

Nishita Desai, Manuel Drees, Herbi Dreiner, Jong Soo Kim, Krzysztof Rolbiecki, Daniel Schmeier, Jamie Tattersall

with contributions from

Sebastian Belkner, Anke Biekoetter, Tim Keller, Frederic Ponzca, Jan Schutte-Engel, Torsten Weber

CERN, June 15, 2015

CheckMATE: Confronting your Favourite New Physics Model with LHC Data

Drees, Dreiner, Kim, DS, Tattersall arXiv:1312.2591, Comput.Phys.Commun. 187 (2014) 227-265

A framework to create customised LHC analyses within CheckMATE

Kim, DS, Tattersall, Rolbiecki arXiv:1503.01123, Comput.Phys.Commun. 196 (2015) 535-562

CheckMATE 2: (not) harder (but) better, faster, stronger

Desai, Drees, Dreiner, Kim, Rolbiecki, DS, Tattersall arXiv:16xx.xxxxx

谢 The Idea

"The idea is to create a program: You just enter a model, press a button, and it tells you whether the model is excluded or not."

"Sounds great! Let's do it!"

CHECKMATE-ING BSM MODELS AT THE LHC

🕆 Contents

1 How to use CHECKMATE 1 ...

- ... to test against results from LHC 8/13
- ... to add new results
- ... to estimate future results from LHC 13/14
- 2 How to soon use CHECKMATE 2 ...
 - ... with embedded event generation
 - ... wih greatly improved performance

3 Outlook

🗳 In Short

谢 In Short

. . .

 Step 1: Produce simulated LHC event files from Herwig, Pythia, CalcHEP, MadGraph,

谢 In Short

. . .

- Step 1: Produce simulated
 LHC event files from Herwig,
 Pythia, CalcHEP, MadGraph,
- Step 2: Write a very small parameter file param.dat,

General Options
[Mandatory Parameters]
Name: My_CheckMATE_Run
Analyses: atlas_conf_2013_047

Process Information
[gluinopairproduction]
XSect: 3.53 FB
XSectErr: 0.01 PB
Events: /scratch/MSSM_gg.hep

谢 In Short

. . .

- Step 1: Produce simulated
 LHC event files from Herwig,
 Pythia, CalcHEP, MadGraph,
- Step 2: Write a very small parameter file param.dat,
- Step 3: Run ./CheckMATE param.dat and wait ...

General Options
[Mandatory Parameters]
Name: My_CheckMATE_Run
Analyses: atlas_conf_2013_047

Process Information
[gluinopairproduction]
XSect: 3.53 FB
XSectErr: 0.01 PB
Events: /scratch/MSSM_gg.hep

🗳 In Short

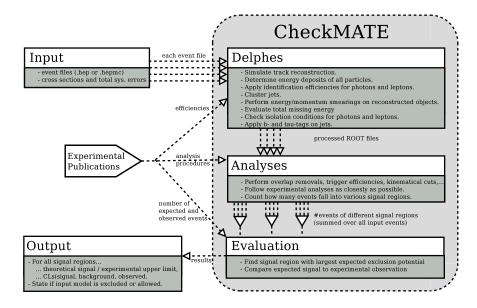
. . .

- Step 1: Produce simulated
 LHC event files from Herwig,
 Pythia, CalcHEP, MadGraph,
- Step 2: Write a very small parameter file param.dat,
- Step 3: Run ./CheckMATE param.dat and wait ...

General Options
[Mandatory Parameters]
Name: My_CheckMATE_Run
Analyses: atlas_conf_2013_047

Process Information
[gluinopairproduction]
XSect: 3.53 FB
XSectErr: 0.01 PB
Events: /scratch/MSSM_gg.hep

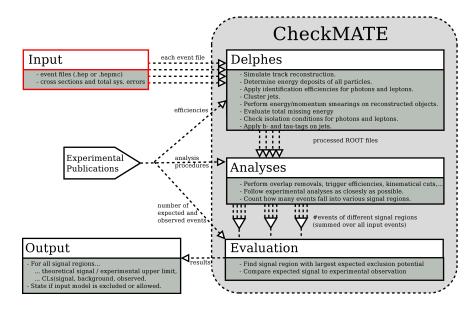
Result: Allowed		Result: Excluded
Result for r: r_max = 0.74	or	Result for r: r_max = 1.33
SR: atlas_conf_2013_047 - ET		SR: atlas_conf_2013_047 - A


You quickly know if your model has been excluded by current LHC results without writing a single line of analysis code

Daniel Schmeier

CHECKMATE-ING BSM MODELS AT THE LHC

🗳 Overview: Data Flow



Daniel Schmeier

🗳 Input

🖄 Input: Minimal Case

checkmate_input_parameter.dat

[Mandatory Parameters] Name: My_CMSSM_Run Analyses: atlas_conf_2013_047

```
[gluinogluino]
```

```
XSect: 3.53 FB
```

```
XSectErr: 10 %
```

Events: /scratch/cmssms_data/events/gg/tag1_pythia_events.hep

Required

- Name
- At least one analysis
- At least one [process] with at least one item in Events (.hep or .hepmc) and one total cross section and a total estimate on the *systematic* error

🖄 Input: Extended Case 1

checkmate_input_parameter.dat

[Mandatory Parameters] Name: My_CMSSM_Run Analyses: atlas, cms_sus_13_016

[gluinogluino] XSect: 3.53 FB XSectErr: 10 % Events: /scratch/mycmssmscn/events/gg/tag1_pythia_events.hep

Optional

More analyses

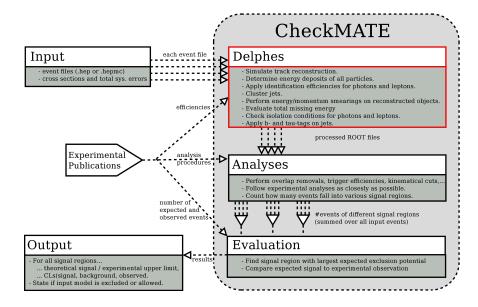
🗳 Input: Extended Case 2

checkmate_input_parameter.dat

[squarksquark]
XSect: 4.64 FB
XSectErr: 0.25 FB
Events: /scratch/mycmssmscn/events/ss/tag1 pythia events.hep

