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CMS muon upgrade scope

Goal: maintain excellent triggering, ID, and measurement of muons under harsher HL-LHC
conditions (instantaneous and integrated L) up to |n|<3

1. Existing detectors: consolidation of detector operation; barrel DT and endcap CSC
electronics upgrade

2. New forward muon detectors: GEM in GE1/1 (approved), GE2/1, and MEO; improved RPC
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Radiation Environment

HL-LHC background — 5x rates and 6x total doses with respect to LHC
Dose, 3000 fb™
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Exceed the design tolerances of several components of the muon system:
- new assessment of the chambers and electronics longevity, operation and performance



Consolidation: studies and plans

1. Improve detector shielding

2.  Aging campaign at GIF++ ongoing to assess longevity of existing detector at HL-LHC

3. Monitor detector operation in CMS and develop mitigation strategies
— Stability of the gas gain, RPC electrode resistivity hit efficiency, cluster-size, noise, | vs HV.

— Optimize gas gain and HV working point between different detector region to prolong the system
lifetime

— Mitigate the failure rates of detectors and electronics modules with preventive maintenance
during LHC stops

4. Gas studies:

— Stricter EU regulation on gas emission might restrict the use of greenhouse
gases
. R&D program on searching and studying possible substitutes for C2H2F4, CF4, SF6

. develop an operational model maintaining acceptable performance with reduced
percentage of greenhouse gases in the mixtures.



Muon consolidation studies at GIF++
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Strategy:

* Longevity studies of full size chamber under realistic with an accelerator factor which allows to
accumulate radiation dose (in < 2 years) corresponding to x3 the expected after 3000 fb-1

* In parallel an accelerated aging test on small prototypes to study mitigation strategies in case of
aging and test of new mixtures (CSC/RPC)

* If any aging is observed in the chambers and/or new mixtures found ( RPC/CSC) undertake new
longevity tests on full size chamber under the new operation conditions.



- The DT Electronics upgrade

Main concerns come from Minicrates:

* Each DT chamber is equipped with a on-chamber MiniCrate
containing Trigger, Read-out, Control and Link electronics

— Current minicrates are large and containing 17 boards of 6
different types.

— Some components certified only up to 500 fb!

— Maintenance only possible during long shutdowns and
intervention on detector is increasingly difficult

e L1 trigger accept rate limited to 300 kHz: readout limitation

Upgrade system:

— Move the large fraction of the functionality outside the experimental cavern
» Trigger primitives directly generated from TDCs (as done now at HLT)

— The new minicrates (MC2) will be very small and only containing TDCs, optical links
and slow control services.



~ % The DT Electronics upgrade
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~ The CSC Electronics upgrade
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On-detector electronics upgrade largely as built for the first station of inner chambers
(ME1/1) and already done in LS1:

- CFEB replaced with DCFEB (Flash-digitize every strip at 40 MHz, and large digital
data memory storage) and optical data output on 3.2 Gbps optical links



The CSC Electronics upgrade
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The forward muon system challenges

Eta coverage:

The forward region |1 |=1.6 is very challenging +  |nl<1.6: 4 layers of CSCs , RPCs, DTs
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The forward Muon Upgrade Scope

Maintain 15 GeV online threshold, keep < 5 kHz

Address challenges with muon trigger/reconstruction: :
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The forward muon system upgrade
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The GE2/1 detector

The station GE2/1 consists of 72 triple-GEM chambers arranged in
36 20° Super-chambers, covering 1.60<|n|<2.46.

Layout is similar to GE1/1, but covering much larger surface:
v" Will be the largest triple-GEM chambers built

Optimization of engineering design for mass production on-going
GEZ2/1

- only 81 mm clearance including
services

- four foil modules structure per 20- S
degree chamber, 6 ¢-sectors x 8 n- v,

sectors total Reinforcment elements

* Option for u-R-Well technology as compact and low cost large detector (G. Bencivenni et al.,
2015 JINST_10 P02008)
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The MEQ Detector

. Extend muon tagging coverage up to n~2.9 and enhance trigger to n~2.4 range using
space available in the back of the new endcap calorimeter

* MEO baseline is 6 layers of triple-GEMs arranged in 20° super-module wedges.

High granularity spatial segmentation for: s
* Position and bending measurement
of the muon stubs for efficient
matching of offline pixel tracks.

Multi-layered structure to. 8230 cm
* improve local muon track reconstruction
« discriminate muon (segment) against neutrons (uncorr hits).

Option: precision timing

* Option for Fast Timing Micro-pattern (FTM) detector to reject background hits from

pile-up and neutron background — small prototype under study
(Maggi, De Oliveira, Sharma arXiv:1503.05330v1)
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http://arxiv.org/abs/1503.05330

RPCs for RE3/1 and RE4/1

Restore redundancy with two 72 RPC stations with improved rate capabilities
2.0 kHz/cm? (vs present 0.3 kHz/cm? ) and stable performance at HL-LHC.

Detector R&D on-going:
* Reduced electrode resistivity: about 10° Qcm (bakelite or glass option)

 Reduced electrode and gas gap thickness (<1.5 mm vs present 2 mm)
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“ Muon upgrade timeline

Calendar Year : 2016 : 2017 : 2018 : 2019 : 2020 : 2021 : 2022 : 2023 : 2024 : 2025 : 2
Long Shutdowns : : : : : “
Muons: ~ GEM1|  Engin.|ED/SR [Production - Assembly|Float  |lnstall. Comm. ' : | |
CSC |FE Engin.- Pre-prod. w  |ESRProd. |Install, Off- detec. |ESH... Pre-prod. - Prod. -Inte.  |Float Install. Comm.
DT ﬂot .. Engin. - Proto. EDR... Pre-prod. - Prod. -Inte. Float Install. Comm.
GEM2-RPC3/4 Design - Demo..| - EDR .. Pre-prodcSHrod. - Inte, Ready to install. Comm.
GEMO | | | EDR}... Pre-prod. - Prod. - Inte. Float Install. Comm.

e GE1/1 Technical Design Report (TDR) approved as being the first CMS Phase
Il TDR, following the need of early operation in LS2. CERN i o s e

pppppp

e Muon TDR Q4-2017: Design and demonstration phases for Detectors and

Front-end electronics Upgrade by Q4-2017 \1 ,

e CMS upgrade activity optimization requires ;? e
e Anticipation of CSC Front-end upgrade in LS2 - <

¢ |nstallation of GE2/1 and RE3/1-RE4/1 detectors in Extended Technical ‘ E N

Stops before LS3

C
FOR THE MUON ENDCAP GEM UPGRADE

DT electronics, CSC back-end electronics and MEO upgrade in LS3 "



CMS
Summary

Muon Upgrade program will allow for continued excellent muon performance throughout the
whole Phase 2:

* Consolidation of existing detectors:
<> mitigation strategies in place in case of detector aging.
<> DT and CSC electronics replacement to handle longevity issues and L1 trigger rate and
latency

. Enhancement of the forward region 1.6< n< 2.4 in order to preserve the standalone muon trigger
efficiency and reconstruction capabilities in the HL- LHC era.

. Extension to the most forward region |n|>2.4 with a muon station to increase acceptance to new
signals and to improve background rejection.

Design and demonstration phases for Detectors and Front-end electronics Upgrade are
ongoing

Work is starting to put together the Phase Il Muon TDR (Q4 2017)
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