

CMS Muon Upgrade: R&D and Electronics

Darien Wood, Northeastern University
On Behalf of the CMS Muon Group

3rd ECFA Workshop on High Luminosity LHC 3-6 October, 2016 Aix-Les-Bains, France

Outline

- Overview of CMS Muon Upgrades
- Chamber R&D
 - Existing chambers
 - Aging and alternative gas studies
 - New Chambers
 - Resistive Plate Chambers
 - R&D for high rate chambers
 - Gas Electron Multiplier (GEM)
 - Triple GEM baseline
 - μRWELL R&D
 - FTM R&D

Electronics

- DT electronics upgrade
- CSC electronics upgrade
- RPC electronics
- GEM electronics R&D
- Summary

CMS Muon Upgrade Scope

More details in Anna Colaleo's talk

- CMS Phase-2 upgrade scope:
 - Barrel electronics upgrade
 - Forward muon upgrades: maintain trigger, increase offline coverage
 - Endcap Muon Cathode Strip Chambers (CSC):
 - Upgrade MEX/1 electronics to cope with data volume/bandwidth
 - New Improved RPCs (iRPCs) in ME3/1 and ME4/1
 - New Gas Electron Multiplier (GEM) detectors:
 - GE1/1 and 2/1 work with CSC ME1/1 and ME2/1 to maintain muon trigger
 - − ME0 works with ME1/1 to maintain trigger and extends offline coverage η =2.4 → 2.9

Chamber Aging and Gas Studies

More details in Anna Colaleo's talk

- Existing chambers in CMS: DTs, CSCs, RPCs
 - Remain and continue to provide the core muon detection
- Important to understand how they will respond to HL-LHC integrated exposure of 3000 fb⁻¹
 - Also true for new chambers
- All detectors profit from the CERN gamma irradiation facility, GIF++:
 - 662 keV photons emitted by an intense 14 TBq 137Cs source
 - + high momentum particle beam
- Also study alternatives to greenhouse gases, particularly CF4 (GWP=4950) and C2H2F4 (GWP=1430)
 - Current use: CSCs: CF4 (10%), RPCs: C2H2F4(95.2%), SF6(0.3%)
 - need to confirm both performance and aging

Station	Rate HL- LHC	Safety factor	T _{GIF} (months)	Q _{GIF+}
DT	50 Hz/cm ²	3	2	0.06 C/cm
CSC ME11/ME21)	4.8 kHz/cm ²	3	24	0.51 (0.55) C/cm
RPC	250 Hz/cm ²	3	24	1 C/cm ²
GE1/1	~ kHz/cm²	3	2	0.02 C/cm ²

CSC Chamber Studies

Aging:

- Two CSCs (ME1/1, ME2/1) being irradiated at GIF++ (since ~8 months ago)
 - Monitor gas gain and current.
 - Measure trigger rates at HL-LHC condition.
 - Monitor Malter effect
- With ~¾ the HL-LHC charge, no signs of degradation (gas gain, resolution, efficiency)
- Alternative gases
 - Constructing compact CSC prototypes at CERN and PNPI (2016-17)
 - Will allow for testing of CF4 substitutes with conditions more similar to present
 - Gas mixtures with reduced CF4 (<5%) and with no CF4
 - Closed-loop gas system, operation at lower HV
 - Will perform long term irradiation at GIF++

Irradiated CSC layer currents relative to non irradiated (reference) layers (Feb-Aug 2016)

01May16

Efficiency (%)

RPC gas studies and aging

RPC Eco-gas studies:

- Replacing C₂H₂F₄ with C₃H₂F₄
- $CO_2 C_3H_2F_4$ based gas mixtures
- $CO_2 C_3H_2F_4$ based gas mixtures
- He $C_3H_2F_4$ based gas mixtures
- CF₃I based gas mixtures

Good efficiency with C3H2F4: 23 % of C3H2F4 moves the working point moves around 12 kV

GIF++ Longevity on spare CMS RPC

RPC Goal Q_{GIF+} ~ 1 C/cm² for 3XHL-LHC

Triple GEM longevity

- Aging test Ar/CO2/CF4 @ GIF:
 - GE1/1 IV (close to the final design)
 - 12 months of operation
 - No aging observed up to 53 mC/cm²
- Aging test Ar/CO2 @ GIF++:
 - GE1/1 IV (close to the final design)
 - 6 months of operation
 - No aging observed up to 55 mC/cm²
- 55 mC/cm² equivalent to HL-LHC × Safety Factor ~18
- In addition "Outgassing Tests" performed to certify all components inside the gas volume

New RPC Chambers: Proposed technologies

More details in Anna Colaleo's talk

• Basic requirements:

