

Heavy Flavour Physics

at high luminosity

Niels Tuning on behalf of LHCb, ATLAS, CMS

Heavy Flavour = Precision search for NP

Historical record of indirect discoveries: E.

Particle		Indirect			Direct			
ν	β decay		1932	Reactor v-CC	Cowan, Reines	1956		
W	β decay		1932	W→ev	UA1, UA2	1983		
с	К⁰ →µµ	GIM	1970]/ψ	Richter, Ting	1974		
b	СРV <i>К⁰→пп</i>	CKM, 3 rd gen	1964/72	Y	Ledermann	1977		
Z	ν-NC	Gargamelle	1973	Z→e+e-	UA1	1983		
t	B mixing	ARGUS	1987	$t \rightarrow Wb$	D0, CDF	1995		
н	e+e-	EW fit, LEP	2000	<i>Η →</i> 4μ/γγ	CMS, ATLAS	2012		
?	Whať	's next ?	?			?		
	u		ν		e^+ H			
	e^-	ν	$\overline{\zeta_Z}$		\rightarrow			

μ

d \cdot

Heavy Flavour = Precision search for NP

Depending on your model, sensitive to multi-TeV scales, eg:

Heavy Flavour = Precision search for NP

Depending on your model, sensitive to multi-TeV scales, eg:

Outline

- Introduction
 - Timeline HL-LHC: Detector improvements
- Beauty: Rare Decays
 - $B^{0}_{(s)} \rightarrow \mu \mu$ and f_{s}/f_{d} - Very rare:
 - FCNC: $B^0 \rightarrow K^* \mu \mu$
 - Searches: Dark photons, Majorana neutrino's
- Beauty: CP violation
 - CPV in B_s^0 : ϕ_s, A_{fs} : $B^0_s \rightarrow J/\psi \phi$, $B^0_s \rightarrow \phi \phi$, $B^0_{(s)} \rightarrow D_{(s)} X \mu v$
 - CKM angles: γ, β : $B \rightarrow DK$, $B^0 \rightarrow J/\psi K_S$
- Charm and Strange
 - Charm mixing:

 - $D^{0*} \rightarrow D^{0}(hh) \pi$ - Strange rare decays: $K_S^0 \rightarrow \mu\mu, K_S^0 \rightarrow nnee, \Sigma^+ \rightarrow p\mu\mu$
- ("Top is not a heavy flavour")

Preparatory workshop (31 Aug 2016)

09:30 → 10:00 What would permille constraints on flavour observables bring us? () 30m https://indico.cern.ch/event/545639/timetable/ Speaker: Ulrich Andreas Haisch (University of Oxford (GB)) A HF_HL-LHC_16_U_ 10:00 → 10:30 CMS : overview of HF activities and upgrade plans ③ 30m Speaker: Kai-Feng Chen (National Taiwan University (TW)) hf_at_hllhc-2016.__ 10:30 → 11:00 Coffee () 30m Heavy Flavour physics at HL-LHC → 11:30 ATLAS : overview of HF activities and upgrade plans 11:00 ③ 30m Speaker: Pavel Reznicek (Charles University (CZ)) ATLAS_BphysHL.. 31 Aug 2016, 09:30 → 18:00 Europe/Zurich 11:30 → 12:00 LHCb : overview of HF activities and upgrade plans () 30m Speaker: Johannes Albrecht (Technische Universitaet Dortmund (DE)) 222-R-001 - Filtration Plant (CERN) Albrecht_v1.1.pdf 0 12:00 → 13:30 Lunch () 1h 30m 13:30 → 14:00 Complementarity between LHC experiments, Kaon physics, BES III, direct LFV searches, and Belle II (\$30m Speakers: Jernej F. Kamenik (Jozef Stefan Institute) , Jernej Fesel Kamenik (Jozef Stefan Institute (SI)) 🕅 kamenik.pdf 14:00 → 14:20 CMS : what does the 40 MHz track trigger bring us? ③20m Speaker: Fabrizio Palla (Universita di Pisa & INFN (IT)) HL-LHC for ECFA → 14:40 LHCb : potential for kaon physics with a full upfront reconstruction ③20m Speaker: Marc Olivier Bettler (CERN) P Bettler_20160830. 14:40 → 15:00 Potential for rare decay measurements in HL-LHC period ③ 20m Speaker: Patrick Haworth Owen (Universitaet Zuerich (CH)) For details on detector upgrades, see RD_HLLHC.pdf Ľ. presentations from yesterday morning: 15:00 → 15:20 Coffee () 20m 15:20 → 15:40 Potential for CPV measurements in the HL-LHC period ③20m

15:40

Speaker: Simon Akar (CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France)

→ 16:10 How well can we control detector effects for precision measurements in the HL-LHC period?