Optional

Many event files for one process


(are processed one by one, normalised in total to the given cross section)

• Events for different processes with individual $\sigma \pm \Delta \sigma$

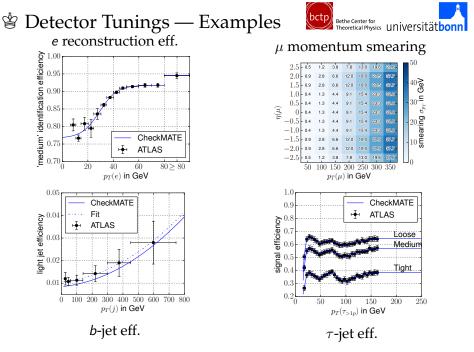
(are processed one by one, normalised events *independently added* in the end) Daniel Schmeier CHECKMATE-ING BSM MODELS AT THE LHC

🖄 Step 1: Delphes

Petector Simulation

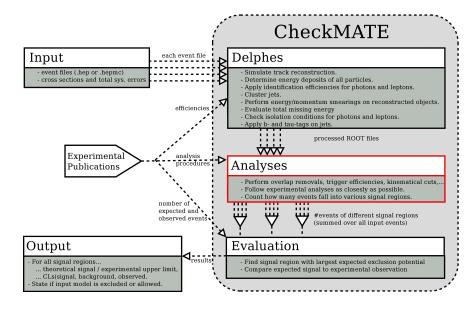
Delphes 3.0.10 Standard

- A Simulates tracking and energy deposition
- Applies identification efficiencies for photons and leptons
- Clusters jets Ä
- A Performs energy/momentum smearings of all reconstructed objects
- Evaluates total missing energy Å
- Checks isolation conditions for photons and leptons
- Applies b-/ tau-tag on jets


Extra Features / Improvements

- Added identification and isolation flags
- Tuned to better represent ATLAS detector CHECKMATE-ING BSM MODELS AT THE LHC

Daniel Schmeier



CHECKMATE-ING BSM MODELS AT THE LHC

🗳 Step 2: Analyses

Daniel Schmeier

CHECKMATE-ING BSM MODELS AT THE LHC

🗳 Analyses

A CheckMATE analysis does the following

- △ Choose the objects of interest (leptons, jets,...)
- A Filter objects (efficiency and isolation flags, kinematical cuts, overlap removals, ...)
- △ Check event vetoes (Too many/few objects, trigger efficiencies, ...)
- \triangle Check various signal region criteria (total $\not \in_T$, # and energy of objects, ...)
- A Count number of input events that fall into each signal region

🗳 Analyses

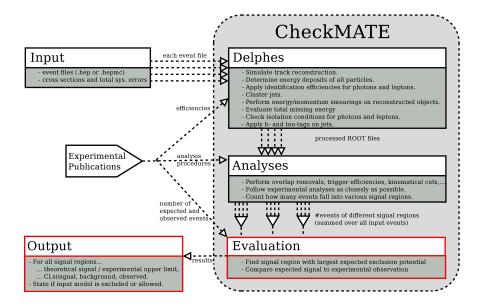
A CheckMATE analysis does the following

- △ Choose the objects of interest (leptons, jets,...)
- A Filter objects (efficiency and isolation flags, kinematical cuts, overlap removals, ...)
- △ Check event vetoes (Too many/few objects, trigger efficiencies, ...)
- \triangle Check various signal region criteria (total $\not \in_T$, # and energy of objects, ...)
- A Count number of input events that fall into each signal region

Output

- A For each input file, store general information and
- \triangle for each SR, store Σ (weights) and Σ (weights²) for the input events that passed the respective signal region cuts

🗳 Example Output


ATLAS-CONF-2013-047
0 leptons, 2-6 jets, etmiss
sqrt(s) = 8 TeV
int(L) = 20.3 fb⁻¹

XSec Eri MCEv Sur	utfile: ct: ror: vents: nOfWeig nOfWeig		/hdd/res 4.35 fb 1.22086 5000 5000 5000	ults/cMSSM/delphes/000_delphes.root fb
	rmEvent		87.9518	
SR	Sum W	Sum W2	Acc	N Norm
	-	-		=
AL	1315	1315	0.263	23.1313
AM	71	71	0.0142	1.24892
BM	98	98	0.0196	1.72385
BT	2	2	0.0004	0.0351807
CM	505	505	0.101	8.88313
СТ	9	9	0.0018	0.158313
D	184	184	0.0368	3.23663
EL	613	613	0.1226	10.7829
EM	398	398	0.0796	7.00096
ΕT	149	149	0.0298	2.62096

CHECKMATE-ING BSM MODELS AT THE LHC

Step 3: Evaluation

Daniel Schmeier

🗳 Evaluation

Input and Setup

- \triangle We have number of expected signal $S \pm \Delta S$ in each signal region
- A CheckMATE has a reference card with experimental results:
 - observed events O
 - expected background plus uncertainty $B \pm \Delta B$
 - (in most cases) translated 95% upper limit on signal S_{max}^{95}

🗳 Evaluation

Input and Setup

- \triangle We have number of expected signal $S \pm \Delta S$ in each signal region
- A CheckMATE has a reference card with experimental results:
 - observed events O
 - expected background plus uncertainty $B \pm \Delta B$
 - (in most cases) translated 95% upper limit on signal S⁹⁵_{max}

User can choose

- \triangle Directly compare *S* to S_{max}^{95}
- $\ensuremath{ { \ensuremath{ \ensuremath{\ensuremath{ \ensuremath{ \ensuremath{ \ensuremath{ \e$

- \triangle Evaluate $CL_s(O, B, \Delta B, S, \Delta S)$
- \triangle If $CL_s < 0.05$: Excluded!
- A Slower, but limits can be set to different confidence levels

🗳 Evaluation

Input and Setup

- \triangle We have number of expected signal $S \pm \Delta S$ in each signal region
- A CheckMATE has a reference card with experimental results:
 - observed events O
 - expected background plus uncertainty $B \pm \Delta B$
 - (in most cases) translated 95% upper limit on signal S⁹⁵_{max}

