

Atom / Fastlim

Kazuki Sakurai

IPPP, Durham

In collaboration with: Ian-Woo Kim, Michele Papucci, Andreas Weiler, Lisa Zeune

15/6/2016 CERN

Reinterpretation of LHC results

Recently, ATLAS/CMS present their results in simplified models.

Reinterpretation of LHC results

Recently, ATLAS/CMS present their results in simplified models.

- Full model limit is very different from simplified model limit.
- We need tools to re-interpret the results in an arbitrary model.

CheckMate, MA5, SModelS, SUSY-AI, XQCAT, RECAST,, Atom, Fastlim

	Atom	Fastlim
In nutshell	general event analyser	fast limit calculator
What can one do with it?	 test models CheckMate, MA5 simulate/study detector effects plotting, distributions design analyses 	 test models without MC simulation study relevant topologies of the model (σBr)_i for all i
Method	Mote Carlo	Database
Input	Event file, Cross-sections hepmc, hep	Model file SLHA file,
Pros	Very Generic	Easy and Fast

Feature of Atom

- Atom is forked from Rivet
 - Rivet commands can be used in Atom
 - Rivet analyses can run in Atom
- Detector effects are simulated.
- Analyses helper
 - can invoke observables: mT2, Razor, αT, sphericity, ...
 - can deal with weighted events
 - plotting
 - analyses validation helper
 - dumping detector objects (jet, leptons, met, ..) for later use

Atom

Detector simulation

- different from Delphes
- no calorimeter cells in Atom
- particle-objects detector-objects

Transfer functions

more direct flexible

• declaration of a jet in analysis files:

Atom

• declaration of a jet in analysis files:

Electron

declaration of an electron in analyses:

CAL

track

 $\Delta R = 0.3$

 $E_T^i < 0.16 \cdot p_T^e$

 $p_T^i < 1.8 \,\mathrm{GeV}$

Electron

e

CAL

Analysis Validation

Why Fastlim?

- The Atom's methodology is robust and generic but requires MC simulation for each model point, which is time-consuming.
- Testing a single point typically takes tens of minutes, which often becomes the limiting factor when scanning a large volume of the parameter space.

 $\mathbf{\mathcal{E}}_{QqN1:QqN1}^{\mathbf{A}}(mQ, mN1)$ •

 $\sigma_{QQ} \cdot BR_{QqN1:QqN1} \cdot L_{int}$

 $\mathcal{E}_{GqqN1:GqqN1}(mG, mN1)$ • σ_{GG} • $BR_{GqqN1:GqqN1}$ • L_{int}

 $\mathbf{\mathcal{E}}_{GqqN1:QqN1}(mQ, mG, mN1) \bullet$

 $\sigma_{GQ} \bullet BR_{GqqN1:QqN1} \bullet L_{int}$

Application

• Many models can be covered with 3 or 4D efficiency tables.

Fastlim

Topologies and Analyses

<i>p</i>	b b G N1
<i>p</i>	G N1 t t

Name	Short description	$E_{\rm CM}$	$\mathcal{L}_{ ext{int}}$
ATLAS_CONF_2013_024	0 lepton + (2 b-)jets + MET [Heavy stop]	8	20.5
ATLAS_CONF_2013_035	3 leptons + MET [EW production]	8	20.7
ÄTLAS_CONF_2013_037	$1 \text{ lepton} + 4(1 \text{ b}^{P}) \text{jets} + \text{MET} [\text{Med} \text{um/heavy stop}]$	8	20.7
ATINS_CONF_2005-047	0N@ptons + 2-6 jet + MET [squarks & gluinds]	8	20.3
ATLA 2013_048	2 leptons $(+ jets)$ MET [Medium stop]	8	20.3
ATLA	$2 \text{ leptons} + M \in [EW \text{ production}]$	8	20.3
ATLAS_CONP. 2013 053	\mathbb{P}_{1} leptons + 2 b-jets + MET S_{0}	8	20.1
AT/LAS_CONF_20/2054	0 leptons $+ \ge 7-10$ jets $+ \text{MET} [\text{squarks & gluinos}]$	8	20.3
ATLAS_CONF_20 5061	0-1 leptons $+ \geq {}^{p}_{3}$ b-jets $+$ MET [3rd gen. squarks]	8	20.1
ATLAS_CONF_2013_062	1-2 leptons + 3-6 jets + MET [squarks & gluinos]	8	20.3
ATLAS_CONF_2013_093	1 lepton + bb(H) + Etmiss [EW production]	8	20.3