CPV_HLLHC2016.

Speaker: Andrea Contu (CERN)

16:10 → 17:00 Open discussion : how do we make the most of our detectors?

- Chris Parkes (LHCb)
- Brian Petersen (ATLAS)
- Meenakshi Narain (CMS)

(30m

③ 50m

Schedule

2019 2	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	203+
		F	Run II	I				Rı	ın IV				Rur	n V
LS2						LS3					LS4			
LHCb 40 UPGR	0 MHz RADE	L	= 2 x 10) ³³	LHCb	Consolid	ation	L	$= 2 x 10^{-1}$	J ³³	LHCb UPGR	Ph II ADE *	L = 2 : 300	x 10 ³⁴ fb ⁻¹
ATLAS Phase I U	Jpgr	L	= 2 x 10) ³⁴	ATLAS Phase	II UPO	GRADE		= 5 x 10	C) ³⁴	ATLAS	5	HL-L L = 5 :	HC x 10 ³⁴
CMS Phase I U	Jpgr		300 fb ⁻¹	,	CMS Phase	IIUPO	GRADE				CMS		3000) fb ⁻¹
Belle II		5 ab ⁻¹	L = 8 x	10 ³⁵	50 a	ab-1								

LHC schedule: Frederick Bordry, Jun 2015

Schedule: LS2 - 2019/2020

2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	203+
		F	Run II	I				Rı	un IV				Rur	ר V
LS2						LS3					LS4			
	40 MHz GRADE	L	= 2 x 10) ³³	LHCb	Consolid	ation	L	$= 2 x 10^{-1}$) ³³	LHCb UPGR	Ph II ADE *	L = 2z 300	x 10 ³⁴ fb ⁻¹
ATLAS Phase I	Upgr	L	$= 2 \times 10^{\circ}$) ³⁴	ATLAS Phase	II UPO	GRADE	L	= 5 x 10	C) ³⁴	ATLAS	5	HL-L L = 5 :	HC x 10 ³⁴
CMS Phase I	Upgr		300 fb ⁻¹		CMS Phase	II UPO	GRADE				CMS		3000) fb ⁻¹
Belle I	I	$5 ab^{-1}$	L = 8 x	1035	50 a	<i>ab</i> -1								

LHCb Upgrade

- Upgrade to 40 MHz readout
- New VELO: strips \rightarrow pixel
- New SciFi tracker
- ATLAS Phase 1
 - New small muon wheel
 - Fast tracking trigger at level 1.5
- CMS Phase 1
 - Pixel tracker

Schedule: LS2 - 2019/2020

2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	203+
		F	Run II	I				Rı	un IV				Rur	ר V
LS2						LS3					LS4			
LHCb UPC	40 MHz GRADE	L	= 2 x 10)33	LHCb	Consolida	ation	L	= 2 x 10 50 fb ⁻¹) ³³	LHCb UPGR	Ph II ADE *	L = 2z 300	x 10 ³⁴ fb ⁻¹
ATLAS Phase 1	Upgr	L	$=2 \times 10^{\circ}$)34	ATLAS Phase	IIUPO	RADE	L	L-LH = 5 x 1(C 0 ³⁴	ATLAS	5	HL-L $L = 5 c$	HC x 10 ³⁴
CMS Phase 1	(Upgr		300 fb ⁻¹		CMS Phase	II UPG	RADE				CMS		3000) fb ⁻¹
Belle I	I	5 ab ⁻¹	L = 8 x	1035	50 0	ab ⁻¹								_
• L	-HCb - Up - Ne - Ne ATLAS - Ne - Fa CMS F	Upgra ograde ew VEl ew Sci 6 Phas ew sm ast tra Phase xel tra	ade e to 40 LO: st Fi trac se 1 all mu cking 1 ucker) MHz rips → cker ion wł trigge	reado pixel neel r at le	ut vel 1.!	5	1/fb 50 45 40 35 30 25 20 15 10 5 0	<pre>effect on Int. Lumino Muon trigg Hadron trig Lmax = 4³ R1</pre>	luminosity sity(1/fb) ers (yield A.U.) gers (yield A.U.) upgrade *1032 R2 R3	and signal	yields	L _{max} = 2*10 Increase ɛ(hadro	033 e n)