User can choose

- \triangle Directly compare *S* to S_{\max}^{95}
- \triangle Quick and easy for limit setting

- \triangle Evaluate $CL_s(O, B, \Delta B, S, \Delta S)$
- \triangle If $CL_s < 0.05$: Excluded!
- A Slower, but limits can be set to different confidence levels

Result

- \triangle Choose signal region with strongest *expected* exclusion (O = B)
- $\ensuremath{ \ensuremath{ \& \ } }$ Use its observed result to state final "excluded" or "allowed"

Daniel Schmeier

CHECKMATE-ING BSM MODELS AT THE LHC

🕆 Example

ATLAS Reference

Signal Region	A-loose	A-medium	B-medium	B-tight
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4
Observed	5333	135	29	4
S 95 S 95	1341.2	51.3	14.9	6.7
S_{exp}^{95}	$1135.0^{+332.7}_{-291.5}$	$42.7^{+15.5}_{-11.4}$	$17.0^{+6.6}_{-4.6}$	$5.8^{+2.9}_{-1.8}$

🗳 Example

ATLAS Reference

Signal Region	A-loose	A-medium	B-medium	B-tight
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4
Observed	5333	135	29	4
S ⁹⁵ S ⁹⁵	1341.2 1135 0 ^{+332.7}	51.3 42 7 ^{+15.5}	14.9 17 0 ^{+6.6}	6.7 $5.8^{+2.9}_{-1.8}$
S_{exp}^{obs}	$1135.0^{+332.7}_{-291.5}$	$42.7^{+15.5}_{-11.4}$	$17.0^{+6.6}_{-4.6}$	

atlas_conf_2013_047_r_limits

SR	S	dS_stat	dS_sys	dS_tot	S95_obs	S95_exp	r^c_obs	r^c_exp
AL	37.36	0.61	4.10	4.15	1341.20	1135.00	0.02	0.03
AM	5.34	0.22	0.55	0.59	51.30	42.70	0.08	0.10
BM	7.41	0.25	0.77	0.81	14.90	17.00	0.39	0.34
BT	0.86	0.07	0.10	0.12	6.70	5.80	0.09	0.11
CM	17.82	0.43	1.99	2.04	81.20	72.90	0.17	0.19
CT	2.40	0.12	0.28	0.31	2.40	3.30	0.75	0.54
D	12.14	0.34	1.29	1.33	15.50	13.60	0.61	0.70
EL	21.26	0.46	2.35	2.39	92.40	57.30	0.18	0.29
EM	16.14	0.40	1.79	1.83	28.60	21.40	0.44	0.59
ΕT	7.95	0.28	0.87	0.91	8.30	6.50	0.74	0.95

🗳 Example

ATLAS Reference

Signal Region	A-loose	A-medium	B-medium	B-tight
Total bkg	4700 ± 500	122 ± 18	33 ± 7	2.4 ± 1.4
Observed	5333	135	29	4
S 95	1341.2	51.3	14.9	6.7
$S_{\text{obs}}^{\text{obs}}$ S_{exp}^{95}	$1135.0^{+332.7}_{-291.5}$	$42.7^{+15.5}_{-11.4}$	$17.0^{+6.6}_{-4.6}$	$5.8^{+2.9}_{-1.8}$

Result

Result: Allowed Result for r: r_max = 0.74 SR: atlas_conf_2013_047 - ET

atlas_conf_2013_047_r_limits

SR	S	dS_stat	dS_sys	dS_tot	S95_obs	S95_exp	r^c_obs	r^c_exp
AL	37.36	0.61	4.10	4.15	1341.20	1135.00	0.02	0.03
AM	5.34	0.22	0.55	0.59	51.30	42.70	0.08	0.10
BM	7.41	0.25	0.77	0.81	14.90	17.00	0.39	0.34
BT	0.86	0.07	0.10	0.12	6.70	5.80	0.09	0.11
CM	17.82	0.43	1.99	2.04	81.20	72.90	0.17	0.19
СТ	2.40	0.12	0.28	0.31	2.40	3.30	0.75	0.54
D	12.14	0.34	1.29	1.33	15.50	13.60	0.61	0.70
EL	21.26	0.46	2.35	2.39	92.40	57.30	0.18	0.29
EM	16.14	0.40	1.79	1.83	28.60	21.40	0.44	0.59
ΕT	7.95	0.28	0.87	0.91	8.30	6.50	0.74	0.95

Example Input: Natural NMSSM

Idea

• Light $\tilde{g}, \tilde{t}, \tilde{b}, \tilde{\chi}^{\pm}, \tilde{\chi}^{0}$ and many poss. decays [arXiv:1510.04871]

[Mandatory Parameters] Name: NMSSM_lambdaL_1000_800_500_250 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectEr: 0.00575 PB Events: /scratch/11428609[184].pbs.baf.lan/herwig/gluinopair.hepmc

[stop1pair] XSect: 0.794E-02 PB XSectEr: 0.00149 PB Events: /scratch/11428609[184].pbs.baf.lan/herwig/stop1pair.hepmc

[stop2pair] XSect: 0.122E-02 PB XSectEr: 0.00024 PB Events: /scratch/11428609[184].pbs.baf.lan/herwig/stop2pair.hepmc

[sbottom1pair] XSect: 0.620E-02 PB XSectEr: 0.00119 PB Events: /scratch/11428609[184].pbs.baf.lan/herwig/sbottom1pair.hepmc

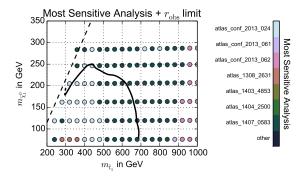
[sbottom2pair] XSect: 0.419E-02 PB XSectErr: 0.00089 PB Events: /scratch/11428609[184].pbs.baf.lan/herwig/sbottom2pair.hepmc Daniel Schmeier CHECKMATE-ING BSM MODELS AT THE LHC 🗳 Example Output: Nat. NMSSM

