

A brief recap why we have to upgrade

The replacement of CMS Endcap calorimeters is required due to radiation-induced effects [see CMS TP: LHCC-2015-10, p 72-82]

Expected relative signal after 1000 fb-1 for the existing Hadronic Endcap Calorimeter

Relative response (top) and expected energy resolution (bottom) of the existing Endcap Electromagnetic Calorimeter after 3000 fb⁻¹. The resolution is O(10%) at the end of HL-LHC

HGCAL

In May 2015, the CMS collaboration chose a Silicon-based calorimeter for HL-LHC Upgrade

- Extensive R&D in the past 20 years for Trackers and Pixels have led to development of Si-sensors which can sustain the high radiation levels Fluence at η =3 in HGCAL ~ same as pixel inner layer Radiation effects are well understood and reproducible can be partly mitigated by low T operation
- High granularity and 3D imaging help mitigate pileup effects
- Fast signal collection (<10 ns) and fast timing capability (few tens of ps)
- Electronics in 130/65nm allows low noise and low power readout Front-End (10-15 mW/channel) even for large dynamic range
- Affordable cost
- Large experience accumulated in Si detectors construction/operation at Hadron Colliders over the last 20 years
- Synergy with developments for Linear Collider(s) detectors which all plan to use Silicon calorimetry for their electromagnetic calorimeters (CALICE)

TP Calorimeter Design

Construction:

- Hexagonal Si-sensors built into modules
- Modules with a W/Cu backing plate and PCB readout board.
- Modules mounted on copper cooling plates to make wedge-shaped cassettes.
- Cassettes inserted into absorber structures at integration site (CERN)

Key parameters:

- 593 m² of silicon
- 6M ch, 0.5 or 1 cm² cell-size
- 21,660 modules (8" or 2x6" sensors)
- 92,000 front-end ASICS.
- Power at end of life 115 kW.

System Divided into three separate parts:

EE – Silicon with tungsten absorber – 28 sampling layers – 25 X_o (~1.3 λ)

FH – Silicon with brass (now stainless steel) absorber – 12 sampling layers – 3.5 λ

BH – Scintillator with brass absorber – 11 layers – 5.5 λ

EE and FH are maintained at – 30°C. BH is at room temperature.

Thickness of Si sensors should be reduced for high fluence regions:

 $I_{leak} \propto Volume . \Phi decreases$ Collected Charge improves at high Φ

Requires cell size reduction to maintain moderate capacitance.

4)	25		
Signal, Ke	23	CMS Preliminary	N type 600V
nal		291um n-type	P type 600V N type 800V
Sig	20	284um pitype	A P type 800V
		218 um n-type	
	15	210 um p-type	
			14E um n tuno
	10		145 um n-type
			131 um p-type
	_		
	5	-	-
	0		
		10 ¹⁵	10 ¹⁶
			Fluence, n/cm ²

Thickness	300 μm	200 μm	100 μm
Maximum dose (Mrad)	3	20	100
Maximum n fluence (cm ⁻²)	6×10^{14}	2.5×10^{15}	1×10^{16}
EE region	R > 120 cm	$120 > R > 75 \mathrm{cm}$	$R < 75 \mathrm{cm}$
FH region	R > 100 cm	$100 > R > 60 \mathrm{cm}$	$R < 60 \mathrm{cm}$
Si wafer area (m²)	290	203	96
Cell size (cm ²)	1.05	1.05	0.53
Cell capacitance (pF)	40	60	60
Initial S/N for MIP	13.7	7.0	3.5
S/N after 3000 fb ⁻¹	6.5	2.7	1.7

Expected performance

Electromagnetic showers very narrow in the first layers

- -> pileup rejection,
- -> good particle separation for PFlow approach

Stochastic Term $\sim 20\%$ Small constant term (target < 1%) (in the forward region, a moderate p_T corresponds to a high energy)

Examples of use of longitudinal information

Improved e/hadron separation

Blue: Z/γ^* ->ee E_T >10 GeV Red: single pions

Shower starting layer

Shower length

Trigger

The longitudinal information allows for efficient pileup mitigation techniques

For an increase of the luminosity by a factor 3.5 compared to Phase-1, the background rate is increased by less than a factor 2.5-3, with similar signal efficiency (close to 100%)