Schedule: LS3 - 2024/2026

2019	2020	2021	2022	2023	2024	2025	2026	5 2027	2028	2029	2030	2031	2032	203+
		F	Run II	I				Rı	un IV				Rur	ר V
LS2						LS3					LS4			
LHCb UPC	40 MHz GRADE	L	= 2 x 10	J ³³	LHCb	Consolid	ation	L	$= 2 x 10^{-1}$) ³³	LHCb UPGR	Ph II ADE *	L = 2 : 300	x 10 ³⁴ fb ⁻¹
ATLAS Phase 1	Upgr	L	$= 2 \times 10^{\circ}$) ³⁴	ATLAS Phase	II UPO	GRADE		= 5 x 10	C) ³⁴	ATLAS	5	HL-L L = 5 :	HC x 10 ³⁴
CMS Phase I	[Upgr		300 fb ⁻¹	,	CMS Phase	IIUPO	GRADE	:			CMS		3000) fb ⁻¹
Belle I	I	5 ab-1	L = 8 x	1035	50 a	ab ⁻¹								_

- LHCb consolidation possibilities include:
 - Improve PID: time-of-flight TORCH
 - Increase acceptance: Magnet tracking
 - Enhance ECAL
 - Supplement SciFi tracker with Si

Schedule: LS3 – 2024/2026

2019	2020	2021	2022	2023	2024	2025	2026	2027 2028 2029			2030	2031	2032	203+
		F	Run II	I				Rı	un IV				Rur	ר V
LS2						LS3					LS4			
LHCb UPC	40 MHz GRADE	L	= 2 x 10	J ³³	LHCb	Consolida	ation	L	$= 2 x 10^{-1}$) ³³	LHCb UPGR	Ph II ADE *	$L = 2 x 10^{34} 300 fb^{-1}$	
ATLAS Phase I	Upgr	L	= 2 x 10) ³⁴	ATLAS Phase	II UPG	RADE	L	HL-LHC $L = 5 \times 10^{34}$			ATLAS		HC x 10 ³⁴
CMS Phase I	$L = 2 x 10^{34}$ S se I Upgr $L = 2 x 10^{34}$ $300 fb^{-1}$ le II $5 ab^{-1}$ $L = 8 x 10^{35}$				CMS Phase	IIUPO	RADE				CMS		3000) fb ⁻¹
Belle I	I	5 ab ⁻¹	L = 8 x	10 ³⁵	50 a	ab ⁻¹			×°2.2	Ph	oso 1 Tro	akor		
. (CMS U - Ne - Ha - In	Jpgra ew Si f ardwa • Low hprove	de Ph tracke re trac pt dim ed mu	ase 2 r ck trigg uon σ _M on: RF	ger at ~ 70 M °C anc	L1 1eV I GEM,	η<3		* 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0,2	- Ph	ase-2 Tra			

η

Schedule: LS3 - 2024/2026

2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	203+
		F	Run II	I				Run IV					Rur	ר V
LS2						LS3					LS4			
LHCb UPC	40 MHz GRADE	L	$= 2 \times 10$) ³³	LHCb	Consolida	ation	L	$= 2 x 10^{-1}$ 50 fb ⁻¹)33	LHCb UPGR	Ph II ADE *	$L = 2 x \ 10^{34} \\ 300 \ fb^{-1}$	
ATLAS Phase 1	G [Upgr	L) ³⁴	ATLAS Phase	IIUPO	RADE	HL-LHC $L = 5 \ x \ 10^{34}$			ATLAS		HL-LHC $L = 5 \times 10^{34}$		
CMS Phase 1	E = 2 x 10 a b c c c c c c c c c c				CMS Phase	II UPG	RADE				CMS		3000) fb ⁻¹
Belle I	II $5 ab^{-1}$ $L = 8 x 10^{35}$				50 0	ab ⁻¹	Ē			<u> </u>		+ + + + + + +		
Belle II $5 ab^{-1}$ $L = 8 \times 10^{35}$ $50 ab^{-1}$ • ATLAS Upgrade Phase 2 - New Si tracker ITk - Full granularity calorimeter - Upgrade part of muon, fast trigge								1400 A 1200 1000 800 600	TEP1 Layout co	Simulatic ncept: Fully Inc η =	1.0		η	= 2.0

z [mm]