~: ./CheckMATE NMSSM_setupfile.txt

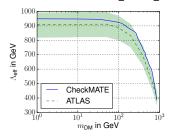
Example Output: Nat. NMSSM

~: ./CheckMATE NMSSM_setupfile.txt

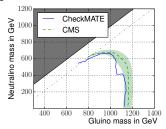
```
/ ____ | |___ ___ ___ | | _ | \/ | / \|_ _ | _____
| | | | '__ \/ _ \/ ___ | |/ / |\/| | / _ \ | | | _|
 | |___| | | | __/ (__| <| | | |/ ___ \| | | |___
  \____|_| |_|\___|\__|_|\_\_| |_/_/ \_\_| |____|
[... roughly 2 minutes per 5k events later ... ]
      *****
             EVALUATION
```

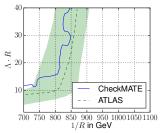

```
Test: Calculation of r = signal/(95%CL limit on signal)
Result: Excluded
Result for r: r_max = 3.45937
SR: atlas conf 2013 061 - SR1L6JB
```

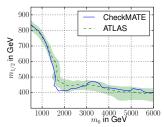
🗳 Example Output: Nat. NMSSM


Scan Parameter Region

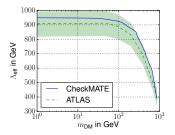
- Gen. events for each param. point (*Trivial, once the setup is ready*)
- Run CheckMATE on these events (*Trivial*, just change event-URL)
- Draw line between Excluded and Allowed (*Trivial with Matplotlib*)



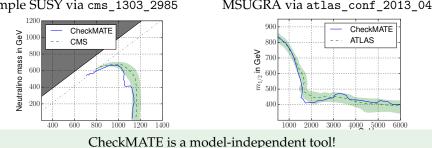

Performance Test via Models Effective DM via atlas_1502_01518

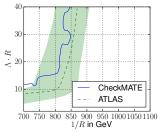

Simple SUSY via cms_1303_2985

UED via atlas_conf_2013_089



MSUGRA via atlas_conf_2013_047




🖄 Performance Test via Models Effective DM via atlas_1502_01518

Simple SUSY via cms_1303_2985

UED via atlas_conf_2013_089

MSUGRA via atlas conf 2013 047

Daniel Schmeier

CHECKMATE-ING BSM MODELS AT THE LHC

🗳 Performance Test via Cutflows

atlas_1405_7875 and $\tilde{g} \to qq' \tilde{\chi}^{\pm}, \tilde{\chi}^{\pm} \to W^{\pm} \tilde{\chi}^0$

	Sig	nal Region D	Signal I	Region ET
Cut	ATLAS	Ch.M.	ATLAS	Ch.M.
Generated Monte Carlo events	20,000	50,000	20,000	50,000
In %	100 %	100 %	100 %	100 %
Jet cleaning *	99.8 %	-	99.8 %	-
0 lepton *	63.7 %	-	63.5 %	-
$\not \! \! E_{\tau} > 160 \text{GeV}$	50.0 %	-	55.6 %	-
$p_T(i_1) > 130 \mathrm{GeV}$	49.3 %	47.7 %	55.6 %	54.4%
$p_T(j_2) > 130 \text{GeV}$	49.2 %	47.6 %	55.6 %	54.4%
$p_T(j_3) > 60 \mathrm{GeV}$	48.6 %	47.1 %	55.4 %	54.2 %
$p_T(j_4) > 60 \mathrm{GeV}$	44.5 %	43.8 %	53.4 %	52.8%
$p_T(j_5) > 60 \text{GeV}$	34.4 %	34.8 %	46.3 %	46.6 %
$p_T(i_5) > 60 \text{ GeV} \text{ (only ET)}$	34.4 %	34.8 %	31.7 %	33.0 %
$\Delta \phi(j_{1,2,3}, \not \in_T) > 0.4$	29.2 %	29.5 %	26.5 %	27.5%
$\Delta \phi(j_k, \not\in_T) > 0.2 \ \forall k \text{ with } p_T(j_k) > 40 \ \text{GeV}$	24.6 %	24.7 %	21.3 %	22.4 %
$\not \in_T / m_{\text{eff}}(\text{all jets}) > 0.2(D), 0.25(ET)$	21.6 %	21.2 %	12.0 %	11.2 %
$m_{\rm eff}(\text{all jets}) > 1.6 \mathrm{TeV}(D), 1.5 \mathrm{TeV}(ET)$	2.0%	1.9%	7.9 %	8.2 %
Monte Carlo Error	± 0.1 %	$\pm 0.1\%$	±0.2%	± 0.1 %

Most important source of validation

Need as many and as detailed of of these as possible!

