ATLAS ITk Layout Design and Optimisation

Noemi Calace – noemi.calace@cern.ch
On behalf of the ATLAS Collaboration
Overview

• The Phase-II Scenario
 → The ATLAS Inner Tracker Upgrade

• Evolution of design options
 ○ From the Letter of Intent to the current layouts

• Next Steps
The ATLAS Phase-II Inner Tracker

ITk (Inner Tracker) is a full upgrade of the ATLAS Inner Detector as part of the Phase-II upgrade
→ includes new pixel and strip detectors, “all-silicon” detector

→ Designed to operate successfully under HL-LHC operating conditions corresponding to:
 • Leveled peak luminosities up to $7.5 \cdot 10^{34}$ cm$^{-2}$ s$^{-1}$
 • 25 ns bunch spacing
 • Mean number of interactions per bunch crossing up to 200
 • Integrated luminosity $L_{\text{int}} \sim 3000$ fb$^{-1}$
 • 14 TeV energy in the center of mass
The ATLAS Phase-II Inner Tracker

→ More stringent requirements to cope with the new environment
 ◦ $\leq 0.1\%$ occupancy in the pixel layers and $\leq 1\%$ occupancy in the strip layers
 ◦ Requires new sensor technologies
 ◦ Radiation tolerance: possibility to extract and replace inner parts of the pixel detector if needed

→ Reduce the amount of material in the tracking volume
 ◦ The tracker material is a major limitation for the overall performance
 ▪ Thinner silicon sensors

→ Pileup Robustness
 ◦ Stable performance with respect to increasing pileup

→ System Redundancy
 ◦ Robustness against limited detector defects
ATLAS Phase-II
Physics Performance Requirements

- Must be possible to precisely reconstruct tracks within \(z_{\text{beam}} = [-150, 150] \) mm around interaction region up to \(|\eta| < 2.7 \)

- Track efficiencies:
 - Muons with \(p_T > 3 \) GeV: 99.8\% for \(|\eta| < 2.7 \) under all pileup and assumed component failure conditions
 - Pions (Electrons) with \(p_T > 2 \) GeV (5 GeV): 90\% for \(|\eta| < 1 \), 85\% for \(1 < |\eta| < 2.7 \), dependence on pileup less than 5\%

- Tracking in dense environments:
 - Average track inefficiency for primary hadrons within jets should not increase by more than 1\% from truth jets up to \(p_T = 1 \) TeV
 - The average track reconstruction efficiency within a jet should not decrease by more than 5 (10\%) when moving from outer jet regions towards the jet axis for light (b-)jets in the truth jet \(p_T \) range of \(450 \) GeV < \(p_T < 650 \) GeV

→ Requirements met by an “All-silicon” Pixel + Strip tracker!

→ See next talk: Tracking, vertexing, b and tau tagging performance – Nicholas Styles
The ATLAS Letter of Intent Layout

→ LoI Layout guided by the requirement of at least 14 hits and coverage up to $|\eta| \sim 2.7$

- **Pixel Detector:**
 → 4 pixel layers + 6 disks
 - Two inner pixel barrel layers removable

- **Strip Detector:**
 → 5 barrel layers + stubs + 7 disks
 - Stubs are inserted to maintain hermeticity and provide good momentum resolution in the barrel-endcap transition region
 - Barrel layers and endcap disks have back-to-back small stereo-angle sensors
 - Reduced strip length is used in the innermost layers to limit occupancy

→ Letter of Intent (LoI) Layout – ATL-UPGRADE-PUB-2012-004
More on the ATLAS LoI Layout Design Consideration

- The services, the material budget, the placement of patch panels and manifolds, and the service routing, affect performance.

- Many service layouts have been considered to study the effect on performance, e.g. impact parameter and momentum resolution, in the tracking volume.

