Recasting Searches for Exotic Detector Objects

Jared A. Evans

jaredaevans@gmail.com

Department of Physics University of Illinois, Urbana-Champaign

Evans, Shelton – arXiv:1601.01326

What are Exotic Detector Objects?

Long-lived NLSP Staus from Gauge Mediation

Summary of Relevant Exotic Detector Object Searches

Details of How to Recast These Searches

Comments on Recasting These Searches

What are Standard Detector Objects?

	Object	Very Rough Identification Criteria
1)	Photon	Hard, isolated EM calo deposit, $E_{tracks} \ll E_{calo}$
2)	Electron	Hard, isolated EM calo deposit, $E_{\textit{track}} \sim E_{\textit{calo}}$
3)	Muon	Hard, isolated track through muon chamber
4)	Jet	Other hard calo/track/particle clusters
a)	Tau	Single or 3-prong hard, isolated track(s)
b)	<i>b</i> -jet	Secondary vertex, looks b-ish
5)	Ēτ	$-\sumec{ m ho} au$
	Key Changel Hadron Changel Hadron Photon Sin Sin Sin Sin Sin Sin Sin Si	La phone La pho

What are Exotic Detector Objects?

	Object	Very Rough Identification Criteria
1)	Photon	Hard, isolated EM calo deposit, $E_{tracks} \ll E_{calo}$
2)	Electron	Hard, isolated EM calo deposit, $E_{\textit{track}} \sim E_{\textit{calo}}$
3)	Muon	Hard, isolated track through muon chamber
4)	Jet	Other hard calo/track/particle clusters
a)	Tau	Single or 3-prong hard, isolated track(s)
b)	<i>b</i> -jet	Secondary vertex, looks b-ish
5)	Ēτ	$-\sum ec{ ho}_T$

Loaded words: track, isolated, hard, cluster, vertex, b-ish ...

Exotic detector objects have properties that allow them to be distinguished from these standard objects

Two basic classes:

Indirect

&

What are Exotic Detector Objects?

Direct vs Indirect

Direct

Observe the object itself

Examples

Disappearing tracks Heavy, stable, charged particles Magnetic monopoles *R*-hadrons Quirks

. . .

Observe atypical SM decay products

Indirect

Collimated particles fail isolation

Non-isolated leptons/photons Photon or lepton jets

Particles that decay in flight

Long lifetime from an approximate symmetry in the low energy theory

High dimension operators High mass scale Small couplings

- 1. GMSB is a very well-motivated source of long-lived particles
 - Lifetime of NLSP can vary from $c\tau \sim 10 \mu m$ to detector stable
- 2. Theory prejudice likes right-handed stau NLSP
- 3. Signature: Charged particle moves $\mathcal{O}(c\tau)$ through detector
 - Displaced decay as $\tilde{\tau}_{R} \rightarrow \tau \tilde{G}$
- 4. Prompt searches veto large impact parameter leptons

GOAL: Assess constraints on non-prompt NLSP $\tilde{\tau}_R$

- Long lifetime: Heavy, stable, charged particles
- Decay in tracker: Disappearing tracks (Kinked tracks)
- Decay \lesssim beam pipe: Leptons with large impact parameter

Relevant LHC search: HSCP CMS 1305.0491

At long lifetime: $c\tau_{\tilde{\tau}} \gtrsim 1 \text{ m} \Rightarrow$ heavy, detector-stable, charged particle

CMS HSCP search 1305.0491 (expect similar from ATLAS 1411.6795)

(see next talk by Jan Heisig)

Efficiency maps provided: 1502.02522

Relevant LHC search: Disappearing Tracks CMS 1411.6006

At slightly shorter lifetimes: 30 cm $\lesssim c \tau_{\tilde{\tau}} \lesssim$ 3 m \Rightarrow disappearing tracks

Cuts

Simple efficiency map provided 1411.6006

Relevant LHC search: Disappearing Tracks ATLAS 1310.3675

At slightly shorter lifetimes: 20 cm $\lesssim c \tau_{\tilde{\tau}} \lesssim$ 2 m \Rightarrow disappearing tracks

<u>Cuts</u>

No efficiency map provided

Relevant LHC search: Disappearing Tracks Recast Caveats

Isolation requirements are hard on long-lived staus

Even with wide opening angles, effective ΔR can be very small

(We model this, but very uncertain)

At short lifetimes: 100 μ m $\lesssim c \tau_{\tilde{\tau}} \lesssim$ 3 cm \Rightarrow displaced leptons

Extensive recasting details provided!

https://twiki.cern.ch/twiki/bin/view/CMSPublic/DisplacedSusyParametrisationStudyForUser

Relevant LHC search: CMS Displaced $e\mu$ (1409.4789)

Impact Parameter

Impact Parameter is *not* the location of parent *b* and τ decay products are more collimated

Evans (UIUC)