Schedule: LS4 - 2030/2031

2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	203+
		F	Run II	I				Rı	un IV				Rur	ר V
LS2						LS3					LS4			
	40 MHz GRADE	L	= 2 x 10) ³³	LHCb	Consolid	ation	L	$= 2 x 10^{-1}$) ³³	LHCb UPGR	Ph II ADE *	L = 2 z 300	x 10 ³⁴ fb ⁻¹
ATLAS Phase I	Upgr	L	=2 x 10) ³⁴	ATLAS Phase	II UPO	GRADE	L	HL-LHC $L = 5 x 10^{34}$		ATLAS	5	HL-L L = 5 :	HC x 10 ³⁴
CMS Phase I	Upgr		300 fb ⁻¹	,	CMS Phase	CMS Phase II UPGRADE					CMS		3000) fb ⁻¹
Belle I	I	5 ab-1	L = 8 x	10 ³⁵	50 a	ab ⁻¹								

* Thinking underway for LHCb detector upgrades for 2 x 10^{34} cm⁻²s⁻¹

- Considerations:
 - VELO: radiation hardness
 - Restructure MUON + RICH
 - Fast timing required to cope with high pile-up

Di-muon trigger for *B*

- Crucial to trigger at low p_T
- Resolution improves S/B
- Improvements by 2025
 - LHCb
 - 40 MHz software trigger
 - ATLAS
 - Fast tracking trigger
 - New Inner Tracker
 - CMS
 - Muon p>3 GeV, η<3
 - low p_T track trigger for phase II

Outline

- Introduction
 - Timeline HL-LHC: Detector improvements
- Beauty: Rare Decays
 - $B^{0}_{(s)} \rightarrow \mu \mu$ and f_{s}/f_{d} - Very rare:
 - FCNC: $B^0 \rightarrow K^* \mu \mu$
 - Searches: Dark photons, Majorana neutrino's
- Beauty: CP violation
 - CPV in B_s^0 : $\phi_s, A_{fs} : B_s^0 \rightarrow J/\psi \phi, B_s^0 \rightarrow \phi \phi, B_{(s)}^0 \rightarrow D_{(s)} X \mu v$
 - CKM angles: γ, β : $B \rightarrow DK$, $B^0 \rightarrow J/\psi K_S$
- Charm and Strange
 - Charm mixing:
- ("Top is not a heavy flavour")
- $D^{0*} \rightarrow D^{0}(hh) \pi$ - Strange rare decays: $K_S^0 \rightarrow \mu\mu, K_S^0 \rightarrow n\pi ee, \Sigma^+ \rightarrow p\mu\mu$

$$B^{0}_{(s)} \rightarrow \mu\mu$$

- » "Golden channel for SUSY"
- Decay discovered in 2015

$B^{0}_{(s)} \rightarrow \mu\mu$

- BR($B^0 \rightarrow \mu\mu$): a little high?
 - First evidence at 3.0σ
 - 2.3σ above SM prediction:
 - $R_{SM} = 0.030 \pm 0.003$
 - $R_{exp} = 0.140 + 0.080_{-0.060}$

$B^{0}_{(s)} \rightarrow \mu\mu$: projections

Statistics

- Systematics
 - ATLAS+CMS: improved mass resolution
 - Limiting: f_s/f_d
- Theoretical prediction $BR(B^{0}_{(s)} \rightarrow \mu\mu)$
 - CKM elements, B decay constants
 - Accuracy expected to increase with improved lattice
 - Future unc. might reach ~3% :
 - Exp. uncertainty will probably not decrease to theoretical uncertainty