Electron and photon trigger

3D + Energy: "X-ray" of jets

PFCandidate 170

pdg = 22 Y

pt = 44.70eta = 2.164

phi = 1.101 PFCandidate 235, pdg = 130 klong

pt = 9.14eta = 2.071

phi = 1.045 PFCandidate 211,

 $pdq = -211 \,\Pi^{-}$

CMS Experiment at LHC, CERN Data recorded: Thu Jan 1 01:00:00 1970 CEST Run/Event: 1 / 101 Lumi section: 2

"x-ray" view of clusters with weighting by pulse height

Energy weighting the hits help to resolve the core of the shower and to better separate adjacent showers

Use of fast timing

Fast timing will help to check the compatibility of different showers to originate from the same vertex and to associate them with a particular vertex.

particularly useful for H->yy

Tests in beam have shown that for large enough signals in a Si cell, an intrinsic precision better than 20ps can be expected. (see following presentation of Z.Gecse) opens the possibility to measure precise timing for em. (and large energy

mechanical layout and possible evolutions (1)

Decided to use new absorber for BH, and chose Stainless Steel (SS) for FH/BH -flexibility in assembly schedule

-SS much cheaper than Brass and offers more engineering possibilities

Whole structure (including 200t BH) at cold temperature?

- design flexibility: opening up the possibility of using Silicon in the most exposed areas and scintillator in the lower fluence regions
- opening up the possibility of SiPM on tiles for the scintillators
- warm-cold transition at the back, where there is more space for feedthroughs / manifolds

mechanical layout and possible evolutions (2)

EE structure

TP design based on CALICE developments: 30° cassettes including two Si layers and a cooling plate inserted in C-Fibre pockets

Alternative: stack of (30° or larger) cassettes and W plates with spacers, compressed by front/back plates

Driving Criteria for decision

- Assembly and installation: ease, reliability, cost and time; central vs. distributed subassembly construction, ...
- Risk, reliability, maintainability
- Physics: cracks, impact of inner cone, density, coverage at low- & high-η edges,..
- Mechanical behavior
- Cost

(Left) EE carbon-fibre structure integrating tungsten absorber plates alternatin with empty slots. (Right) Insertion of a cassette into a slot the structure.

~1/3 scale prototype of CF alveolar (Sep 2016)

12

Silicon Sensors

- TP design based on 6" sensors
 - HPK 6" p-on-n 128- and 256-channel sensors, 300/200/100um delivery completed (182 pieces). Very good quality.
 - n-on-p on order, to compare performance of both types after irradiation.
- Preference for 8" sensors due to likelihood of lower cost and less parts to assemble. Need to qualify production lines/material.
 - Infineon: 8" n-on-p 256 channel sensors fabrication started, delivery Q4 2016
 - HPK: 8" n-on-p 256 channel sensors (using stepper) fabrication started delivery Q4 2016
 - Novati: received half hexagonal sensors off 8" wafers.

HPK 6" p-on-n 128 channel sensors I_{leak} @ 1000V: average for 15 sensors

Overview of Main-Sensor

- 15 Pads in a row
- 197 Total Cells
- 24 Half-Cells
- 12 Pentagon Cells
- 2 Calibration Cells
- = 235 usable Cells (237 if calibration cell is counted double)
- ~1 cm² pad size
- 4 Quadrants with different Pad distances

Infineon 8" n-on-p

Modules / Cooling

More on modules and tests in of 2. Gecsel

Modules are assembled as a stack of base plate, kapton® insulator, Si sensor and PCB, glued together.

Rely on experience with automated module assembly from CMS Tracker

Keeping sensors at low T is essential to mitigate radiation effects

limit the leakage current (self heating $\propto I_{leak}$, noise $\propto \sqrt{I_{leak}}$) avoid reverse annealing

Cu cooling plate (part of absorber structure) in intimate contact with sensor module

Baseline is evaporative CO_2 cooling at $T \le -30^{\circ}C$

adhesive layer kapton adhesive layer base plate		Secse) beam
adhesive layer kapton adhesive layer sensor		readout chip
	S	adhesive layer kapton adhesive layer sensor

Results Summary (post-calibration)	Full heat load, 0.3 bar	Full heat load, 0.2 bar
Min. temp. (°C)	-30.3	-30.2
Max. temp. (°C)	-29.2	-29.0
Temp. spread (°C)	1.1	1.2
Mean (°C)	-29.8	-29.7
Standard dev. (°C)	0.225	0.226