Details of Recasting

Monte Carlo

- 1. Generated production LHE events in MadGraph5
 - Direct stau, \tilde{H} , \tilde{t} , and \tilde{g} production considered
 - $pp \rightarrow X + \tilde{\tau}_R \tilde{\tau}_R + n_j j$
 - CMS displaced eµ search: no matching
 - Disappearing Tracks & HSCP: $n_j = 0$ or 1
- 2. Joined with $\tilde{\tau}_R$ decay LHE files made with MadGraph5
 - CMS displaced $e\mu$ search: $\tilde{\tau}_R \rightarrow \ell \nu \bar{\nu} \tilde{\chi}_1^0$ using TauDecay
 - Disappearing Tracks & HSCP: $\tilde{\tau}_R \rightarrow \tau \tilde{\chi}_1^0$
- 3. Wrote Pythia8 code to:
 - Shower events in stream (matched to up one jet for DT & HSCP)
 - Cluster jets with FastJet & smear jet energy
 - Locate $\tilde{\tau}_R$ and link to decay products (via $\tilde{\tau}_R$ event record id)

 - ℓ s & τ_h s may be tagged as coming from a particular $\tilde{\tau}_R$

HSCP: followed the detailed instructions in 1502.02522

- Really great efficiency maps! ("tracker + time-of-flight" SR)
- Assigned $c\tau$ dependent weight
- Removed all leptons that came from a ~
- Reduced jet p_T if $\tilde{\tau}$ daughter τ_h overlapped with jet
- Apply (lax) charged track isolation requirement

CMS eµ: followed https://twiki.cern.ch/twiki/bin/view/CMSPublic/DisplacedSusyParametrisationStudyForUser

- Used only $pp \to X + \tilde{\tau}_R^+ \tilde{\tau}_R^- \to X + e^+ \mu^- \tilde{G} \tilde{G} \nu \nu \bar{\nu} \bar{\nu}$ events
- \blacktriangleright Use kinematics and displacement of $\tilde{\tau}$ to find impact parameter
- Assigned c\u03c0 dependent weight to fall in signal regions
 - Note: $c\tau_{\tau} = 87 \mu m$ was neglected in finding weight (small effect)

Details of Recasting

Disappearing Tracks (part 1)

Disappearing tracks (both ATLAS and CMS):

- Construct d_{˜i1} vs d_{˜i2} grid of 10 cm radial displacements
- Assign $c\tau$ dependent weight for $\tilde{\tau}$ to have decayed within that bin
- Relocate $\tilde{\tau}$ decay products to originate from the center of that bin

 - 2. Reduced jet p_T if $\tilde{\tau}$ daughter overlaps with a prompt jet
 - 3. Deposit *E* of the $\tilde{\tau}$ daughter into the calorimeter
 - $\frac{1}{2}$ through Ecal if electron or τ_h with π^0 s
 - $\frac{1}{2}$ through Hcal if τ_h without π^0 s
 - 4. Assign new jet at this position

CMS disappearing tracks: used efficiency map in 1411.6006 appendix

- AMSB wino sample removed η cuts from eff map (factor of 1.5)
- Apply strict $E_{\Delta R < 0.5}^{calo} < 10$ GeV isolation

ATLAS disappearing tracks: no efficiency map available

- Discard every event with a muon
- Discard staus that survive well into the muon chamber
- Made an efficiency map based on the propagation through TRT
 - (Experimented with several options had a minimal impact)
- Require that track is the hardest in the event
 - Harder than other stau if it survives more than 30 cm
- Apply isolation $\Delta R_{jt} > 0.4 \forall p_{T,j} > 45 \text{ GeV}$

Only HSCP limits on direct $\tilde{\tau}_R$ production! But . . . a $\tilde{\tau}_R$ is not expected in isolation

(Better limit from both disappearing track searches shown)

Only HSCP limits on direct $\tilde{\tau}_R$ production! But . . . a $\tilde{\tau}_R$ is not expected in isolation

(Better limit from both disappearing track searches shown)

Limits are very sensitive to $m_{\tilde{\tau}_R}$

Evans (UIUC)

Only HSCP limits on direct $\tilde{\tau}_R$ production! But . . . a $\tilde{\tau}_R$ is not expected in isolation

(Better limit from both disappearing track searches shown)

Limits are very sensitive to $m_{\tilde{\tau}_R}$

Evans (UIUC)

Only HSCP limits on direct $\tilde{\tau}_R$ production! But . . . a $\tilde{\tau}_R$ is not expected in isolation

(Better limit from both disappearing track searches shown) Limits are very sensitive to $m_{\tilde{\tau}_B}$

Evans (UIUC)

Efficiency maps and recasting instructions are an *essential* facet to all searches for exotic detector objects

Comments and Perspectives Recasting

Clear information about applying the search beyond the benchmark

are valuable for recasting to new scenarios

(Admittedly, tricky to assess in advance)