Constraining BSM (Simplified) models with SM measurements

Jon Butterworth, David Grellscheid (IPPP), Michael Krämer (Aachen), David Yallup

CERN workshop on (re)interpreting the results of new physics searches at the LHC

17 June 2016
The Standard Model
The Standard Model

• Is there anything out there?
The Standard Model

• Is there anything out there?
 – Tread carefully
 – High energies, high luminosities, model independence...
Precision ‘Standard Model’ Measurements

• They should not (and mostly do not) assume the SM
• They agree with the SM
• Thus they can potentially exclude extensions
Precision ‘Standard Model’ Measurements

- They should not (and mostly do not) assume the SM
- They agree with the SM
- Thus they can potentially exclude extensions
Simplified Model(s)

- Effective lagrangian including minimal new couplings and particles
- Our starter example: leptophobic Z' with vector coupling to u,d quarks, axial vector to a DM candidate ψ.

\[\mathcal{L} \supset g_{\text{DM}} \bar{\psi} \gamma_\mu \gamma_5 \psi Z'^\mu + g_q \sum_q \bar{q} \gamma_\mu q Z'^\mu \]
Key tools:

- BSM Model in FeynRules
- UFO interface
- Final State Particles
- New processes in Herwig7
- Rivet, and data from HepData
- Exclusion
Strategy

• Use measurements shown to agree with the Standard Model
 – Not a search! Guaranteed not to find anything
 – Will be slower, but more comprehensive and model independent
 – Assume the data = the background!
Will miss this kind of thing...
Strategy

• Use measurements shown to agree with the Standard Model
 – Not a search! Guaranteed not to find anything
 – Will be slower, but more comprehensive and model independent
 – Assume the data = the background!

• Key for constraining new models if there is a signal (unintended consequences)

• Key for constraining scale of new physics if there is no signal
Statistics

• Construct likelihood function using
 – BSM signal event count
 – Background count (from central value of data points)
 – Gaussian assumption on uncertainty in background count, from combination of statistical and systematic uncertainties
 – BSM signal count error from statistics of generated events (small!)

• Make profile likelihood ratio a la Cowan et al (Asimov data set approximation is valid)

• Present in C_{L_s} method (A. Read)

• Systematic correlations not fully treated - take only the most significant deviation in a given plot (conservative)
Dynamic data selection

- SM measurements of fiducial, particle-level differential cross sections, with existing Rivet routines
- Classify according to data set (7, 8, 13 TeV) and into non-overlapping signatures
- Use only one plot from each given statistically correlated sample
- Jets, W+jets, Z+jets, γ, γ+jets, γγ, ZZ, W/Z+γ
- Sadly no Missing E_T+jets, not much 8 TeV, no 13 TeV yet, though much is on the way... Also can use suitably model-independent Higgs and top measurements in future.
- Most sensitive measurement will vary with model and model parameters
<table>
<thead>
<tr>
<th>CONTUR Category</th>
<th>Rivet/ Inspire ID</th>
<th>Rivet description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS 7 Jets</td>
<td>CMS_2014.I1298810 [29]</td>
<td>Ratios of jet pT spectra, which relate to the ratios of inclusive, differential jet cross sections</td>
</tr>
<tr>
<td>ATLAS 8 Jets</td>
<td>ATLAS_2015.I1394679 [34]</td>
<td>Multijets at 8 TeV</td>
</tr>
<tr>
<td>CMS 7 Z Jets</td>
<td>CMS_2015.I1310737 [38]</td>
<td>Jet multiplicity and differential cross-sections of Z+jets events</td>
</tr>
<tr>
<td>CMS 7 W Jets</td>
<td>CMS_2014.I1303894 [37]</td>
<td>Differential cross-section of W bosons + jets</td>
</tr>
<tr>
<td></td>
<td>ATLAS_2012.I1093738 [44]</td>
<td>Isolated prompt photon + jet cross-section</td>
</tr>
<tr>
<td>ATLAS 7 Diphoton</td>
<td>ATLAS_2012.I1199269 [43]</td>
<td>Inclusive diphoton + X events</td>
</tr>
</tbody>
</table>
Key tools: Constraints On New Theories Using Rivet

- BSM Model in FeynRules
- UFO interface
- Final State Particles
- New processes in Herwig7
- Rivet, and data from HepData
- Exclusion
Key tools: Constraints On New Theories Using Rivet

- BSM Model in FeynRules
- New processes in Herwig7
- UFO interface
- Final State Particles
- Rivet, and data from HepData
- Exclusion

https://contur.hepforge.org/
Parameter Choices

• Scan in M_{DM} and $M_{Z'}$

• Four pairs of couplings:
 – Challenging: $g_q = 0.25$; $g_{DM} = 1$
 – Medium: $g_q = 0.375$; $g_{DM} = 1$
 – Optimistic: $g_q = 0.5$; $g_{DM} = 1$
 – DM-suppressed $g_q = 0.375$; $g_{DM} = 0.25$
Data Comparisons

ATLAS Dijet double-differential cross sections ($y^* < 0.5$)

CMS inclusive jet double differential cross section ($|y| < 0.5$)
Data Comparisons

ATLAS $W^+ \geq 2$ jet differential cross section

$\frac{d^{2}\sigma}{d^{2}m_{12}}$

- Data
- $M_{Z'} = 100$ GeV
- $M_{Z'} = 300$ GeV
- $M_{Z'} = 600$ GeV
- $M_{Z'} = 1000$ GeV
- $\sigma_q = 0.375, \sigma_{DM} = 1$
- $M_{DM} = 600$ GeV

ATLAS total fiducial cross-section reconstructed $ZZ \rightarrow 2\ell 2\nu$

σ [fb]

- Data
- $M_{Z'} = 300$ GeV
- $M_{Z'} = 500$ GeV
- $M_{Z'} = 1000$ GeV
- $M_{Z'} = 1500$ GeV
- $\sigma_q = 0.375, \sigma_{DM} = 1$
- $M_{DM} = 100$ GeV
Heat Maps

(a) $g_q = 0.25$ and $g_{DM} = 1$

(b) $g_q = 0.5$ and $g_{DM} = 1$

(c) $g_q = 0.375$ and $g_{DM} = 1$

(d) $g_q = 0.375$ and $g_{DM} = 0.25$
95\% \text{ CL}_S \text{ Contour}

Figure 7: Contours in the $M_{Z'}$ and M_{DM} plane for the considered values of g_{DM} and g_q, indicating the excluded region at 95\% confidence level. The triangular shaded area is the region in which perturbative unitary is violated by the model.
Heat Maps

Preliminary - to be checked
95% CL_s Contour

Figure 7: Contours in the $M_{Z'}$ and M_{DM} plane for the considered values of g_{DM} and g_q, indicating the excluded region at 95% confidence level. The triangular shaded area is the region in which perturbative unitarity is violated by the model.

Preliminary - to be checked
Conclusions

• Particle-level measurements not only measure what is happening in our collisions, they constrain what is *not* happening.

• Limit-setting procedure developed; even with conservative treatment of correlations, limits are competitive with those from dedicated searches using comparable data-sets

• General framework developed:
 – consider all new processes in a given (simplified) model
 – consider all available final states. (e.g. V+jet shows previously unexamined sensitivity to the model considered)

• Highly scaleable to other models & new measurements – plan continuous rolling development

• See arXiv:1606.05296 (and references therein), & contur.hepforge.org