$\stackrel{\bullet}{\cong} \alpha$ / Fully Validated Analyses

Bethe Center for Theoretical Physics UNIVERSIT

Name	Search designed for	\sqrt{s}	L	N _{SR}
atlas_1308_1841	new phenomena in final states with large jet multiplicities and $\not\!$	8	20.3	19
atlas_1308_2631	third-generation squark pair production with $\not \in_T$ and two <i>b</i> -jets	8	20.1	6
atlas_1402_7029	charginos and neutralinos in events with 3 leptons and $\not \in_T$	8	20.3	24
atlas_1403_4853	top-squark pair production in final states with two leptons	8	20.3	12
atlas_1404_2500	SÚSY with jets and two same-sign leptons or three leptons	8	20.3	5
atlas_1403_5222	top squark pair production in events with a Z boson, b-jets and $\not\in_T$	8	20.3	5
atlas_1405_7875	squarks and gluinos in final states with jets and $\not \in_T$	8	20.3	15
atlas_1407_0583	stop pair production in final states with one isolated lepton, jets, and $\not \in_T$	8	20.3	27
atlas_1407_0608	pair-produced third-generation squarks decaying via charm quarks or in compressed supersymmetric scenarios	8	20.3	3
atlas_1502_01518	new phenomena in final states with an energetic jet and large $\not\in_T$	8	20.3	9
atlas_1503_03290	Supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large $\not \in T$	8	20.3	1
atlas_1506_08616	pair production of third-generation squarks	8	20.3	11
atlas_conf_2012_104	Supersymmetry in final states with jets, $\not \in_T$ and one isolated lepton	8	5.8	2
atlas_conf_2012_147	new phenomena in monojet plus $\not \!$	8	10	4
atlas conf 2013 024	production of the top squark in the all-hadronic $t\bar{t}$ and $\not \in_T$ final state	8	20.5	3
atlas_conf_2013_049	direct-slepton and direct-chargino production in final states with two opposite-sign leptons, \not{E}_T and no jets	8	20.3	9
atlas_conf_2013_061	strong production of supersymmetric particles in final states with $\not \!\!\! E_T$ and at least three <i>b</i> -jets	8	20.1	9
atlas_conf_2013_089	strongly produced supersymmetric particles in decays with two leptons	8	20.3	12
atlas_conf_2015_004	invisibly decaying Higgs boson produced via vector boson fusion	8	20.3	1
cms_1303_2985	supersymmetry in hadronic final states with missing transverse energy using the variables α_T and <i>b</i> -quark multiplicity	8	11.7	59
cms_1408_3583	dark matter, extra dimensions, and unparticles in monojet events	8	19.7	7
cms_1502_06031	BSM physics in events with two Leptons, jets, and $\not\in_T$	8	19.4	6
cms_1504_03198	production of dark matter in association with top-quark pairs in the single-lepton final state	8	19.7	1
cms_sus_13_016	new physics in events with same-sign dileptons and jets	8	19.5	1

🖄 <u>β</u> / Partially Validated Analyses

Bethe Center for Theoretical Physics Universität

Name	Search designed for	\sqrt{s}	L	N _S
atlas_1210_2979	WW production	7	4.6	1
atlas_1403_5294	charginos, neutralinos and sleptons with 2 leptons and $\not \in_T$	8	20.3	13
atlas_1407_0600	strong production of SUSY particles with $\not \in_T$ and at least 3 <i>b</i> -jets	8	20.1	9
atlas_1411_1559	new phenomena in events with a photon and $\not \in_T$	8	20.3	1
atlas_conf_2013_021	WZ production	8	20.3	4
atlas_conf_2013_031	spin properties of h in $h \to WW^{(*)} \to e\nu\mu\nu$	8	20.7	2
atlas_conf_2013_036	Supersymmetry in events with four or more leptons	8	20.7	5
atlas_conf_2013_062	squarks and gluinos in events with isolated leptons, jets and $\not \in_T$	8	20.1	19
atlas_conf_2014_014	$\tilde{t}\tilde{t}^*$ decaying to a b, a τ and weakly interacting particles	8	20.3	1
atlas_conf_2014_033	WW production	8	20.3	3
atlas_conf_2014_056	spin correlation in top-antitop $t\bar{t}$ events and search for $\tilde{t}\tilde{t}^*$	8	20.3	1
cms_1301_4698_WW	ŴW production	8	3.5	1
cms_1306_1126_WW	WW production	7	4.92	1
cms_1405_7570	electroweak production of charginos, neutralinos and sleptons de- caying to leptons and W, Z, and Higgs bosons	8	19.5	57
cms_smp_12_006	WZ production into 3ℓ	8	19.6	4
cms_sus_12_019	physics beyond the standard model in events with two opposite- sign same-flavor leptons, jets, and missing transverse energy	8	19.4	4
atlas_conf_2015_062	squarks and gluinos in final states with jets and $\not\in_{\mathcal{T}}$	13	3.2	7
atlas_conf_2015_067	$\tilde{g}\tilde{g}$ decaying via stop and sbottom in events with b-jets and $\not \in_T$	13	3.3	8
atlas_conf_2015_076	gluinos in events with an isolated lepton, jets and $\not \in_T$	13	3.3	6
atlas_1602_09058	SUSY with jets and 2 same-sign leptons or 3 leptons	13	3.2	4
atl-phys-pub-2014 -010-sbottom	SUSY at the high lumi LHC with zero leptons, two <i>b</i> -jets and $\not \in_T$	14	300	6
-010-sbottom atlas-phys-pub-2013 -011-stop	SUSY at the high lumi LHC with zero or one lepton	14	300	4
atlas_2014_010_h1_31	SUSY at the high lumi LHC with $3 \ell + \not \in_T$	14	3000	9
atlas_phys_2014_010_300	SUSY at the high lumi LHC with jets + $\not E_T$	14	300	10
atlas_phys_2014	SUSY at the high lumi LHC with jets and E_T	14	3000	10
010 sq hl	o) i i			
1-				

🖄 β / Partially Validated Analyses 📴 Bethe Center for Theoretical Physics Universität bonn

Name	Search designed for	\sqrt{s}	L	$N_{\rm SR}$
atlas_1210_2979	WW production	7	4.6	1
atlas_1403_5294	charginos, neutralinos and sleptons with 2 leptons and $\not\in_T$	8	20.3	13
atlas_1407_0600	strong production of SUSY particles with $\not \in_T$ and at least 3 <i>b</i> -jets	8	20.1	9
atlas_1411_1559	new phenomena in events with a photon and $\not \in_T$	8	20.3	1
atlas_conf_2013_021	WZ production	8	20.3	4
atlas_conf_2013_031	spin properties of h in $h \to WW^{(*)} \to e\nu\mu\nu$	8	20.7	2
atlas_conf_2013_036	Supersymmetry in events with four or more leptons	8	20.7	5
atlas_conf_2013_062	squarks and gluinos in events with isolated leptons, jets and $\not \in_T$	8	20.1	19
	we want the second seco	~		

What do I need to add a new analysis on my own?