USQCD Coll. http://www.usqcd.org/documents/13flavor.pdf

18

$B^{0}_{(s)} \rightarrow \mu\mu$: dominant systematic : f_{s}/f_{d}

- Dominant systematic uncertainty for BR($B_s^0 \rightarrow \mu\mu$)
- Relies on theoretical knowledge of ratio of BRs:
 - Semileptonic: $\Gamma(B_s^0 \rightarrow \mu X) = \Gamma(B \rightarrow \mu X)$
 - Hadronic: $\frac{B}{B}$

$$\frac{\mathrm{BR}(\bar{B}_{s}^{0} \to D_{s}^{+}\pi^{-})}{\mathrm{BR}(\bar{B}_{d}^{0} \to D^{+}K^{-})} = \frac{\Phi(D_{s}\pi)}{\Phi(DK)} \frac{\tau_{B_{s}}}{\tau_{B_{d}}} \left| \frac{V_{ud}}{V_{us}} \right|^{2} \left(\frac{f_{\pi}}{f_{K}} \right)^{2} \left[\frac{F_{0}^{(s)}(m_{\pi}^{2})}{F_{0}^{(d)}(m_{K}^{2})} \right]^{2} \left| \frac{a_{1}(D_{s}\pi)}{a_{1}(D_{d}K)} \right|^{2} = 14.2 \pm 1.3 (\mathrm{FF})$$

- B→J/ψX:

$$R_{s/d}^{\text{th.}\prime} \equiv \frac{\text{BR}(B_s \to J/\psi\phi)}{\text{BR}(B_d \to J/\psi K^{*0})} \approx 0.83^{+0.03}_{-0.02} (\omega_B)^{+0.01}_{-0.00} (f_M)^{+0.01}_{-0.02} (a_i)^{+0.01}_{-0.02} (m_c) [0.83^{+0.03}_{-0.03}]$$

Liu, Wang, Xie, PRD89 (2014) 094010

Fleischer, Serra, NT, PRD82 (2010) 034038

$B^{0}_{(s)} \rightarrow \mu \mu$: dominant systematic : f_{s}/f_{d}

$B^{0}_{(s)} \rightarrow \mu\mu$: dominant systematic : f_{s}/f_{d}

- Dominant systematic uncertainty for BR($B_s^0 \rightarrow \mu\mu$)
- Measurements:

€⁷0.35

0.3

0.25

0.2

0.15

 f_s /

$B^{0}_{(s)} \rightarrow \mu\mu$: effective lifetime

- Lifetime difference $B_s^0_H$ (CP-) and $B_s^0_L$ (CP+):
- SM: P-amplitude dominates, selecting CP-odd
- Different CP admixture affects effective lifetime
 - possibly not affecting the BR, when |S| and $A_{\Delta\Gamma}$ compensate...
- Could be due to scalar amplitude |S| from NP

De Bruyn, Fleischer, NT, et al. Phys.Rev. D86 (2012) 014027

$$R \equiv \frac{\mathrm{BR}(B_s \to \mu^+ \mu^-)_{\mathrm{exp}}}{\mathrm{BR}(B_s \to \mu^+ \mu^-)_{\mathrm{SM}}} = \left[\frac{1 + \mathcal{A}_{\Delta\Gamma} y_s}{1 - y_s^2}\right] \left(|P|^2 + |S|^2\right)$$

b \rightarrow **sll** (i.e. $B^{0} \rightarrow K^{*}\mu\mu$ and friends)

- FCNC: EW penguin
- Curious tensions:
 - Lepton flavour universality
 - Decay rates
 - Angular distributions, P₅'

LHCb, PRL113 (2014) 151601

LHCb, JHEP 1509 (2015) 179

LHCb, JHEP 1602 (2016) 104

$B^{0} \rightarrow K^{*}\mu\mu$: Projections

 $q^2 (\text{GeV}^2/c^4)$

Pomery, Egede, Owen, Petrides, Blake

$b \rightarrow sll$: Projections

- Lepton-flavour violation searches
- BR's
- A_{FB}(S6), A9, ...
- $B^0 \rightarrow K^*ee$

	Decay	Run 1	Run 2	$50 { m fb}^{-1}$	$300 {\rm fb}^{-1}$
R_K	$B^+ \rightarrow K^+ \mu^+ \mu^-$	11%	5%	2%	1%
R_{K^*}	$B^0 \! ightarrow K^{*0} \mu^+ \mu^-$	18%	8%	3%	1%
R_{Φ}	$B_s^0 \to \phi \mu^+ \mu^-$	36%	15%	8%	3%