- Increased rate capability, 2.0 kHz/cm² versus present 0.3 kHz/cm²
- Stable performance for HL-LHC requirements including dose to 3000 fb⁻¹

Technology	Rate Cap.	Space Res.	Time Res.
Baseline: double-gap RPC	X	X	O(ns)
Multi-gap RPC	X	X	O(<100ps)

- Detector improvements planned/possible:
 - Reduced electrode resistivity: about 1010 Ω cm (HPL or silicate glass option)
 - Geometry: reduced electrode thickness 1-2 mm to improve rate capability
 - New generation low-noise front-end electronics for high efficiency, lower aging
 - Finer pitch option for improved spatial resolution: 1-2 mm vs. current ~1 cm
 - Multigap option for high timing accuracy, possible 2D if both ends of strips read out

RPC Detector and FEB R&D

- Five HPL prototypes built in Korea and Italy with different gap configurations and electrodes thickness
 - arrived at CERN in August and tested during the September test beam in GIF++
 - Rate capability under full irradiation established to be >> 1.5 kHz/cm², for both HPL and low resistivity glass RPC

- One half size RPC (in glass) produced in Lyon
- Two double gap RPC, one glass and one in HPL, PCB's equipped with the Hardroc2 have been produced
 - detector size is 30x30 cm²
 - Plan to test them in Oct. GIF++ test Beam

GE2/1 baseline and beyond

- Baseline: Triple GEM detector with the same operational layout adopted for the GE1/1
 - Well-known mature technology
 - Easy to be implemented
 - Match the detector requirement (GE1/1 even more demanding)
 - Time resolution of 8ns is adequate from simulation studies, (97% of single chamber hits associated to the correct)
 - Eco-friendly gas validated

More details in Anna Colaleo's talk

- Beyond baseline: Micro Resistive Well Chamber (μ-RWELL)
- Motivations
 - Simplified construction compared with a Triple-GEM (no foil stretching needed)
 - Thinner detector to address severe space constraints for GE2/1 installation
 - More efficient tiling of several modules in 20 degree GE2/1 chamber; less dead space than baseline

GE2/1 R&D progress and plans

- GE2/1 baseline (Triple-GEM)
 - Strip granularity of readout board for first prototype module defined
 - 6 φ-sectors × 2 η-sectors per module; 6 φ-sectors × 8 η-sectors per chamber
 - Mechanics of first full-size prototype chamber being designed
 - Introducing various reinforcement elements to ensure mechanical chamber stability
 - First prototype: one active module w/ GEM foils and three dummy modules:
 - finish design 10/16; procure parts by 12/16; construct first prototype chamber Q1/2017
- GE2/1 option (μ-RWell)
 - First large prototype (GE1/1-size) currently under construction. To be test at CERN Oct/Nov test beam
 - Mechanical design & assembly of full-size detector on-going
 - 1 gas volume, 4 PCB modules + only one cathode PCB closing entire chamber
 - finite element simulations for PCB deformation and mechanical rigidity on-going
 - optimization of FEE housing/cooling/services
 - Assembly of 2 full size μ -RWell by Q4 2017

Reinforcement elements

CMS

MEO Detector Baseline

- Extend muon tagging coverage to η^2 .9
 - Also enhance trigger coverage up to η ~2.4 range
- Take advantage of the space available in the back of the new endcap calorimeter
- ME0 baseline layout consists of 216 triple-GEM chambers arranged in 36 20⁰ super-module wedge each consist 6 layers of triple GEMs covering 2.0<|η|<2.9

ME0 beyond baseline: FTM

- Fast Timing Micropattern Gaseous Detectors (FTM)
 - Motivation: fast timing to reject background hits from pile-up
- Concept
 - Stack many thin (< 1mm) drift gaps each followed by an amplification structure
 - Use resistive coating in each amplification stage
- **Status**
 - timing and spark protection partially demonstrated on small-scale prototypes
 - Planned:
 - Large scale prototypes
 - Aging studies
 - Rate capabilities

MEO R&D progress and plans

- Triple-GEM (baseline)
 - Analysis of June beam test data with first back-to-back GEM stacks prototype ongoing
- FTM prototypes
 - The design of the new small prototype, 10x10 cm² active region, is completed
 - can host up to 12 drift-amplification stages, with variable drift gap thickness.
 - The active layers will be made of kapton 125 μm-thick
- Baseline and FTM:
 - A test beam is planned for the end of October – beginning of November at the H8 beam line, to fully characterize the new prototypes.

The design of the *large size prototype*, 60 x 40 cm², started and should be finished by the end of the year 2016.