cms_sus_12_019	physics beyond the standard model in events with two opposite- sign same-flavor leptons, jets, and missing transverse energy	8	19.4	4	
atlas_conf_2015_062	squarks and gluinos in final states with jets and $\not \in_T$	13	3.2	7	
atlas_conf_2015_067	$\tilde{g}\tilde{g}$ decaying via stop and sbottom in events with b-jets and $\not \in_T$	13	3.3	8	
atlas_conf_2015_076	gluinos in events with an isolated lepton, jets and $\not \!$	13	3.3	6	
atlas_1602_09058	SUSY with jets and 2 same-sign leptons or 3 leptons	13	3.2	4	
atl-phys-pub-2014 -010-sbottom	SUSY at the high lumi LHC with zero leptons, two <i>b</i> -jets and $\not \in_T$	14	300	6	
atlas-phys-pub-2013 -011-stop	SUSY at the high lumi LHC with zero or one lepton	14	300	4	
atlas_2014_010_h1_31	SUSY at the high lumi LHC with $3 \ell + \not \in_T$	14	3000	9	
atlas_phys_2014_010_300	SUSY at the high lumi LHC with jets + $\not E_T$	14	300	10	
atlas_phys_2014 _010_sq_hl	SUSY at the high lumi LHC with jets and $\not E_T$	14	3000	10	
Daniel Schmeier CHECKMATE-ING BSM MODELS AT THE LHC					17

/ Partially Validated Analyses treversitiation

Name	Search designed for	\sqrt{s}	L	$N_{\rm SR}$
atlas_1210_2979	WW production	7	4.6	1
atlas_1403_5294	charginos, neutralinos and sleptons with 2 leptons and $\not\in_T$	8	20.3	13
atlas_1407_0600	strong production of SUSY particles with $\not \in_T$ and at least 3 <i>b</i> -jets	8	20.1	9
atlas_1411_1559	new phenomena in events with a photon and $\not \in_T$	8	20.3	1
atlas_conf_2013_021	WZ production	8	20.3	4
atlas_conf_2013_031	spin properties of h in $h \to WW^{(*)} \to e\nu\mu\nu$	8	20.7	2
atlas_conf_2013_036	Supersymmetry in events with four or more leptons	8	20.7	5
atlas_conf_2013_062	squarks and gluinos in events with isolated leptons, jets and $\not \in_T$	8	20.1	19

What do I need to add a new analysis on my own?

Ability to answer questions Å

Some understanding of C++ Å

D

cms_sus_12_019	physics beyond the standard model in events with two opposite- sign same-flavor leptons, jets, and missing transverse energy	8	19.4	4	
atlas_conf_2015_062	squarks and gluinos in final states with jets and $\not \in_T$	13	3.2	7	_
atlas_conf_2015_067	$\tilde{g}\tilde{g}$ decaying via stop and sbottom in events with b-jets and $\not \!$	13	3.3	8	
atlas conf 2015 076	gluinos in events with an isolated lepton, jets and $\not \!$	13	3.3	6	
atlas_1602_09058	SUSY with jets and 2 same-sign leptons or 3 leptons	13	3.2	4	
atl-phys-pub-2014 -010-sbottom	SUSY at the high lumi LHC with zero leptons, two <i>b</i> -jets and $\not \in_T$	14	300	6	_
atlas-phys-pub-2013 -011-stop	SUSY at the high lumi LHC with zero or one lepton	14	300	4	
atlas_2014_010_hl_31	SUSY at the high lumi LHC with $3\ell + \not \in \tau$	14	3000	9	
atlas_phys_2014_010_300	SUSY at the high lumi LHC with jets + $\not \!$	14	300	10	
atlas_phys_2014 _010_sq_hl	SUSY at the high lumi LHC with jets and $\not E_T$	14	3000	10	
Daniel Schmeier	CHECKMATE-ING BSM MODELS AT THE LHC				17

Running the Analysis Manager

🖄 Run make AnalysisManager; /bin/AnalysisManager

What do you want? -(1)ist all analyses, -(a)dd a new analysis to CheckMATE, -(r)emove an analysis from CheckMATE]

Adding an analysis

```
This will collect all necessary information to create a full analysis and
Takes care for the creation and implementation of the source files into the code.
Please answer the following questions.
Attention: Your input is NOT saved before you finish this questionnaire.
1. General Information to build analysis
Analysis Name:
       ATLAS 1234 5678
Description (short, one line):
       ATLAS: many leptons, few jets
Description (long, multiple lines, finish with '::' on a new line):
       ATLAS
       many leptons, few jets
       sart(s) = 9 TeV
       int(L) = 42 fb^{-1}
Luminosity (in fb^-1):
       42
Do you plan to implement control regions to that analysis? [(y)es, (n)o)
```


Adding an analysis

```
2. Information on Signal Regions
List all signal regions (one per line, finish with ';;' on a new line):
11
21
[...]
Is the SM expectation B known? [(y)es, (n)o]?
```

n

Signal regions are registered but without any numbers associated to them. IMPORTANT: The analysis will be created and can then be used like any other analysis. CheckMATE will skip the model exclusion tests as long as the expectation is not known. You can e.g. use CheckMATE on background samples to estimate B and dB. As soon as you know these numbers, run the AnalysisManager again and use the (e)dit feature to add them.

Adding an analysis

```
2. Information on Signal Regions
List all signal regions (one per line, finish with ';;' on a new line):
<sup>11</sup>
<sup>21</sup>
[...]
Is the SM expectation B known? [(y)es, (n)o]?
You now have to add the
numbers for each of the
given signal regions.
<sup>11</sup>
obs:
<sup>100</sup>
n
Signal regions are registered but without any
numbers associated to them.
IMPORTANT: The analysis will be created and can
then be used like any other analysis.
CheckMATE will skip the model exclusion
tests as long as the expectation is not
```

Add a published analysis Add a new analysis

- A Provide results straight away
- A Typical mode for 8 and 13 TeV
- A run on SM backgrounds first
- å add these results to CM
- ▲ Typical mode to project to 13 and 14 TeV and to invent new cutflows

Adding an analysis

```
3. Settings for Detector Simulation
3.1: Miscellaneous
To which experiment does the analysis correspond? (A)TLAS, (C)MS
 Α
3.2: Electron Isolation
Do you need any particular isolation criterion? [(y)es, (n)o]
Isolation 1:
Which objects should be considered for isolation? [(t)racks, (c)alo objects?
What is the minimum pt of a surrounding object to be used for isolation? [in GeV]
 5
What is the dR used for isolation?
 0.4
Is there an absolute or a relative upper limit for the surrounding pt? [(a)bsolute, (r)elative]
 а
What is the maximum surrounding pt used for isolation [in GeV]?
Do you need more isolation criteria? [(y)es, (n)o]
n
3.3: Muon Isolation
Do you need any particular isolation criterion? [(y)es, (n)o]
n
3.4: Photon Isolation
Do you need any particular isolation criterion? [(y)es, (n)o]
 n
```