→ Letter of Intent (LoI) Layout – ATL-UPGRADE-PUB-2012-004
The Extended Coverage Scenario

- **Extended tracking acceptance: up to $|\eta| \sim 4$**
 - concerns mostly the pixel detector
 - Improved sensitivity and acceptance in VBS, VBF Higgs studies, bbH, $H \rightarrow 4l$, etc.
 - Improved impact parameter and vertex resolution \rightarrow pileup rejection and b tagging
 - Improved MET resolution in particular from track soft term
 - Forward electron identification
 - ...

- As an example: pileup jets are rejected based on the **momentum of tracks within a jet** associated with the primary vertex:

 \[R_{p_T} = \frac{\sum_i (p_{T \text{track},i})}{p_{T \text{jet}}} \]

 Measuring tracks at high pseudo-rapidity extends the range of this technique.
The ATLAS Lol-Very Forward Layout

- Extended coverage up to $|\eta| \sim 4$
 - Not yet optimised in terms of mechanical construction and maximum performance for a given silicon area
 - Very challenging routing of services
 - Used for studies up to $|\eta| \sim 4$ and starting point for optimisation
 → For both Strips and Pixels

- The optimised layouts will be presented in:
 - Strip Technical Design Report (end 2016):
 → 1 Strip Layout + 2 Pixel Layouts
 - Pixel Technical Design Report (end 2017):
 → 1 Pixel Layout

→ ATLAS Phase-II Upgrade Scoping Document – LHCC-G-166
The ATLAS ITk Strip Layout

- In the last years, the LoI layout has been modified to move towards more realistic ITk candidates
 - 4 Pixel + 5 Strip → 5 Pixel + 4 Strip
 - Goal: e.g. do better in jet cores
 - (Track In Dense Environment)
 - Longer staves in strip barrel
 - 14 modules
 - Region of best momentum resolution extends to $|\eta| = 1.1$
 - Allows to remove stubs
 - reduce complexity of engineering
 - Allows to move from 7 to 6 disks → moved accordingly to provide good momentum resolution
The ATLAS ITk Strip Layout

Much **more realistic** structure for the strip detector

Barrel:
- 4 double-sided layers
- Stereo angle: +/- 26 mrad

Endcap:
- 6 discs: double-sided petals
 → 6 different types of sensors in radius
- Sensor’s **irregular shape**
 → two tilted straight edges: +/- 20 mrad stereo angle built in
 → two circular edges: uniform gap between the sensors
 → Strips are pointing to the strip focus (not the beampipe)

→ See next talk: **Strip Tracker R&D – Ingrid-Maria Gregor**
The ATLAS ITk Pixel Layouts

- In the last years, the LoI layout has been modified to move towards more realistic ITk candidates

- Increasing the pixel volume to host a 5th barrel layer of pixels

- Rings instead of disks in the pixel endcap region
 - Services are routed on the support structure
 - Very peculiar pattern to provide constant number of hits versus η
 - Large-$|\eta|$ region entirely in the pixel volume → increased the number of rings at very high $|\eta|$
The Extended Layout Concept

→ Combine classical barrel with ring system

- Long barrel layers extend tracking acceptance up to $|\eta| \sim 4$
- Ring system was optimized for at least 9 hits, for z_0 in [-15 cm, 15 cm]

Mean number of hits per track as a function of η for single muons with $p_T=10$ GeV

Composition of the simulated material in radiation lengths as a function of $|\eta|$
The Extended Layout Concept

- **Two long innermost layers** with conventional barrel mechanics.
 - Not too challenging to build
- With sensors placed parallel to the beam pipe at high $|\eta|$, we expect to measure **long pixel clusters** at low incidence angle
- Main benefits of measuring long clusters:
 - Very efficient measurement as close as possible to the interaction point
 - Potential to reduce fake track rates by rejecting clusters with incompatible length
 - Luminosity measurement by cluster counting
 - Room for even more improvement by making use of the full cluster information
 - θ and z_0 from cluster length, better d_0 from charge sharing, dE/dX, Φ shape

$$\tan \theta = \frac{t}{N_{\text{pixel}} \cdot \text{pitch}}$$
Extended Stave Design and Prototyping

→ Support structure design bound to layout choice

- For the extended layout the “I-beam” design has been proposed:
 - Modules are always “outward” facing
 - Services and cooling planned to run within the structure
 - Coupled layers with different widths available
 - Adaptable height and tilt angle
The Inclined Layout Concept

- With tilted sensors in the high $|\eta|$ region we expect **several hits per layer (tracklets)** and **less material crossed** given the low incidence angle.