25

Lepton flavour universality: R(D) & R(D*)

- Surprises possible in tree-level decays?
- There is more than "roadmap" channels with loops
- $\bullet B \rightarrow D^* l v$
 - Measure ratio τ/μ :

 $\mathcal{R}(D^*) \equiv \mathcal{B}(\overline{B}{}^0 \to D^{*+}\tau^-\overline{\nu}_{\tau})/\mathcal{B}(\overline{B}{}^0 \to D^{*+}\mu^-\overline{\nu}_{\mu})$

- SM: R(D*)=0.252±0.003

– R(D) and R(D*) combined: 4.0σ

 μ^+/τ^+

 μ^+/τ^+

 W^+

B

B

 μ^+

B

LQ

Fajfer, Kamenik, Nisandzic PRD 85, 094025 (2012)

Outline

- Introduction
 - Timeline HL-LHC: Detector improvements
- Beauty: Rare Decays
 - Very rare: $B^{0}_{(s)} \rightarrow \mu \mu$ and f_{s}/f_{d}
 - FCNC: $B^0 \rightarrow K^* \mu \mu$
 - Searches: Dark photons, Majorana neutrino's
- Beauty: CP violation
 - CPV in B_s^0 : $\phi_s, A_{fs} : B_s^0 \rightarrow J/\psi \phi, B_s^0 \rightarrow \phi \phi, B_{(s)}^0 \rightarrow D_{(s)} X \mu v$
 - CKM angles: γ, β : $B \rightarrow DK$, $B^0 \rightarrow J/\psi K_S$
- Charm and Strange
 - Charm mixing:
 - Strange rare decays:
- $D^{0^*} \rightarrow D^0(hh) п$ $K_S^0 \rightarrow \mu \mu, K_S^0 \rightarrow nnee, \Sigma^+ \rightarrow p \mu \mu$
- ("Top is not a heavy flavour")

CP violation in B_s^0

> Heavy new particles can affect box and penguin:

CP violation in B_s^0

- Heavy new particles can affect box and penguin
- Impressive precision:

2016

CP violation in B_s^0 : Projections for φ_s

- Theoretical prediction for φ_s
 - very accurate
 - penguin contributions under control (<0.5°) $\rightarrow \Delta \phi_s^{\psi\phi} = \left[0.08^{+0.56}_{-0.72} (\text{stat})^{+0.15}_{-0.13} (SU(3))\right]^\circ$
 - 10x larger uncertainty than $arg(V_{ts})$
 - but scales with increased statistics
- Experimental improvements:
 - New vertex detectors at ATLAS and CMS \rightarrow better decay time resolution
 - Statistical uncertainty at end Upgrade:
 - LHCb: 0.009 rad
 - ATLAS: 0.022 rad

Resolution dampens CPV sensitivity with dilution D:

$$D = \exp\left(-\Delta m_s^2 \,\delta(\sigma_t)^2 \,/\, 2\right)$$

31

 $\phi_s^{\rm SM} = -0.0376^{+0.0007}_{-0.0008} \,\mathrm{rad}$

De Bruyn & Fleischer, JHEP 03 (2015) 145

 $(0.5^\circ = 0.0087 \text{ rad})$

CP violation and penguins: $B_s^0 \rightarrow \varphi \varphi$

- FCNC gluonic penguin: sensitive to NP \geq
- Present situation:

 $\phi_s = -0.17 \pm 0.15 \,(\text{stat}) \pm 0.03 \,(\text{syst}) \,\text{rad}$

- Statistically limited in HL-LHC era н.
 - LHCb: Expected stat. unc. (300 fb⁻¹): 0.007 rad
 - CMS: expect L1 rate of 29kHz at 42% efficiency (<PU>=140)

32

5.8

CP violation in B⁰ decays: sin2β

- Crucial parameter to test CKM paradigm
- Statistically limited .