Adding an analysis

```
3.5 Jets
Which dR cone radius do you want to use for the FastJet algorithm?
0.4
What is the minimum pt of a jet? [in GeV]
Do you need a separate, extra type of jet? [(y)es, (n)o]
n
Do you want to use b-tagging? [(y)es, (n)o]
 V
b-Tagging 1:
What is the signal efficiency to tag a b-jet? [in %]
70
Do you need more b tags? [(y)es, (n)o]
V
b-Tagging 2:
What is the signal efficiency to tag a b-jet? [in %]
40
Do you need more b tags? [(y)es, (n)o]
n
Do you want to use tau-tagging? [(y)es, (n)o]
n
```


Adding an analysis

- Variable values saved in /hdd/sandbox/managertest/data/atlas_conf_2013_047X_var.j
- Created source file /hdd/sandbox/
- /hdd/sandbox/managertest/tools/analysis/src/atlas_conf_2013_047X.cc
 - Created header file /hdd/sandbox/managertest/tools/analysis/include/atlas_conf_2013_047X.h
 - Updated Makefile
 - Updated main source main.cc
 - Reference file created
 - List of analyses updated

Analysis atlas_conf_2013_047X has been added successfully!

Run 'make' from the main CheckMATE folder to compile it!

🖄 Some example lines


```
void Atlas_conf_2013_047::analyze() {
 missingET->addMuons(muonsCombined);
  electronsLoose = filterPhaseSpace(electronsLoose, 10., -2.47, 2.47
 muonsCombined = filterPhaseSpace(muonsCombined, 10., -2.4, 2.4);
  jets = filterPhaseSpace(jets, 20., -2.8, 2.8);
  [...]
  jets = overlapRemoval(jets, electronsLoose, 0.2);
  electronsLoose = overlapRemoval(electronsLoose, jets, 0.4);
  if(!electronsLoose.empty())
      return;
  [...]
  double HT = 0.;
  for(int j = 0; j < jets.size(); j++)</pre>
      HT += jets[j]->PT;
 double mEffInc = missingET->P4().Et() + HT;
  [...]
 mEffA = missingET->P4().Et() + jets[0]->PT + jets[1]->PT;
  if (missingET->P4().Et()/mEffA > 0.2) {
    countCutflowEvent("AL1");
    if (mEffInc > 1000.)
        countSignalEvent("AL");
  [...]
```


We want to start early in the chain

 $\text{Goal} \leftarrow \rightarrow \text{Reality}$

Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc

We want to start early in the chain

So far the user has to provide the event files Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc

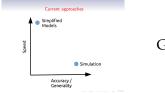
We want to start early in the chain

Why not embed event generation within CheckMATE?

Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc

We want to start early in the chain



Why not embed event generation fi within CheckMATE?

Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc

We want to be fast

 $Goal \leftarrow \rightarrow Reality$

[... roughly 2 minutes per 5k events later ...]

Daniel Schmeier

CHECKMATE-ING BSM MODELS AT THE LHC

We want to start early in the chain

Why not embed l event generation fi within CheckMATE?

Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc

We want to be fast

Simulations are slow

[... roughly 2 minutes per 5k events later ...]

We want to start early in the chain

Why not embed fi event generation within CheckMATE?

Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc

We want to be fast

Try to speed up whatever possible

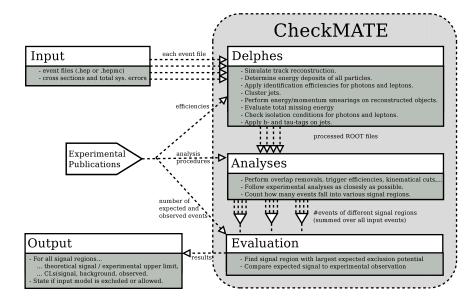
[... roughly 2 minutes per 5k events later ...]

We want to start early in the chain

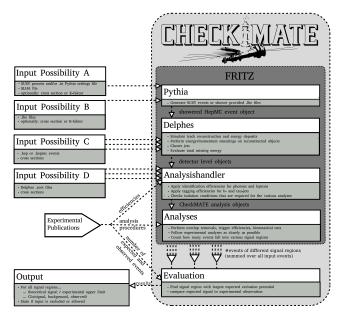
Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc

G


FRITZ = Flexible **R**apid Interactive Tool **Z**ipper

We want to be fast


Provide CheckMATE 1

University of the second secon

CHECKMATE-ING BSM MODELS AT THE LHC

Working Pythia8 Functionalities

Example 1: Use Pythia on SLHA in specific SUSY production modes

Name: MSSM GluinoPair Analyses: cms & 8TeV SLHAFile: myspectrum.slha

[gluinopair] Pythia8Process: p p > go go~

Working Pythia8 Functionalities

Example 1: Use Pythia on SLHA in specific SUSY production modes

Name: MSSM GluinoPair Analyses: cms & 8TeV SLHAFile: myspectrum.slha

[gluinopair] Pythia8Process: p p > go go~

Example 2: Provide . in file with arbitrary Pythia settings

	PDF:pSet = 8 !(CTEQ6L1)
Name: MSSM_SquarkPair	Beams:idA = 2212
Analyses: atlas & 8TeV	Beams:idB = 2212
	Beams:eCM = 8000.
[squ_squ]	SLHA:file = /scratch/files/point.slha
Pythia8Card: /scratch/files/pythiasqusqu.in	SUSY:qq2squarksquark = on
	SUSY:idVecA = 1000001,1000002,[]2000003,2000004

