- Reconstruct particles (electrons, muons, jets, MET) from truth+overlay
- Smear their energy and p_T using appropriate smearing functions, incl. efficiencies for genuine objects and rates from mis-identified objects.
 - Depending on p_T and eta
 - Functions are based on fully simulated samples for upgraded ATLAS detector and high PU conditions
 - Approach validated on some analyses
- Apply efficiencies for trigger and object reconstruction

Analysis Techniques for CMS

Two methods – either projection from present or parametrized simulation

\rightarrow Projections from a present analysis

- Existing signal and background samples (simulated at 13 TeV) scaled to higher luminosity and sqrt(s)=14 TeV.
- Analysis steps (cuts) from present analyses.
- Three scenarios for systematics:
 - (1) keep present systematics (2) Improved by a fixed factor
 (3) no systematics, only statistics

\rightarrow Full analysis with parametrized detector performance

- DELPHES with up-to-date phase-2 detector performance (tracking, vertexing, timing, dedicated PUPPI jet algorithms, increased acceptance, performance of new detectors)
- Consider <PU> = 200
- Analysis steps (cuts) guided by present analysis. Limited optimization for HL conditions. Cross checks with present analysis.
- Dedicated simulation of signal and bkgr samples

See talk by Meenakshi Narain Monday morning

analysis

selection

Delphes

v3.3.3pre15

Benchmark Analyses: Search for New Particles

ATL-PHYS-PUB-2015-004

ATLAS Dijet (bump hunt)

Discovery reach for excited quarks (q*) and quantum black holes (QBH)

Powerful search technique for new physics, **model-independent** as long as a sharp resonance. Many interpretations possible.

Bump-hunter algorithm (Similar technique for other analyses such as CMS Z' and ATLAS HH to 4b)

(7

W' Projected Discovery Reach

Benchmark analysis with max discovery sensitivity. Full DELPHES analysis.

Electron channel with good **resolution at very high mass** and rather flat resolution. Discriminating variable = M_t from (e, MET)

Key: understand the M_t tail and performance of high p_T leptons.

Assume systematics from run-2.

W´→tb Impact of Systematics

Projection of exclusion limit

Probe scenarios such $m(v_R) > m(W') \rightarrow$ forbidden for $W' \rightarrow lv$

Two scenarios to extrapolate systematics from 12.9/fb to 3/ab

- 1) Leave **systematics unchanged**, simply scale templates with lumi
- 2) Reduce most experimental to percent level, theo uncertainties by factor 2, top p_T reweighting by factor 3

 \rightarrow Impact on projected exclusion limit: 4(4.2) TeV for case 1(2)

Theoretical uncertainties comparable to experimental

Exclusion limit m(W[']) >4 TeV @3/ab

9

b-iet

Z´→tt Projection from 2.6/fb to 3/ab

Boosted tops:

"fat" jet

Projection of exclusion limit

- Semileptonic (I + b-jet + jet + MET)
- All-hadronic channel (jets)
- 12 orthogonal categories

Scenarios for systematic uncertainties:

(1) Leave systematics unchanged

Exclusion limit O(4 TeV) depending on resonance width and systematics

For weaker couplings more luminosity is needed.

Baseline analyis CMS-PAS-B2G-15-008 HL analysis in DP-2016/064

11

Many indications for existence of dark matter (DM) but **what is its nature**?

LHC searches **complement** direct detection experiments. Very **dynamic** topic. In recent years significant theoretical and experimental developments, e.g. EFT \rightarrow simplified models.

Universe content

dark energy 68%

dark matter 27%

Classical jet + MET DM Channel

Suppressed in direct detection. LHC provides complementary sensitivity for AV. Full analysis in DELPHES.

Benchmark among many DM collider searches. Interpretation in **simplified model** following LHC DM forum (arXiv: 1507.00996) with

> 4 parameters $(M_{med}, m_{DM}, g_{SM}, g_{DM})$ 2D exclusion limit

Final state: large MET (>200 GeV) $(\chi \bar{\chi})$ + jet Main bkgr: 70% Z(vv)+j ; 30% W(lv)+j \rightarrow data-driven using muons Z(µµ), W(µv)

Analysis procedure

Bin MET distribution in 22 exclusive bins. At HL-LHC extend to MET > 2.4 TeV (now 1.2 TeV).