Observable

 $\sin(2\beta)$

Mode

 $B^0 \to J/\psi K_S^0$

Penguins uncertainty on sin2 β ~0.005

$$\sin(2\beta)^{\rm SM} = 0.748^{+0.030}_{-0.032}$$
$$\sin(2\beta)^{\rm exp} = 0.691 \pm 0.017$$

Run 1

(2010-12)

 $3 \, {\rm fb}^{-1}$

0.040

Run 2

(2015-18)

 $8 \, {\rm fb}^{-1}$

0.021

Upgrade

 $50 \, {\rm fb}^{-1}$

0.007

CP violation in B decays: y

- > Angle γ least known parameter
- LHCb dominates world average
 - σ(γ) ~ 7°
- No theoretical limitations
- No systematic limitations
 - Precision \ll 1° in reach
- Result to be compared with:
 - UT fit

Outline

- Introduction
 - Timeline HL-LHC: Detector improvements
- Beauty: Rare Decays
 - Very rare: $B^0_{(s)} \rightarrow \mu \mu$ and f_s/f_d
 - FCNC: $B^0 \rightarrow K^* \mu \mu$
 - Searches: Dark photons, Majorana neutrino's
- Beauty: CP violation
 - CPV in B_s^0 : ϕ_s, A_{fs} : $B^0_s \rightarrow J/\psi \phi$, $B^0_s \rightarrow \phi \phi$, $B^0_{(s)} \rightarrow D_{(s)} X \mu v$
 - CKM angles: γ, β : $B \rightarrow DK$, $B^0 \rightarrow J/\psi K_S$
- Charm and Strange
 - Charm mixing:
 - Strange rare decays:
- $D^{0^*} \rightarrow D^0(hh)п$ $K_S^0 \rightarrow \mu\mu, K_S^0 \rightarrow nnee, \Sigma^+ \rightarrow p\mu\mu$
- ("Top is not a heavy flavour")

Charm

- Probing the up-quark sector \geq
- Enormous data set
 - 10⁹ D-decays in Run-I
- Prospects:
 - CPV in mixing $(y_{CP},q/p)$ in $D^* \rightarrow D^0(K\pi)\pi$
 - A_{CP} in $D^0 \rightarrow KK/\pi\pi$, $D^0 \rightarrow K_Shh$
 - > When is this theoretically limited?

Warning: These are <u>**1G**</u> *D* decays, not a TF1("gauss") ...

1900

 $K^{-}\pi^{+}$ mass [MeV/c²]

1880

 $\times 10^{6}$

6

5

LHCb Preliminary

Signal: 630 M

1850

(a) $D^0 \rightarrow K^- \pi^+$

2011+12 data $D^0\to K^{\text{-}}\pi^{\text{+}}$

Candidates per 19 keV/c²

1900

لسلسلسلسلسلسل

Strange

- New field within LHCb
- Dedicated triggers
- Rich program:
 - $K_S^0 \rightarrow \mu \mu$
 - BR < 5.8 x 10⁻⁹ @ 90% CL
 - Software trigger, 23 fb⁻¹: 2 x 10⁻¹⁰
 - $K_S^0 \rightarrow \pi^0 \mu \mu$
 - Hardware trigger bottleneck → upgrade!
 - $K_S^0 \rightarrow \mu \mu \mu \mu$
 - No experimental constraint to date
 - $K_S^0 \rightarrow \pi^+ \pi^- e e$
 - 5σ observation possible in Run-II
 - $K^+ \rightarrow \pi^+ \pi^- \pi^+$
 - 10⁶ events observed in Run-I
 - software trigger in upgrade: 2x 10¹⁰ /fb⁻¹
 - $\Sigma^+ \rightarrow p \mu \mu$
 - Check HyperCP (E871) events

Strange

- New field within LHCb
- Dedicated triggers
- Rich program:
 - $K_S^0 \rightarrow \mu \mu$
 - $BR < 5.8 \times 10^{-9} @ 90\% CL$
 - Software trigger, 23 fb⁻¹: 2 x 10⁻¹⁰
 - $K_S^0 \rightarrow \pi^0 \mu \mu$
 - Hardware trigger bottleneck → upgrade!
 - $K_S^0 \rightarrow \mu \mu \mu \mu$
 - No experimental constraint to date
 - $K_S^0 \rightarrow \pi^+ \pi^- e e$
 - 5σ observation possible in Run-II
 - $K^+ \rightarrow \pi^+ \pi^- \pi^+$
 - 10⁶ events observed in Run-I
 - software trigger in upgrade: 2x 10¹⁰ /fb⁻¹
 - $\Sigma^+ \rightarrow p \mu \mu$
 - Check HyperCP (E871) events