- **Main benefits:**
 - Less silicon wrt extended outer barrel ($\sim 2.5 \text{ m}^2$)
 - Less material in front of the “inclined” rings and less material crossed (\rightarrow less material effects) in front of the calorimeter at high pseudorapidity \rightarrow compared to classical disk system
 - Better constraint on the impact parameter \rightarrow Improved d_0 and z_0 resolution
 - Improvements in tracking efficiency from having many tracklets as close as possible to the interaction point
The Inclined Layout Concept

→ The Inclined Layout provides many hits at large $|\eta|$ close to the beam spot

- Using the same ring system of the extended layout, it provides more hits compared to the extended option in the forward region

Mean number of hits per track as a function of η for single muons with $p_T=10$ GeV
Inclined Stave Design and Prototyping

→ **Support structure design bound to layout choice**
 - For the inclined layout two designs have been proposed: **Alpine** and **SLIM**

→ **Process to join the two efforts ongoing**

Alpine
- T. Todorov† pioneer of the “inclined” idea
- Two types of modules: barrel and inclined
 - carbon foam + carbon fibre “IBL-like” stave design

SLIM: Stiff Longeron for ITk Modules
- Two types of modules: barrel and inclined
- Inspired from ALICE: common structure (“Longeron”) supporting two layers of modules
- Two longeron designs: Shell and Truss

→ See next talk: **Pixel Tracker R&D – Joern Grosse-Knetter**
Summary and Next Steps

- **Strong design effort** starting from LoI layout to establish the ATLAS ITk tracker design for Phase-II
 - All silicon tracker with 5 pixel layers and 4 strip layers and extension to $|\eta| \sim 4$

- Final strip system design for TDR (currently being written)
 - Petal endcap structure to **minimise silicon overlap and material budget**

- Pixel system with **two alternative** layout concepts
 - Extended barrel with long cluster measurements in the forward
 - Inclined module solution with many hits at large $|\eta|$ close to the beam spot
 - Both concepts have been **prototyped and demonstrators exist**
 - **General good performance** from simulation of both layout
 → See next talk: **Tracking, vertexing, b and tau tagging performance**
 Nicholas Styles – ATL-PHYS-PUB-2016-025

- Pixel TDR → Decision on the stave technology for the inner and outer barrel layers
 → **much more in the next talks!**
Extra Slides
ATLAS Lol Layout Design Consideration

- The radius of the innermost pixel layer is chosen to be as close as possible to the beam pipe.

- Length of inner barrel layer is given to provide coverage up to $|\eta| \sim 2.7$

- Length of outer barrel layers is mainly given by construction constraints and costs.

- For both sub-detectors, fixed the position of the first disk, the radius of the last layer is determined in order to provide hermeticity.

- The next disks are added taking into account the fall-off of the layers.

Inverse-p_T resolution using resolution model, measured as a function of $|\eta|$ for the Lol layout, and comparison with the existing ATLAS experiment.
Extended Coverage Scenario

Pileup jets are rejected based on the momentum of tracks within a jet associated with the primary vertex:

\[R_{p_T} = \frac{\sum_i (p_{T,i}^{\text{track}})}{p_{T,jet}} \]

Measuring tracks at high pseudo-rapidity extends the range of this technique.

Distribution of the number of pile-up jets per event with no tracking confirmation (TC), and applying the TC algorithm tuned to give 2% pile-up jet acceptance, for each of the three scoping scenarios.