Classical MET+jet - Axialvector

Suppressed in direct detection. LHC provides complementary sensitivity. Full analysis in DELPHES.

M_{DM} (GeV)

Benchmark among many DM collider searches. Interpretation in **simplified models** following LHC DM forum (arXiv: 1507.00996) with

2D exclusion limit

4 parameters $(M_{med}, m_{DM}, g_{SM}, g_{DM})$

Reach in mediator mass influenced by systematics. First shown in ATL-PHYS-PUB-2014-007 (EFT approach).

Maximum reach **3 TeV @ 3/ab** if Run-2 systematics (EXO-16-037) is achieved.

Dominating systematics = understanding MET tails as one needs to go to higher MET.

Projection in DP-2016/064

MET+jet DM – Pseudoscalar

Not accessible to direct detection. Only LHC provides sensitivity.

Spin-0 mediator, pseudoscalar $g_{SM} = 1, g_{DM} = 1$

Systematics scenarios:

(1) Nominal = scale run-2 systematics at low MET which are dominated by lepton ID/ISO to HL-LHC recommendation, high MET dominated by statistics.

(2) Nominal divided by 2

(3) Scale run-2 systematics in the full MET range by luminosity

l Baseline analzsis PAS-EXO-16-037 Projection in DP-2016/064

Searches for Supersymmetry

Search for SUSY one of the main LHC goals.

For HL, other SUSY models move into focus.

- Study properties if new particle(s) discovered
- Turn to low cross sections and compressed mass spectra
- Special signatures such as heavily ionizing and long-lived particles

Direct Production of stau Pairs

Assume 100% BR to SM tau and LSP. Signature:

- 2 tau jets (hadronically decaying tau)
- Large MET (from $\widetilde{\chi}_1^{
 m o}$)

Main background: W+jets, ttbar

 τ

Selection: 2 OS taus, loose jet and Z-veto, MET>280 GeV Define signal region (SR) in $m_T(\tau 1) + m_T(\tau 2)$

Direct Production of Chargino $(\tilde{\chi}^{\pm})$ **and Neutralino** $(\tilde{\chi}^{0})$ **decaying to Wh**

Signature:

- Chargino to W (leptonic) = clear signature
- Neutralino to h(bb) = large impact of upgraded detector design
- Large MET

Main background: W+jets, ttbar, single t, ttV

18

Direct stop pair production with compressed mass spectra

Compressed mass spectra

Scenario with low stop-neutralino mass difference $(m_{\tilde{t}_1}, m_{\tilde{\gamma}_1^0}) \cong m_t$

Project sensitivity of 2-lepton channel (needs luminosity), key to study stop properties (e.g. spin).

Signature: 2 leptons + 2 b-jets + MET

Long-Lived Particles (LLP) and

Special Signatures

A new focus at the LHC, for present and future.

Signature driven searches, cover variety of SUSY and non-SUSY models and searches for BSM Higgs.

Need dedicated tools, to be prepared now for phase-II.

Special Signatures from LLP

Issues and opportunities with LLP signatures:

- Non-standard objects, custom trigger/reconstruction/simulation
- Need to maintain **dedicated** detector capabilities

Potential gains from HL-LHC from high luminosity, track-trigger, fast timing, better directionality.

Displaced Muons from LLP

Long-lived neutral particle (X) decays after some cτ to displaced leptons or jets. Example signature: **displaced muons** (possibly collimated)

ATLAS EXOT

Experimental challenge: trigger such displaced signatures (note: phase-II track triggers with vertex constraint).

Possible models: dark photons, inelastic thermal-relic DM, etc.

Impact of Detector Capabilities

Impact of dE/dx readout in CMS tracker

LHCb Contributions

Many BSM theories predict some sort of hidden sector, weakly coupled to visible sector. Displaced lepton signature = smoking gun

e.g. dark photons (γ_{D} **)**: Theory adds U'(1) whose massive bosons mix with SM, leads to A1, Z_D or γ_{D} along with other hidden particles which decay to LJ.