Fastlim

Papucci, KS, Weiler, Zeune 1402.0492

Fastlim

Papucci, KS, Weiler, Zeune 1402.0492

Fastlim

Papucci, KS, Weiler,

Zeune 1402.0492

Fastlim

No MC sim. required

output: $N_{\rm SUSY}^{(a)}/N_{\rm UL}^{(a)}, \, CL_s^{(a)}$

Papucci, KS, Weiler,

Zeune 1402.0492

Very easy to use!

\$./fastlim.py model.slha

, immediately gives

Ecm 1 8TeV 20.2	Cross S Total Im 234fb	Section plement 20.23	 ed fb	Coverage 99.98%							
<i>p</i>	Analysis	E/TeV	L*fb		Sig	nal I	Region:	Nev/N_UL	CLs		
ATLAS_CONF_2 ATLAS_CONF_2 ATLAS_CONF_2	2013_024 2013_024 2013_024 2013_024	 8 8	20.5 20.5 20.5 20.5		SR1: SR2: SR3:	MET MET MET	> 200: > 300: > 350:	0.6946 1.5321 1.1153	0.1227 0.0140	<== <==	Exclude Exclude
ATLAS_CONF_2 ATLAS_CONF_2	2013_035 2013_035 2013_035	8 8 8	20.7 20.7 20.7				SRnoZa: SRnoZb:	0.0000 0.0000 0.0000			

Appendix

Recasting in MasterCode

Experimentalists: O.Buchmueller, R.Cavanaugh, M.Citron, A.De Roeck, H.Flacher, S.Mallik, J.Marrouche, D.Martinez-Santos, K.J.de Vries,

Theorists: E.Bagnaschi, M.Dolan, J.Ellis, S.Heinemeyer, G.Isidori, K.Olive, K.Sakurai, G.Weiglein

Global fit of 10 parameter pMSSM [1504.03260]

sampled **10**⁹ points <u>1sec / point</u> **30** CPU years

Very fast recasting is required

Universal Mass Limit

Spectra	NS0	NS1 NS2		NS3	NS4	
sparticle	${ ilde g}$	$ ilde{g}$	$ ilde{g}$	$ ilde{g}$	$ ilde{g}$	
content	$ ilde{t_1}, ilde{t_2}$	$ ilde{t_1}, ilde{t_2}, ilde{b_1}$	$ ilde{t_1}, ilde{t_2}, ilde{b_1}$	$ ilde{t_1}, ilde{t_2}, ilde{b_1}, ilde{b_2}$	$ ilde{t_1}, ilde{t_2}, ilde{b_1}, ilde{b_2}$	
			$ ilde{\chi}_0^2$	$\tilde{\chi}_0^2$	$ ilde{\chi}_0^2$	
			$ ilde{\chi}^{\pm}$	$\tilde{\chi}^{\pm}$	$ ilde{\chi}^{\pm}, ilde{\ell}_{L,R}$	
	$ ilde{\chi}_0^1$	$ ilde{\chi}_0^1$	$ ilde{\chi}_0^1$	$ ilde{\chi}^1_0$	$ ilde{\chi}^1_0$	
main	$\tilde{g} \rightarrow t \tilde{t}_{1,2}$	$\tilde{g} \to t \tilde{t}_{1,2}, b \tilde{b}_1$	$\tilde{g} \to t \tilde{t}_{1,2}, b \tilde{b}_1$	$\tilde{g} \rightarrow t \tilde{t}_{1,2}, b \tilde{b}_{1,2}$	$\tilde{g} \to t \tilde{t}_{1,2}, b \tilde{b}_{1,2}$	
decay	$\tilde{t}_{1,2} \rightarrow t \tilde{\chi}_0^1$	$\tilde{t}_{1,2} \to t \tilde{\chi}_0^1$	$\tilde{t}_{1,2} \rightarrow t \tilde{\chi}_0^{1,2}, b \tilde{\chi}^{\pm}$	$\tilde{t}_{1,2} \rightarrow t \tilde{\chi}_0^{1,2}, b \tilde{\chi}^{\pm}$	$\tilde{t}_{1,2} \rightarrow t \tilde{\chi}_0^{1,2}, b \tilde{\chi}^{\pm}$	
chains		$\tilde{b}_1 \rightarrow b \tilde{\chi}_0^1$	$\tilde{b}_1 \rightarrow b \tilde{\chi}_0^2, t \tilde{\chi}^{\pm}$	$\tilde{b}_{1,2} \rightarrow b \tilde{\chi}_0^2, t \tilde{\chi}^{\pm}$	$\tilde{b}_{1,2} \rightarrow b \tilde{\chi}_0^2, t \tilde{\chi}^{\pm}$	
			$\tilde{\chi}^{\pm} \to W^{\pm} \tilde{\chi}_0^1$	$\tilde{\chi}^{\pm} \to W^{\pm} \tilde{\chi}_0^1$	$\tilde{\chi}^{\pm} \to W^{\pm} \tilde{\chi}_0^1$	
			$\tilde{\chi}_0^2 \rightarrow Z \tilde{\chi}_0^1$	$\tilde{\chi}_0^2 \rightarrow Z \tilde{\chi}_0^1$	$\tilde{\chi}_0^2 \to Z \tilde{\chi}_0^1, \tilde{\ell} \ell$	
					$\tilde{\ell} ightarrow \ell \tilde{\chi}_0^1$	