Working Pythia8 Functionalities

Example 1: Use Pythia on SLHA in specific SUSY production modes

Name: MSSM GluinoPair Analyses: cms & 8TeV SLHAFile: myspectrum.slha

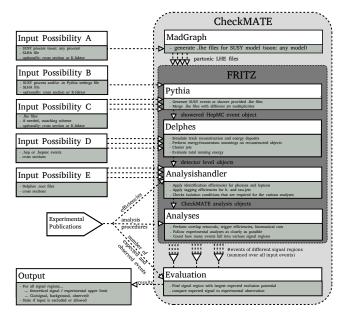
[gluinopair] Pythia8Process: p p > go go~

Example 2: Provide . in file with arbitrary Pythia settings

	PDF:pSet = 8 !(CTEQ6L1)
Name: MSSM_SquarkPair	Beams:idA = 2212
Analyses: atlas & 8TeV	Beams:idB = 2212
	Beams:eCM = 8000.
[squ_squ]	SLHA:file = /scratch/files/point.slha
Pythia8Card: /scratch/files/pythiasqusqu.in	SUSY:qq2squarksquark = on
	SUSY:idVecA = 1000001,1000002,[]2000003,2000004

Example 3: Use Pythia to shower .lhes of an arbitrary model

Name: NewModelTest Analyses: atlas & 8TeV, cms & 8 TeV


[Supermodel] Events: test events/mysupermodel point1.lhe

Daniel Schmeier

CHECKMATE-ING BSM MODELS AT THE LHC

CheckMATE 2.X In Development

CHECKMATE-ING BSM MODELS AT THE LHC

🗳 Under Development

Example 4: Shower and Merge Multiple LHE

Name: Zplusjets Analyses: atlas_1403_5222

[Zjets] Merging: ckkwl Scale: 30 MaxJets: 2 Events: test_events/zRes_0jet_1k.lhe, test_events/zRes_1jet_1k.lhe, test_events/zRes_2jet_1k.lhe

🗳 Under Development

Example 4: Shower and Merge Multiple LHE

Name: Zplusjets Analyses: atlas_1403_5222

[Zjets] Merging: ckkwl Scale: 30 MaxJets: 2 Events: test_events/zRes_0jet_1k.lhe, test_events/zRes_1jet_1k.lhe, test_events/zRes_2jet_1k.lhe

Example 5: Link to MG5_aMC@NLO

Name: MSSM_SquarkPair Analyses: atlas & 8TeV MG5Model: InertDoublet

[a_h] MG5Process: p p > a h MaxEvents: 10000

🗳 Under Development

Example 4: Shower and Merge Multiple LHE

Name: Zplusjets Analyses: atlas_1403_5222

[Zjets] Merging: ckkwl Scale: 30 MaxJets: 2 Events: test_events/zRes_0jet_1k.lhe, test_events/zRes_1jet_1k.lhe, test_events/zRes_2jet_1k.lhe

Example 5: Link to MG5_aMC@NLO

Name: MSSM_SquarkPair Analyses: atlas & 8TeV MG5Model: InertDoublet

```
[a_h]
MG5Process: p p > a h
MaxEvents: 10000
```

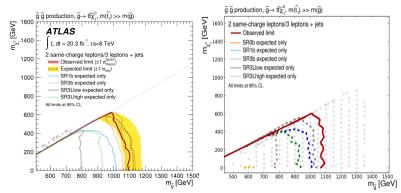
CheckMATE still simple to use via ./CheckMATE input.txt With mode 5 we come very close to the dedicated goal to *enter a model*, *press a button*, *and it tells you whether the model is excluded or not*."

Daniel Schmeier

🖄 Other Features of 2.0

Faster Event Procession

- sizable speed boost (Now: ≈ 30s for creating 1000 events and testing one analysis, 1 min for testing all analyses)
- Much better cluster performance


```
Fritz: Initialising handlers from file $CMDIR/results/ThesisExample/fritz/squ squ.ini
 PythiaHandler 'pythia': Initializing Pythia8 with $CMDIR/bin/thesisexample/pythiasqusqu.in
 PythiaHandler 'pythia': Output redirected to $CMDIR/results/ThesisExample/pythia/pythia squ squ.log
 PythiaHandler 'pythia': Pythia8 initialized successfully!
 DelphesHandler 'atlas8tev': Initialising Delphes via linking to PythiaHandler 'pythia'
 ſ...1
 DelphesHandler 'cms8tev': Delphes successfully initialised!
 AnalysisHandler 'atlas8tev': Initialising AnalysisHandler
 AnalysisHandler 'atlas8tev': Loading Analysis atlas_1308_1841
 AnalysisHandler 'atlas8tev': Successfully loaded analysis atlas_1308_1841
 [...]
 AnalysisHandler 'cms8tev': AnalysisHandler successfully linked to DelphesHandler 'cms8tev'
 Fritz: Fritz successfully loaded command line parameters!
 Fritz: >> Successfully initialized and linked all handlers! <<
 Fritz: Starting event loop!
 Fritz: Progress: 10 %
 [...]
 Fritz: Progress: 100 %
 Fritz: >> Finalising after 1000 events. <<
 PythiaHandler 'pythia': Pythia8 returned cross section of 2.43366 fb
 AnalysisHandler 'atlas8tev': Analyses successfully finished!
 DelphesHandler 'cms8tev': Delphes successfully finished!
 PythiaHandler 'pythia': Pythia8 successfully finished!
 Fritz: >> Done <<
Daniel Schmeier
                                           CHECKMATE-ING BSM MODELS AT THE LHC
```

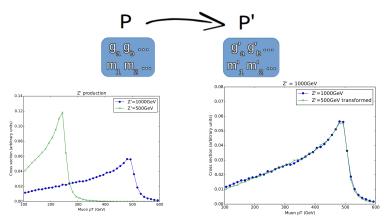
Other Features of 2.0

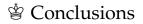
Statistical Combination of Signal Regions

 Working: Combination of orthogonal SR assuming uncorrelated errors

Under Development: Guesstimating correlations of background errors

Daniel Schmeier


CHECKMATE-ING BSM MODELS AT THE LHC


Other Features of 2.0

Faster scanning of parameter space

 Under Development: Guesstimating related kinematics of nearby parameter points without re-simulating events

http://checkmate.hepforge.org/

Daniel Schmeier

CHECKMATE-ING BSM MODELS AT THE LHC

Appendix