LHCb-CONF-2016-013

Strange

- New field within LHCb
- Dedicated triggers
- Rich program:
 - $K_S^0 \rightarrow \mu \mu$
 - BR < 5.8 x 10⁻⁹ @ 90% CL
 - Software trigger, 23 fb⁻¹: 2 x 10⁻¹⁰
 - $K_S^0 \rightarrow \pi^0 \mu \mu$
 - Hardware trigger bottleneck → upgrade!
 - $K_S^0 \rightarrow \mu \mu \mu \mu$
 - No experimental constraint to date
 - $K_S^0 \rightarrow \pi^+ \pi^- e e$
 - 5σ observation possible in Run-II
 - $K^+ \rightarrow \pi^+ \pi^- \pi^+$
 - 10⁶ events observed in Run-I
 - software trigger in upgrade: 2x 10¹⁰ /fb⁻¹
 - $\Sigma^+ \rightarrow p \mu \mu$
 - Check HyperCP (E871) events
 - LHCb:
 - Fit at m=214.3 MeV: 1.6±1.9 evts

LHCb-CONF-2016-013

Experiment vs Theory

For very long, flavour observables will stay statistically limited!

			100.00	0.0		5
	LHCb u	p to LS2	LHCb	upgrade	Theory	
	Run 1	Run 2	Run 3	Run 4	Theory uncertainty	_
Integrated lumi	$3 f b^{-1}$	$8 fb^{-1}$	23 fb^{-1}	46 fb^{-1}		_HC
$\frac{Br(B_d \rightarrow \mu\mu)}{Br(B_s \rightarrow \mu\mu)}$	-	110 %	60%	40%	→ 5%	φ Ρ
$q_0^2 A_{FB}(B_d \to K^{*0} \mu \mu)$	10%	5%	2.8%	1.9%	7%	
$\phi_s(B_s \to J/\psi\phi, B_s \to J/\psi\pi\pi)$	0.05	0.025	0.013	0.009	0.003	201
$\phi_s(B_s \to \phi \phi)$	0.18	0.12	0.04	0.026	0.02	4-04
γ	7°	4°	1.7°	1.1°	→ negl.	Ð
$A_{\Gamma}(D^0 \to KK)$	3.4 10-4	$2.2 10^{-4}$	$0.9 10^{-4}$	$0.5 \ 10^{-4}$	-	
			$\delta\gamma$	$\mathcal{O}(10$	⁻⁷) [Brod & Zupan, 1308.5	663]
			δeta	$\mathcal{O}(1$	%) [Ciuchini et al., hep-ph/	(0507290]
			δR_{D^*}	$\mathcal{O}(1$	%) [Fajfer et al., 1203.2654	ŧ]
				$\mathcal{O}(1$	%) [Bordone et al., 1605.0	7633]

40

Conclusions

- Precision measurements to scrutinize the Standard Model
- Precision measurements only way to reach very high mass scales
- Precision measurements are not yet precise enough

Backup slides

The need for more precision

Imagine if Fitch and Cronin had stopped at the 1% level, how much physics would have been missed"

– A.Soni

• "A special search at Dubna was carried out by Okonov and his group. They did not find a single $K_L^0 \rightarrow \pi^+\pi^-$ event among 600 decays into charged particles (Anikira et al., JETP 1962). At that stage the search was terminated by the administration of the lab. The group was unlucky."

– L.Okun

(remember: $B(K_{L}^{0} \rightarrow \pi^{+}\pi^{-}) \approx 2 \ 10^{-3})$

Playing field: heavy flavour

Playing field: today

CP violation in *B* **mixing**

- New particles in the box diagram?
- Present results do not exclude D0 yet
- LHCb: with 300 fb⁻¹ expect precision ~10⁻⁴
 - Charged track asymmetry challenging

LHCb = more than flavour

pdfs, jets, heavy-ion, EW, exotic states...

Projected sensitivities

ATL-PHYS-PUB-2013-010 CMS-PAS-FTR-14-015

BELLE2-NOTE-PH-2015-002 LHCB-PUB-2014-040