"If many search channels are combined, the limit becomes less sensitive to the decay channels."

O.Buchmueller, J.Marrouche '14

In the first approximation, the exclusion χ² can be parameterised by the masses:

 $\chi^2(m_{\tilde{g}}, m_{\tilde{q}_{1,2}}, m_{\tilde{q}_3}, m_{\tilde{\chi}_1^0})$

Universal Mass Limit

Works well!

"If many search channels are combined, the limit becomes less sensitive to the decay channels."

O.Buchmueller, J.Marrouche '14

In the first approximation, the exclusion χ² can be parameterised by the masses:

$$\chi^2(m_{\tilde{g}}, m_{\tilde{q}_{1,2}}, m_{\tilde{q}_3}, m_{\tilde{\chi}_1^0})$$

A special treatment is required for EWKino productions and the stop compressed region.

We have constructed ad-hoc functions around the 95% CL exclusion curves.

working quite well!

	Atom	Fastlim
In nutshell	general event analyser	fast limit calculator
What can one do with it?	 test models CheckMate, MA5 simulate/study detector effects plotting, distributions design analyses 	 test models without MC simulation study relevant topologies of the model (σBr)_i for all i
Method	Mote Carlo	Database
Input	Event file, Cross-sections hepmc, hep,	Model file SLHA file,
Pros	Very Generic	Easy and Fast

Thank you

Approximation

Can the efficiency parameterised by the masses of on-shell particles appearing the decay chain?

Coupling structure

K.Wang, L.Wang, T.Xu, L.Zhang, '13 $pp \rightarrow \tilde{t}_1 \tilde{t}_1 : \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \rightarrow b \ell^{\pm} \tilde{\chi}_1^0$

up to ~20% effect on the efficiency

Approximation

Can the efficiency parameterised by the masses of on-shell particles appearing the decay chain?

Parameter	Range
M_1	(-1, 1) TeV
M_2	(0, 4) TeV
M_3	(-4,4) TeV
$m_{\tilde{q}}$	(0, 4) TeV
$m_{\tilde{q}_3}$	(0, 4) TeV
$m_{\tilde{l}}$	(0, 2) TeV
M_A	(0, 4) TeV
A	(-5, 5) TeV
μ	(-5, 5) TeV
$\tan \beta$	(1, 60)

Best Fit

"prediction"

1 σ : $|\mu| < 1 \text{ TeV}$ $M_1 \simeq M_2 < 500 \text{ GeV}$ $m_{\tilde{\ell}} < 1 \text{ TeV}$

 $\begin{array}{ll} \textbf{2\sigma:} & M_1 < 500 \, \mathrm{GeV} \\ & m_{\tilde{\ell}} < 1 \, \mathrm{TeV} \end{array}$

pMSSM10 looks healthy Miggs ☑ Dark Matter ☑ (g-2)μ ☑ LHC SUSY limit