Important contributions from LHCb in particular for light particles. Profits from:

- Momentum resolution
- Good secondary vtx resolution due to lower pileup
- Very low p_T triggers
- Particle ID in RICH detectors

Summary

Rich BSM physics potential for HL-LHC

Several projections and full analyses for a variety of existing benchmark channels (heavy bosons, DM) reaching O(5-10 TeV).

New models of EW SUSY (direct stau production) considered for upgrade studies.

Developing new analysis strategies, e.g. displaced signatures for more model-independent analyses.

Reducing systematic uncertainties impacts sensitivity.

BACKUP MATERIAL

26

New Heavy Charged Particles Projections from existing analyses

W´→ev

Goal: Benchmark analysis with maximum discovery sensitivity.

Discovery reach based on **DELPHES** simulation, systematics from run-2.

Experimental challenge: detector performance for high p_T leptons. TeV-muons may shower.

W´→tb

Goal: probe scenarios which cannot be studied with leptonic channels. Ex.: $m(v_R) > m(W') \rightarrow$ forbidden for $W' \rightarrow Iv$ Final state

b b $\{e/\mu\}$ v

Projection of exclusion limit from 12.9/fb (13 TeV) to 3/ab

Experimental challenge: b-tagging in high pileup environment. Study impact of systematic uncertainties. Present searches often based on cascade decays of SUSY particles with many particles + MET (from LSP) in the final state. Exclusion limits reach O(TeV).

If discovery of new particle(s) → extensive measurements to determine properties, if indeed SUSY-partner of SM particle. Understand the SUSY breaking mechanism = even more challenging. Such program to extend for many years, because of the complexity of SUSY and associated decay processes.

Direct Production of stau Pairs

Assume 100% BR to SM tau and LSP. Signature:

- 2 tau jets (hadronically decaying tau)
- Large MET (from $\widetilde{\chi}_1^{\circ}$)

Main background: W+jets, ttbar

 τ

Selection: 2 OS taus, loose jet and Z-veto, MET>280 GeV Define signal region (SR) in $m_T(\tau 1) + m_T(\tau 2)$

Exotic states of HH to bbbb

High-Mass Kaluza-Klein gravitons with each of the Higgs bosons decaying to bb.

- Large Jet: anti-Kt R=1.0
- Track Jet: anti-Kt R=0.2. Used as proxy for "track jet" that are b-tagged.
- Trigger Jet anti-Kt R=0.4

Dominant background from QCD production.

Needs b-tagging \rightarrow impact from upgrade scenario for medium masses

Technique similar to dijet analysis, looking for bump from a sharp resonance in spectrum. Sliding mass window around resonance mass for each signal mass point.

Systematics on CMS Single VLQ

- Experimental:
- Electron/Muon identification/isolation: 1%
- B-tagging
 - 1% (2%) for b-jets (c-jets), pT independent
 - 2-10% mistagging, increasing with b-tagging purity
- Jet energy scale:
 - 1% for jets with pT >30 GeV for all eta
- Missing transverse momentum
 - Propagate from JES uncertainty
 - Component due to unclustered energy being studied
- Luminosity: 1.5%
- Modelling
- Renormalization and factorization scales
 - Scale by factor of ½ wrt results from LO generators (well-understood NLO generators)
- PDF
 - Scale by a factor of ½ wrt current measurements (more PDF constraints from LHC data, new sets)
- Top-quark pT
 - Scale by a factor of 1/3 wrt current measurements (precise differential cross section measurements, well-understood NLO generators, 2D differential NNLO k-factors)

TP and CMS-PAS-EXO-14-007

33

Projections for Different Models

Assumptions for projection:

- Follow run-1 analysis in terms of selection and systematics.
- Bkgr, mostly
 instrumental,
 scales linearly
 with PU
- With 25ns lose
 ability to trigger
 on "late muons".
 99% of particles
 β<0.5.
 Considered by
 random event

rejections.