

HL-LHC LSSR5 integration - Alignment

Pablo Santos Díaz - Vincent Baglin

HL-LHC R5 integration – Alignment CERN Geneva / 19-04-2016

OUTLINE

- Introduction: HI-LUMI LSSR5.
- Vacuum chamber dimensions study.
- Bellow dimensions study.
- Alignment equipment.
- Questions.

Introduction: HI-LUMI LSSR5

Introduction: HI-LUMI LSSR5

- Working on the LSSR5 integration establishing the vacuum equipment needed:
 - Valves, bellows
 - Vacuum Assemblies
 - Gauges
 - Vacuum chamber → setting the dimensions
 - ...

Introduction: LSSR5 – between TAXN and D2

5th axis = +/- 10 mm lateral displacement → specific bellows (VMT type) Detail A

Introduction: LSSR5 – bellow-pipe transition

- Vacuum chamber inner diameter must be set to determine:
 - If new bellows has to be design.
 - Collisions between components.

What is required to set the dimensions of the vacuum chamber?

Vacuum chamber dimensions study

Vacuum chamber dimensions study

- Inputs:
 - Beam aperture: 85 mm. 🧶
- Data required for tolerance:
 - Pipe mechanical tolerance[&].
 - Pipe alignment accuracy. 🥥

Γ	PIPE			
Γ	Aperture	85	[mm]	
	Mechanical tolerance (2x)	0.9	[mm]	🗾 🗻 Assumed*
	Alignment accuracy (2x)	2	[mm]	
	Inner pipe diameter	91	[mm]	Minimum value
Γ	Thickness (2x)	3	[mm]	
Γ	Outter pipe diameter	97	[mm]	
Γ	Bake-out jacket thickness	25	[mm]	
Γ	Diameter with bakeout jacket	147	[mm]	

- Which is the alignment tolerance accuracy?

85 + yellow + yellow = 85+0.9+0.9 = 86.8 86.8 + purple + purple = 90.8 → 91 mm

[&] Mech Tol. = Cylindricity = concentricity+straightness+parallelism = 1.8 mm

* Today for LHC = 3 mm

Bellow dimensions study

Bellow optimization

Wen need to fit the inner diameter of the vacuum chamber with the inner diameter of RF bridge of the bellow in order to have <u>no transition (tapering)</u> between them.

RF bridge = transition tube + RF fingers

Vincent Baglin – Pablo Santos Díaz

Transition tube joint

ACTUAL BELLOW (Trans. tube side)		
Outter diameter bellow	103	[mm]
Bellow thickness (2x)	1.5	[mm]
Space between bellow and pipe support (2x)	0.75	[mm]
Pipe support thickness* (2x)	2.55	[mm]
c*	0.6	[mm]
Trans. tube thickness (2x)	2	[mm]
Tolerance inner diameter	0.1	[mm]
Inner Trans. tube diameter	90.00	[mm]
Inner Trans. tube diameter	94.00	[mm]

*See drawing

OPTIMIZED BELLOW (Trans. tube side	e)		
Outter diameter bellow	103	[mm]	
Bellow thickness (2x)	1.5	[mm]	
Space between bellow and pipe support (2x)	0.75	[mm]	
Pipe support thickness* (2x)	1.5	[mm]	(2x) -1.05
c*	0.5	[mm]	(2x) -0.1
Trans. tube thickness (2x)	1.5	[mm]	(2x) -0.5
Tolerance inner diameter	0.1	[mm]	
Inner Trans. inner diameter	93.00	[mm]	
Inner Trans. outer diameter	96.00	[mm]	

*See drawing

Bellow body

Max. inner diameter in transition tube joint

HILUMI CERM

Transition tube

	ACTUAL TRANS. TUBE		
1	Inner diameter bellow	100	[mm]
2	Inner Trans. tube diameter	90	[mm]
3	Outer largest diameter transition tube	96	[mm]
	Max. space poss. Gained	2	[mm]

	OPTIMIZED TRANS. TUBE		
1	Inner diameter bellow	100	[mm]
	Max. space poss. Gained	2	[mm]
2	Outer largest diameter transition tube	98	[mm]
	Max. inner diameter trans.tube	92.00	[mm]
- 1			

in transition tube

RF Finger joint

ACTUAL BELLOW (RF side)		
Outter diameter bellow	103	[mm]
Bellow thickness (2x)	1.5	[mm]
Space between bellow and RF finger (2x)	1.95	[mm]
Flange RF finger thickness (2x)	2.75	[mm]
RF finger thickness (2x)	0.3	[mm]
Tolerance inner diameter	0.1	[mm]
Inner bellow diameter	90.00	[mm]

	Bellow body
	Lang ma
-	
Transition tube	RF finger

OPTIMIZED BELLOW (RF side)			
Outter diameter below	103	[mm]	
Bellow thickness (2x)	1.5	[mm]	
Space between bellow and RF finger (2x)	0.75	[mm]	(2x) -1.25
Flange RF finger thickness (2x)	1.5	[mm]	(2x) -1.15
RF finger thickness (2x)	0.3	[mm]	
Tolerance inner diameter	0.1	[mm]	
Inner RF finger diameter	94.9	[mm]	\rightarrow

Max. inner diameter in RF finger joint

Conclusions

Bellow optimization and vacuum chamber study

RESULTS TABLE		
Pipe Mechanical tolerance (2x)	0.9	[mm]
Pipe Alignement accuracy (2x)	2	[mm]
Min. Inner pipe diameter	91	[mm]
Inner RF finger diameter	95	[mm]
Trans tube. Mechanical tolerance	1.175	[mm]
Max. inner diameter trans.tube	92	[mm]
Max vacuum module alignment accuracy*	4.65	[mm]

*For those vacuum modules that need to be aligned

Inner diameter pipe
Bellow mechanical tol.
Beam aperture

Vacuum module Alignment accuracy

BELLOW

Objective \rightarrow to not have diameter transition between vacuum chamber and bellow:

- \circ Min inner diameter \rightarrow 91 mm
- Max inner diameter \rightarrow 92 mm
- Max vacuum module alignment accuracy* \rightarrow 2.32 mm

TARGET :

ID91, Alignement +/- 1.8 mm ID92, Alignement +/- 2.3 mm

All the tolerances shown are in radius

Vincent Baglin – Pablo Santos Díaz

Alignment equipment

Alignment equipment

- In addition to vacuum chambers (VC), we have to align bellows (VMT), Supports (VHL) and vacuum assemblies (VA).
- For future design, improvement in alignment is needed. Today our alignment specification is 3 mm.
- What are the standard tools & means used to align an equipment?
- Which tools do we have to include in the design to do the alignment with your equipment?

Alignment equipment

 Idea: to have a support aligned <u>only once</u> and its ancillaries easily exchangeable, <u>without</u> re-alignement, in order to follow ALARA recommendations.

- What is the alignment accuracy for this kind of support?
- What are the alignment tools do we need for this kind of support?

Alignment equipment: VA

Alignment equipment: VC

 Vacuum chamber supports have to be aligned
Movable & fixed supports

Single support Double support

Alignment equipment: VMT

Some Vacuum
modules with double
bellows have to be
aligned

Bellow <

Support -

Questions

Questions

- What is the achievable alignment accuracy of an upgraded alignment system for the VA, VC, VMT?
- Concerning the alignment equipment, what are the tools that you need to align an equipment?
- If we design a new support, which tools do we have to include in the design to do the alignment with your equipment?
- How do you do the alignment? Which tools or which methodology do you use?

THANK YOU FOR YOUR ATTENTION!!!