DT electronics upgrade

Needs:

- Fix legacy longevity issues
- Meet L1 trigger rate & latency, readout bandwidth requirements
- Enhance reliability
- Design plans:
 - Same analog front end
 - On-detector Minicrate replacement
 - Time digitization using rad-hard, Flash-based FPGAs, and CERN GBT links
 - Only one type of board vs. fourteen
 - A single data path to USC
 - Only optical patch panel and power supplies on towers
 - L1 trigger functionalities move to USC
 - Recycle much of the infrastructure

More details in Anna Colaleo's talk

Before LS2

Phase 2

DT progress: Mic2 Data-path demonstrator

Chamber in the surface area =being equipped to collect cosmic muons with the upgraded chain prototypes

- Front end: GBT protocol running on GBT evaluation board (VLDB)
 - 2 new Theta TRB (trigger board) connected to GBT e-ports
 - Links with e-port will be tested initially in 80 Mb/s mode and then in 160Mb/s mode
- Back end: GBT protocol running on a FPGA
 - EvalBoard loaded with GBT-FPGA firmware (a CERN "off the shelf" component) recompiled for the test

CMS DT: Upgraded Back-End

- Develop a new track segment reconstructor to get valid DT Primitives Algorithm to determine trajectories in a Super Layer starting from rawTDC hits
 - Solve L-R ambiguity (ghost segments)
 - Highly parallel to be implemented in FPGA
- Current Track Finder has poor performance when extrapolating at luminosity 5-7×10³⁴
 - Raising threshold not effective due to flattening of rate curve
- Estimate that today's algorithms for a sector (4 chambers) would fit into two powerful FPGAs assuming 10x logic wrt current Virtex7
- Data buffering pipeline implementation (12 us L1A latency)
- DAQ integration through common CMS software and firmware

CSC Electronics upgrades

- CSC upgrades driven by latency (12.5μs) and L1A rate requirements
- Replace CFEBs with DCFEBs on ME2/1, ME3/1, ME4/1
 - Avoid SCA buffer overwrite
 - Also requires replacing TMBs with OTMBs
- Replace ALCT mezzanines
 - Accommodate latency
 - Optical output for higher bandwidth in MeX/1
- Upgrade output bandwidth
 - Replace DMBs with new ODMBs in ME1/1, ME2/1, ME3/1, ME4/1
 - Replace Front End Driver (FED) crates
 - μTCA or ATCA system
 - Additional optical fiber connections
- Other electronics are not changed during upgrade

Components to be replaced are highlighted in yellow

Current Electronics Configuration for CSC Readout

CSC Electronics R&D

- Characterized existing electronics at high rates
 - On test stand with pulsers patterns programmed to simulate HL-LHC environment
 - At GIF++ facility with muon beam plus source
- Firmware tests
 - In cosmic ray test stand at CERN, full verification of new DCFEBs with existing DAQ motherboards (post-LS2 configuration)
 - Test stand with CTP7 as back end (FED system)

New RPC FE Electronics: HARDROC2

- HARDROC2 front end ASIC:
 - 64 inputs, current preamp with 8 bits gain correct
 - 3 shapers, variable Rf,Cf and gains, 3 discriminators
 - 3 10 bit-DACs to set the thresholds (100fC, 1pC, 10pC)
 - Auto-trigger down to 10fC up to15pC
 - 3 thresh. levels, i.e. semi-analogue readout, will improve spatial resol. beyond digital readout
- ~10 000 ASICs were already tested with a dedicated test bench for the CALICE SDHCAL project
- Successfully tested on both HPL and glass RPC; two kinds of PCB used:

HARDROC2 and 2B:160pins

■ Pads 1cm X 1cm

Strips of 2.5mm pitch

D. Wood, CMS Muon R&D, ECFA 06-Oct-2016

GEM Baseline Electronics System

The control, readout and power to/from the VFAT3 hybrid are delivered via electrical signals (E-links) running through the GEB to the opto-hybrid.

GEM Baseline Electronics System

GEM Electronic **Board** (GEB)

MP7 / CTP7

GBT

Opto-Hybrid (OH)

Versatile Link

Use of many common developments such as GBT, Versatile Link, µTCA backend

GE1/1 chamber (with

electronics) in cosmic

ray test stand at CERN

(above CSC chamber)

Summary

- CMS muon upgrade R&D is concentrating on several areas
 - Chamber tests at radiation facility (GIF++)
 - Longevity of existing chambers and new chamber prototypes
 - Eco-gas studies
 - Assessing baseline and alternative technologies for new chambers
 - rate capabilities
 - performance of large prototypes
 - Electronics: adapting to HL-LHC conditions
 - higher hit rates and occupancies
 - Higher trigger rates
 - longer latency requirements