Mockup with heaters uniform load 360 W/m² Temperature spread within 1.2°C

Front-End Electronics

Very stringent requirements for Front-End Electronics

- Large dynamic range 0.4 fC 10 pC (15 bits)
 noise < 2000 e- to keep MIP visibility for low thickness sensors
 after 3000 fb-1
- Leakage current compensation
- Low power budget < 10 mW/channel
- Timing information 50 ps accuracy
- System on chip (digitization, processing), high speed readout (>Gb/s), large buffers to accommodate 12.5µs latency of L1 trigger
- Preferably compatibility for positive and negative inputs.
- High radiation resistance (150 MRad, 10¹⁶ n/cm²)

Front-End Electronics

Baseline

Charge + Time over Threshold (ToT)

Charge readout 0-100 fC 10 bits ADC

Time Over Threshold 0.1 -10 pC, 12 bits TDC

(Variants with bi-gain also studied as backup)

130nm TSMC technology

Known radiation hardness up to required dose

Higher voltage rail than 65nm (good for analogue)

Some basic blocks available

TP design
I. Kaplon/CERN

Strategy for FE electronics

1) Modify existing CALICE chip to include most of the required functionalities

Exercise functionalities such as ToT, cross calibration ADC-ToT, fast timing... Allows study of FE printed circuit board and module assembly

Test beams 2016-2017

SKIROC2 -> SKIROC2-CMS 0.35 µm AMS (non radhard) faster shaper 25ns instead of 200 ns sampling @ 40 MHz, depth 300 ns ToT

TDC for ToA, 20 ps binning, 50 ps jitter

Received late June, under test (see next presentation)

2) Submit Test Vehicles in 130 nm

TV1 *received* mid-September: analogue architecture, baseline + variants TV2 to be submitted before end 2016: 8 channels, analogue+ADC+ToT+ Trigger sums

- 3) Submit first "complete" ASIC June 2017 (some digital functionalities may still be incomplete)
- 4) Two more iterations foreseen in the overall planning

FE electronics diagram

The blocks in *red rectangles* will be included in TV2

Electronics systems

For the electronics system, the strategy is to use as much as possible common components developed for Phase-2 upgrades

- LpGBT for serialisation at 10 Gb/s and electronics control
- Versatile link for electrical-to optical conversion
- DC-DC converters (probably located on the back of the calorimeter)
- Common boards within CMS for Back-End receivers and Trigger?
- Power supplies (LV and HV) in synergy with inner Tracker
- ...

The readout architecture is under study and a baseline design should be defined by mid-December 2016.

BH active material

Despite being "protected" by EE+FH, the TID in BH reaches several MRads for the most inner part.

- Aim at using material which does not require any replacement during HL-LHC lifetime
- Current scintillator would lose too much light
- Large dose rate effects: Dose Constant D (defined by S/S₀ = e^{- Integrated Dose/D}) has a strong dependence on dose rate: smaller dose rates damage more.

Measurements: Dose Constant v/s Dose Rate for scintillators

BH active material

- Go to more rad hard material
 - Several campaigns of irradiations, with as-realistic-as-possible dose rates including irradiations in situ (CMS CASTOR table)
 - Includes some irradiations at cold T
 - Favoured candidate: green scintillator (such as over-doped EJ260) with orange WLS
- Use other material in the highest radiation region?
 - Silicon?
 - only 5-10% increase of total Si area. Requires cold endcap
 - Crystal-composite material coupled to quartz plate?

- If BH is cold, an attractive possibility is to use SiPMs on tile rather than on the periphery
 - Finer granularity
 - No complicated WLS/clear fibres
 - Extensively studied by CALICE

Summary

- CMS is preparing for a High Granularity Endcap calorimeter for Phase-2, largely based on Silicon sensors.
- This is an unprecedented and very challenging task (600 m² Silicon, >6M channels).
- Though Silicon Calorimetry has been extensively studied and prototyped by CALICE in the past 15 years, HL-LHC operation poses new challenges (high rate, radiation, pileup, high speed, heat load,...) which require specific (hardware and software) developments. Fitting in a existing detector is adding to the complexity.
 - A vibrant program of R&D, prototyping and tests in beam is going on
- We are carefully looking again at the proposed TP design balancing simplicity, cost-effective technical solutions, and physics performance.
 The main design decisions will be taken in the next months, followed by a TDR to be submitted in November 2017.